2020-2021全国各地备战中考模拟试卷数学分类:圆的综合综合题汇编及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021全国各地备战中考模拟试卷数学分类:圆的综合综合题汇编及详细答

一、圆的综合
1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»
BF FA
=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;
(3)在(2)的条件下,如图3,若AE=2
3
DG,PO=5,求EF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.
【解析】
【分析】
(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;
(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;
(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出
EH∥DG,求出OM=1
2
AE,设OM=a,则HM=a,AE=2a,AE=
2
3
DG,DG=3a,
求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=
1
2
MO
BM
=,tanP=
1
2
CO
PO
=,设
OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】
(1)证明:连接OC,
∵PC为⊙O的切线,
∴OC⊥PC,
∵AD⊥PC,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OC=OA,
∴∠PAC=∠OCA,
∴∠DAC=∠PAC;
(2)证明:连接BE交GF于H,连接OH,
∵FG∥AD,
∴∠FGD+∠D=180°,
∵∠D=90°,
∴∠FGD=90°,
∵AB为⊙O的直径,
∴∠BEA=90°,
∴∠BED=90°,
∴∠D=∠HGD=∠BED=90°,
∴四边形HGDE是矩形,
∴DE=GH,DG=HE,∠GHE=90°,
∵»»
BF AF
=,
∴∠HEF=∠FEA=1
2
∠BEA=190
2
o
⨯=45°,
∴∠HFE=90°﹣∠HEF=45°,
∴∠HEF=∠HFE,
∴FH=EH,
∴FG=FH+GH=DE+DG;
(3)解:设OC交HE于M,连接OE、OF,
∵EH=HF,OE=OF,HO=HO,
∴△FHO≌△EHO,
∴∠FHO=∠EHO=45°,
∵四边形GHED是矩形,
∴EH∥DG,
∴∠OMH=∠OCP=90°,
∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,
∴HM=MO,
∵OM⊥BE,
∴BM=ME,
∴OM=1
2 AE,
设OM=a,则HM=a,AE=2a,AE=2
3
DG,DG=3a,
∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,
∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,
∴ME=CD=2a,BM=2a,
在Rt△BOM中,tan∠MBO=
1
22 MO a
BM a
==,
∵EH∥DP,
∴∠P=∠MBO,
tanP=
1
2 CO
PO
=,
设OC=k,则PC=2k,
在Rt△POC中,OP=5k=5,
解得:k=5,OE=OC=5,
在Rt△OME中,OM2+ME2=OE2,5a2=5,
a=1,
∴HE=3a=3,
在Rt△HFE中,∠HEF=45°,
∴EF=2HE=32.
【点睛】
考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.
2.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.
(1)求证:BD平分∠ABC;(2)求证:BE=2AD;
(3)求DE
BE
的值.
【答案】(1)答案见解析(2)BE=AF=2AD(3)21 -
【解析】
试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;
(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得
BE=AF=2AD;
(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,
DH=21
-, 然后根据相似三角形的性质可求解.
试题解析:(1)∵D是的中点
∴AD=DC
∴∠CBD=∠ABD
∴BD平分∠ABC
(2)提示:延长BC与AD相交于点F,
证明△BCE≌△ACF,
BE=AF=2AD
(3)连接OD,交AC于H.简要思路如下:
设OH为1,则BC为2,2,
21, DE
BE
=
DH
BC
DE BE 21 -
3.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。

(1)如图1,如果点M是线段AB的中点,且⊙M的半径等于4,试判断直线OB与⊙M 的位置关系,并说明理由;
(2)如图2,⊙M与x轴,y轴都相切,切点分别为E,F,试求出点M的坐标;
(3)如图3,⊙M与x轴,y轴,线段AB都相切,切点分别为E,F,G,试求出点M的坐标(直接写出答案)
【答案】(1)OB与⊙M相切;(2)M(-24
7

24
7
);(3)M(-2,2)
【解析】
分析:(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;
(2)求出过点A、B的一次函数关系式是y=3
4
x+6,设M(a,﹣a),把x=a,y=﹣a代
入y=3
4
x+6得出关于a的方程,求出即可.
(3)连接ME、MF、MG、MA、MB、MO,设ME=MF=MG=r,根据
S△ABC=1
2
AO•ME+
1
2
BO•MF+
1
2
AB•MG=
1
2
AO•BO求得r=2,据此可得答案.
详解:(1)直线OB与⊙M相切.理由如下:
设线段OB的中点为D,如图1,连结MD,
∵点M是线段AB的中点,所以MD∥AO,MD=4,∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上.又∵点D在直线OB上,∴直线OB与⊙M相切;(2)如图2,连接ME,MF,
∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴
80
6
k b
b
-+=


=

,解
得:k=3
4
,b=6,即直线AB的函数关系式是y=
3
4
x+6.
∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M
(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=3
4
x+6,得:﹣a=
3
4
a+6,得:a=﹣
24 7,∴点M的坐标为(﹣
2424
77
,).
(3)如图3,连接ME、MF、MG、MA、MB、MO,
∵⊙M与x轴,y轴,线段AB都相切,∴ME⊥AO、MF⊥BO、MG⊥AB,设
ME=MF=MG=r,则S△ABC=1
2
AO•ME+
1
2
BO•MF+
1
2
AB•MG=
1
2
AO•BO.
∵A(﹣8,0),B(0,6),∴AO=8、BO=6,AB=22
AO BO
=10,
∴1
2r•8+
1
2
r•6+
1
2
r•10=
1
2
×6×8,解得:r=2,即ME=MF=2,∴点M的坐标为(﹣2,
2).
点睛:本题考查了圆的综合问题,掌握直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解答此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,当d=r时,直线l和⊙O 相切.
4.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD=时,四边形OADC是正方形;
②当AD=时,四边形OECB是菱形.
【答案】(1)见解析;(2)①1;②3.
【解析】
试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;
(2)①依据正方形的四条边都相等可知AD=OA;
②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.
试题解析:解:∵AM⊥AB,
∴∠OAD=90°.
∵OA=OC,OD=OD,AD=DC,
∴△OAD≌△OCD,
∴∠OCD=∠OAD=90°.
∴OC⊥CD,
∴CD是⊙O的切线.
(2)①∵当四边形OADC是正方形,
∴AO=AD=1.
故答案为:1.
②∵四边形OECB是菱形,
∴OE=CE.
又∵OC=OE,
∴OC=OE=CE.
∴∠CEO=60°.
∵CE∥AB,
∴∠AOD=60°.
在Rt△OAD中,∠AOD=60°,AO=1,
∴AD=.
故答案为:.
点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.
5.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧»OB上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.
(1)求证:PD2=PE•PF;
(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF.
【答案】(1)详见解析;(2)D(﹣
3
4
a,
3
4
a),E(﹣
33
4
a,
3
4
a),F(﹣
3
2
a,
0),P 3

2
a
);S△DEF
33
a2.
【解析】
试题分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得
出PB PE
OP PD
=,同理,△OPF∽△BPD,得出
PB PD
OP PF
=,然后利用等量代换即可.
(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF的面积.
试题解析:(1)证明:连接PB,OP,
∵PE⊥AB,PD⊥OB,
∴∠BEP=∠PDO=90°,
∵AB切⊙O1于B,∠ABP=∠BOP,
∴△PBE∽△POD,
∴=,
同理,△OPF∽△BPD
∴=,
∴=,
∴PD2=PE•PF;
(2)连接O1B,O1P,
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=30°,
∴∠O1BP=90°﹣30°=60°,
∵O1B=O1P,
∴△O1BP为等边三角形,
∴O1B=BP,
∵P为弧BO的中点,
∴BP=OP,
即△O1PO为等边三角形,
∴O1P=OP=a,
∴∠O1OP=60°,
又∵P为弧BO的中点,
∴O1P⊥OB,
在△O1DO中,∵∠O1OP=60°O1O=a,
∴O1D=a,OD=a,
过D作DM⊥OO1于M,∴DM=OD=a,
OM=DM=a,
∴D(﹣a, a),
∵∠O1OF=90°,∠O1OP=60°
∴∠POF=30°,
∵PE⊥OA,
∴PF=OP=a,OF=a,
∴P(﹣a,),F(﹣a,0),
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=∠BOP=30°,
∵PE⊥AB,PB=a,
∴∠EPB=60°
∴PE=a,BE=a,
∵P为弧BO的中点,
∴BP=PO,
∴∠PBO=∠BOP=30°,
∴∠BPO=120°,
∴∠BPE+∠BPO=120°+60°=180°,
即OPE三点共线,
∵OE=a+a=a,
过E作EM⊥x轴于M,∵AO切⊙O1于O,
∴∠EOA=30°,
∴EM=OE=a,OM=a,
∴E(﹣a, a),
∵E(﹣a, a),D(﹣a, a),
∴DE=﹣a﹣(﹣a)=a,
DE边上的高为: a,
∴S△DEF=×a×a=a2.
故答案为:D(﹣a, a),E(﹣a, a),F(﹣a,0),P(﹣a,);S△DEF=a2.
6.阅读下列材料:
如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点, 求证:AC ⊥BC
证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D , ∵DA 、DC 是⊙O 1的切线 ∴DA=DC . ∴∠DAC=∠DCA . 同理∠DCB=∠DBC .
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°, ∴∠DCA+∠DCB=90°. 即AC ⊥BC .
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容; (2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.
【答案】(1)见解析;(2)213
222
y x x =+- ;(3)见解析 【解析】
试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;
(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;
(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的
关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.
试题解析:(1)DA 、DC 是1O e 的切线, ∴DA =DC .应用的是切线长定理;
180DAC DCA DCB DBC ∠+∠+∠+∠=o ,应用的是三角形内角和定理.
(2)设C 点坐标为(0,y ),则222AB AC BC =+, 即()()
22
22241
41y y --=-+++,
即2
25172y =+,解得y =2(舍去)或y =−2.
故C 点坐标为(0,−2),
设经过、、A B C 三点的抛物线的函数解析式为2
y ax bx c ,
=++ 则16400
2,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ 解得12322a b c ⎧
=⎪⎪

=⎨⎪
=-⎪⎪⎩

故所求二次函数的解析式为213
2.22
y x x =+-
(3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3
(,0)2
D -, 设过CD 两点的直线为y =kx +b ,则
3
02
2k b b ⎧-+=⎪⎨⎪=-⎩, 解得432k b ⎧=-⎪⎨⎪=-⎩,
故此一次函数的解析式为4
23
y x =-
-, ∵过12,O O 的直线必过C 点且与直线4
23
y x =--垂直, 故过12,O O 的直线的解析式为3
24
y x =
-, 由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28
--, 代入直线解析式得
3325
2,428
⎛⎫⨯--=- ⎪⎝⎭ 故这条抛物线的顶点落在两圆的连心12O O 上.
7.(1)问题背景
如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.
小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:
第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);
第二步:证明Q,B,P三点共线,进而原题得证.
请你根据小明同学的思考过程完成证明过程.
(2)类比迁移
如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.
(3)拓展延伸
如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=4
3
AC,AB⊥AC,垂足
为A,则OC的最小值为.
【答案】(1)证明见解析;(2)OC最小值是2﹣3;(3)3
2

【解析】
试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;
(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;
(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=4
3
OA,连接OQ,
BQ,OB.由△QAB∽OAC,推出BQ=4
3
OC,当BQ最小时,OC最小;
试题解析:(1)将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①);
∵BC 是直径,∴∠BAC=90°, ∵AB=AC ,∴∠ACB=∠ABC=45°,
由旋转可得∠QBA=∠PCA ,∠ACB=∠APB=45°,PC=QB ,
∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q ,B ,P 三点共线, ∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP 2=AP 2+AQ 2=2AP 2, ∴QP=2AP=QB+BP=PC+PB ,∴
2AP=PC+PB .
(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,
∵AB ⊥AC,∴∠BAC=90°,
由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;
(3)如图③中,作AQ ⊥OA ,使得AQ=
4
3
OA ,连接OQ ,BQ ,OB .
∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =4
3
, ∴△QAB ∽OAC ,∴BQ=
4
3
OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2,
∴OC 的最小值为34×2=32
, 故答案为
32
. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.
8.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作¶AC 、
¶CB
、¶BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.
(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;
(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;
(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)
【答案】(1)3π;(2)27π;(3)3. 【解析】
试题分析:(1)先求出¶AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;
(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.
试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,
¶¶¶AC BC AB ==,∴¶¶AC BC
l l ==¶AB l =603180
π⨯=π,∴线段MN 的长为¶¶¶AC BC AB
l l l ++=3π.故答案为3π;
(2)如图1.∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,
由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=
2
1203
360
π⨯
=3π,∴图形在运动过
程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,
AD=1
2
AC=
3
2
,∴OI=AI=
3
2
30
AD
cos DAI cos

=

=3,∴当它第1次回到起始位置时,点I
所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•3=23nπ.故答案为23nπ.
点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.
9.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧
»OA上,连结BD交x轴于点C,且∠COD=∠CBO.
(1)求⊙M的半径;
(2)求证:BD平分∠ABO;
(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.
【答案】(1)M的半径r2;(2)证明见解析;(3)点E的坐标为26
2).
【解析】
试题分析:根据点A和点B的坐标得出OA和OB的长度,根据Rt△AOB的勾股定理得出AB的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD,然后结合已知条件得出角平分线;根据角平分线得出△ABE≌△HBE,从而得出2,从而求出OH
的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.
试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴e M 的半径r=
1
2
AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO
(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-
2=2
在Rt △AOB 中,
3OA
OB
=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=
2633=∴点E 的坐标为(26
3
,2)
考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.
10.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,
(1)求证:OD =OP ;(2)求证:FE 是⊙O 的切线. 【答案】(1)证明见解析;(2)证明见解析. 【解析】
试题分析:(2)证明△POE ≌△ADO 可得DO=EO ; (3)连接AE ,BE ,证出△APE ≌△AFE 即可得出结论. 试题解析:(1)∵∠EPO=∠BDO=90° ∠EOP=∠BOD
OE=OB
∴△OPE≌△ODB
∴OD="OP"
(2)连接EA,EB
∴∠1=∠EBC
∵AB是直径
∴∠AEB=∠C=90°
∴∠2+∠3=90°
∵∠3=∠DEB
∵∠BDE=90°
∴∠EBC+∠DEB=90°
∴∠2=∠EBC=∠1
∵∠C=90°∠BDE=90°
∴CF∥OE
∴∠ODP=∠AFP
∵OD=OP
∴∠ODP=∠OPD
∵∠OPD=∠APF
∴∠AFP=∠APF
∴AF=AP 又AE=AE
∴△APE≌△AFE
∴∠AFE=∠APE=90°
∴∠FED=90°
∴FE是⊙O的切线
考点:切线的判定.
11.在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P独立于图形W.
(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于»AB的
点是;
(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标x p的取值范围;
(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.
【答案】(1)P2,P3;(2)x P<-5或x P>-5
3
.(3)-3<t<

<t<
【解析】
【分析】
(1)根据点P独立于图形W的定义即可判断;
(2)求出直线DE,直线CD与直线y=2x+8的交点坐标即可判断;
(3)求出三种特殊位置时t的值,结合图象即可解决问题.
【详解】
(1)由题意可知:在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于»AB的点是P2,P3.
(2)∵C(-3,0),D(0,3),E(3,0),
∴直线CD的解析式为y=x+3,直线DE的解析式为y=-x+3,

28
3
y x
y x
+


+



,解得
5
2
x
y
-


-



,可得直线l与直线CD的交点的横坐标为-5,

28
3
y x
y x
+


-+



,解得
5
3
14
3
x
y

-
⎪⎪


⎪⎩


,可得直线l与直线DE的交点的横坐标为-
5
3

∴满足条件的点P的横坐标x p的取值范围为:x P<-5或x P>-5
3

(3)如图3-1中,当直线KN与⊙H相切于点E时,连接EH,则EH=EK=1,
∴OT=KT+HK-OH=3+2-4=2-1,
∴T(0,1-2),此时t=1-2,
∴当-3<t<1-2时,⊙H上的所有点都独立于图形W.如图3-2中,当线段KN与⊙H相切于点E时,连接EH.
22
∴T(0,22
如图3-3中,当线段MN与⊙H相切于点E时,连接EH.
22
∴T(0,22
∴当2<t<2时,⊙H上的所有点都独立于图形W.
综上所述,满足条件的t的值为-3<t<2或2<t<2
【点睛】
本题属于圆综合题,考查了切线的性质,一次函数的应用,点P独立于图形W的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决实际问题.
12.
如图,△ABC中,AC=BC=10,cosC=3
5
,点P是AC边上一动点(不与点A、C重合),
以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.
(1)当⊙P与边BC相切时,求⊙P的半径.
(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.
(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.
【答案】(1)
40
9
R=;(2)2
5
880
320
x
y x x
x
=-+
+
;(3)50105
-.
【解析】【分析】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3
5
,则
sinC=4
5
,sinC=
HP
CP

10
R
R
-

4
5
,即可求解;
(2)首先证明PD∥BE,则EB BF
PD PF
=,即:20
2
4
588
x y
x
x
x
y
-+
--
=,即可求解;
(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP,则HP⊥BC,cosC=3
5
,则sinC=
4
5

sinC=HP
CP

10
R
R
-

4
5
,解得:R=
40
9

(2)在△ABC中,AC=BC=10,cosC=3
5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,
则BH =ACsinC =8,
同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,
DA =
25x ,则BD =45﹣25
x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,
tanβ=2,则cosβ5
,sinβ5
, EB =BDcosβ=(525
x )5=4﹣25
x ,
∴PD ∥BE ,
∴EB BF
PD PF
=,即:202
4588x y x x
x -+--=,
整理得:y 25x
x 8x 803x 20
-++
(3)以EP 为直径作圆Q 如下图所示,
两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,
由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,
∴AB =DB+AD =AG+AD =5 设圆的半径为r ,在△ADG 中,
AD =2rcosβ5DG 5AG =2r ,
5=52r 51+, 则:DG 5
50﹣5
相交所得的公共弦的长为50﹣5 【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
13.如图,在ABC △中,10AC BC ==,3
cos 5
C =
,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .
()1当P e与边BC相切时,求P e的半径;
()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,
并直接写出x的取值范围;
()3在()2的条件下,当以PE长为直径的Q
e与P
e相交于AC边上的点G时,求相交所得的公共弦的长.
【答案】(1)40
9
;(2)()
2
5
880
010
320
x x x
y x
x
-+
=<<
+
;(3)1025
-
【解析】
【分析】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=
3
5
,则sinC=
4
5
,sinC=
HP
CP
=
R
10R
-
=
4
5
,即可求解;
(2)PD∥BE,则
EB
PD

BF
PF
,即:2
2
4880
5
x x x y
x y
--+-
=,即可求解;
(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP,则HP⊥BC,cosC=
3
5
,则sinC=
3
5

sinC=
HP
CP
=
R
10R
-
=
4
5
,解得:R=
40
9

(2)在△ABC中,AC=BC=10,cosC=
3
5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,
则BH=ACsinC=8,
同理可得:
CH=6,HA=4,AB=45,则:tan∠CAB=2BP=()2
2
84
x
+-=2880
x x
-+,DA=
25
x,则BD=45-
25
x,
如下图所示,
PA=PD,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,则
55
EB=BDcosβ=(5
5
5
x)
5
2
5
x,
∴PD∥BE,
∴EB
PD

BF
PF
,即:2
2
4880
5
x x x y
x y
--+
=,
整理得:y=)
2
x8x80
0x10
3x20
-+
<<
+

(3)以EP为直径作圆Q如下图所示,
两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,
∵点Q时弧GD的中点,
∴DG⊥EP,
∵AG是圆P的直径,
∴∠GDA=90°,
∴EP∥BD,
由(2)知,PD∥BC,∴四边形PDBE为平行四边形,
∴AG=EP=BD,
∴5
设圆的半径为r,在△ADG中,
55
AG=2r,
55
51

则:
5
5
相交所得的公共弦的长为5
【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
14.如图, Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F, (1)
设AB=c, BC=a, AC=b, 求证: 内切圆半径r=1
2
(a+b-c).
(2) 若AD交圆于P, PC交圆于H, FH//BC, 求∠CPD;
(3)若10, PD=2. 求△ABC各边长.
【答案】(1)证明见解析(2)45°(3)91010,1510
,12
【解析】
【分析】
(1)根据切线长定理,有AE=AF,BD=BF,CD=CE.易证四边形BDOF为正方形,
BD=BF=r,用r表示AF、AE、CD、CE,利用AE+CE=AC为等量关系列式.
(2)∠CPD为弧DH所对的圆周角,连接OD,易得弧DH所对的圆心角∠DOH=90°,所以∠CPD=45°.
(3)由PD=18和r=310,联想到垂径定理基本图形,故过圆心O作PD的垂线OM,求得弦心距OM=3,进而得到∠MOD的正切值.延长DO得直径DG,易证PG∥OM,得到同位角∠G=∠MOD.又利用圆周角定理可证∠ADB=∠G,即得到∠ADB的正切值,进而求得AB.再设CE=CD=x,用x表示BC、AC,利用勾股定理列方程即求出x.
【详解】
解:(1)证明:设圆心为O,连接OD、OE、OF,
∵⊙O分别与BC、CA、AB相切于点D、E、F
∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE
∴∠B=∠ODB=∠OFB=90°
∴四边形BDOF是矩形
∵OD=OF=r
∴矩形BDOF是正方形
∴BD=BF=r
∴AE=AF=AB-BF=c-r,CE=CD=BC-BD=a-r
∵AE+CE=AC
∴c-r+a-r=b
整理得:r=1
2
(a+b-c)
(2)取FH中点O,连接OD ∵FH∥BC
∴∠AFH=∠B=90° ∵AB 与圆相切于点F , ∴FH 为圆的直径,即O 为圆心 ∵FH ∥BC
∴∠DOH=∠ODB=90° ∴∠CPD=
1
2
∠DOH=45°
(3)设圆心为O ,连接DO 并延长交⊙O 于点G ,连接PG ,过O 作OM ⊥PD 于M ∴∠OMD=90° ∵PD=18 ∴DM=
1
2
PD=9 ∵10
∴22OD DM -22(310)9-9081-3 ∴tan ∠MOD=DM
OM
=3 ∵DG 为直径 ∴∠DPG=90°
∴OM ∥PG ,∠G+∠ODM=90° ∴∠G=∠MOD
∵∠ODB=∠ADB+∠ODM=90° ∴∠ADB=∠G ∴∠ADB=∠MOD ∴tan ∠ADB=
AB
BD
=tan ∠MOD=3 ∴10
∴10−10=10 设CE=CD=x ,则10+x ,10+x ∵AB 2+BC 2=AC 2
∴10)2.10+x)2=10+x)2 解得:10
∴BC=1210,AC=1510
∴△ABC 各边长AB=910,AC=1510,BC=1210
【点睛】
本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.
15.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C . (1)求证:ABC C ∠∠=;
(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG
的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.
【答案】(1)见解析;(2)见解析. 【解析】 【分析】
(1)作辅助线,连接OD ,由DF 为⊙O 的切线,可得OD ⊥DF ,又BF ⊥DF ,AC ∥BF ,所以OD ∥AC ,∠ODB=∠C ,由OB=OD 得∠ABD=∠ODB ,从而可证∠ABC=∠C ;
(2)连接OG ,OD ,AD ,由BF ∥OD ,»GD =60°,可求证»BG =»»GD AD ==60°,由平行线
的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论. 【详解】 (1)连接OD , ∵DF 为⊙O 的切线, ∴OD ⊥DF .
∵BF⊥DF,AC∥BF,
∴OD∥AC∥BF.
∴∠ODB=∠C.
∵OB=OD,
∴∠ABD=∠ODB.
∴∠ABC=∠C.
(2)连接OG,OD,AD,DE,DE交AB于H,
∵BF∥OD,
∴∠OBG=∠AOD,∠OGB=∠DOG,
∴»»
==»BG.
GD AD
∵»GD=60°,
∴»BG=»»
==60°,
GD AD
∴∠ABC=∠C=∠E=30°,
∵OD//CE
∴∠ODE=∠E=30°.
在△ODH中,∠ODE=30°,∠AOD=60°,
∴∠OHD=90°,
∴AB⊥DE.
∴点D和点E关于直线AB对称.
【点睛】
本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.。

相关文档
最新文档