备战中考数学(初中数学 旋转提高练习题)压轴题训练附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学(初中数学 旋转提高练习题)压轴题训练附详细答案
一、旋转
1.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .
(1)如图①,当点D 落在BC 边上时,求点D 的坐标;
(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .
①求证△ADB ≌△AOB ;
②求点H 的坐标.
(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).
【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344
+. 【解析】
【分析】
(1)如图①,在Rt △ACD 中求出CD 即可解决问题;
(2)①根据HL 证明即可;
②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;
(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A (5,0),B (0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD=22
AD AC
-=4,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=17
5

∴BH=17
5

∴H(17
5
,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1
2
•DE•DK=
1
2
×3×
(34

30334
-
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=1
2
×D′E′×KD′=
1
2
×3×
(5+34
2
)=
30334
4
+

综上所述,30334
4
-
≤S≤
30334
4
+

【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
2.如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,
AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且
∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.
【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α
【解析】
【分析】
(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互
余,所以∠BAE =∠DAF ,所以△FAD ≌△EAB ,因此BE 与DF 相等,延长DF 交BE 于G ,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF =90°,所以DF ⊥BE ; (2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD ∽△EAB ,所以DF =kBE ,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF =90°,所以DF ⊥BE ;
(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF =180°,所以DF 与BE 的夹角β=180°﹣α.
【详解】
(1)DF 与BE 互相垂直且相等.
证明:延长DF 分别交AB 、BE 于点P 、G
在正方形ABCD 和等腰直角△AEF 中
AD =AB ,AF =AE ,
∠BAD =∠EAF =90°
∴∠FAD =∠EAB
∴△FAD ≌△EAB
∴∠AFD =∠AEB ,DF =BE
∵∠AFD+∠AFG =180°,
∴∠AEG+∠AFG =180°,
∵∠EAF =90°,
∴∠EGF =180°﹣90°=90°,
∴DF ⊥BE
(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE .
延长DF 交EB 于点H ,
∵AD =kAB ,AF =kAE ∴
AD k AB =,AF k AE = ∴AD AF AB AE
= ∵∠BAD =∠EAF =a
∴∠FAD =∠EAB
∴△FAD ∽△EAB
∴DF AF k BE AE
== ∴DF =kBE ∵△FAD ∽△EAB ,
∴∠AFD =∠AEB ,
∵∠AFD+∠AFH =180°,
∴∠AEH+∠AFH =180°,
∵∠EAF =90°,
∴∠EHF =180°﹣90°=90°,
∴DF ⊥BE
(3)不改变.DF =kBE ,β=180°﹣a .
延长DF 交EB 的延长线于点H ,
∵AD =kAB ,AF =kAE

AD k AB =,AF k AE = ∴AD AF AB AE
= ∵∠BAD =∠EAF =a
∴∠FAD =∠EAB
∴△FAD ∽△EAB

DF AF k BE AE
== ∴DF =kBE 由△FAD ∽△EAB 得∠AFD =∠AEB
∵∠AFD+∠AFH =180°
∴∠AEB+∠AFH =180°
∵四边形AEHF 的内角和为360°,
∴∠EAF+∠EHF =180°
∵∠EAF =α,∠EHF =β
∴a+β=180°∴β=180°﹣a
【点睛】
本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关
键,也是难点所在.
3.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.
(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.
他的证明思路如下:
第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
第二步:证明△APM≌△ANM,得MP=MM.
第一步:证明∠POM=90°,得OM2+OP2=MP2.
最后得到OM2+BN2=MN2.
请你完成第二步三角形全等的证明.
(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.
【解析】
【分析】
(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明
△APM≌△ANM,再利用勾股定理即可解决问题;
(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.
【详解】
(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵点A(0,4),B(4,4),
∴OA=AB,∠OAB=90°,
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS).
(2)如图2中,结论仍然成立.
理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS),
∴MN=PM,
∵∠ABN=∠AOP=135°,∠AOB=45°,
∴∠MOP=90°,
∴PM2=OM2+OP2,
∴OM2+BN2=MN2;
(3)如图3中,若点B是MN的中点,求MN的长.
设MN=2x,则BM=BN=x,
∵OA=AB=4,∠OAB=90°,
∴OB=2,
∴OM=2﹣x,
∵OM2+BN2=MN2.
∴(42﹣x)2+x2=(2x)2,
解得x=﹣22+26或﹣22﹣26(舍弃)
∴MN=﹣42+46.
【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.
4.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,
FH⊥FG.
【解析】
试题分析:(1)证AD=BE,根据三角形的中位线推出FH=1
2
AD,FH∥AD,FG=
1
2
BE,
FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:
(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,
∴FH=1
2AD,FH∥AD,FG=
1
2
BE,FG∥BE,
∴FH=FG,
∵AD ⊥BE ,
∴FH ⊥FG ,
故答案为相等,垂直.
(2)答:成立,
证明:∵CE=CD ,∠ECD=∠ACD=90°,AC=BC ,
∴△ACD ≌△BCE
∴AD=BE ,
由(1)知:FH=
12AD ,FH ∥AD ,FG=12
BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,
∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG ,FH ⊥FG .
连接AD ,BE ,两线交于Z ,AD 交BC 于X ,
同(1)可证
∴FH=
12AD ,FH ∥AD ,FG=12
BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形,
∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°,
∴∠ACD=∠BCE ,
在△ACD 和△BCE 中 AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩
=== , ∴△ACD ≌△BCE ,
∴AD=BE ,∠EBC=∠DAC ,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB ,
∴∠DXB+∠EBC=90°,
∴∠EZA=180°﹣90°=90°,
即AD ⊥BE ,
∵FH ∥AD ,FG ∥BE ,
∴FH ⊥FG ,
即FH=FG ,FH ⊥FG ,
结论是FH=FG,FH⊥FG.
【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.
5.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.
(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;
(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF 有怎样的数量关系?证明你发现的结论.
【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.
【解析】
【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;
【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;
【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.
6.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
【答案】(1)BF=AC,理由见解析;(2)NE=1
2
AC,理由见解析.
【解析】
试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则
∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=1
2 AC.
试题解析:
(1)BF=AC,理由是:
如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,

DAC DBF
ADC BDF AD BD
∠=∠


∠=∠

⎪=


∴△ADC≌△BDF(AAS),∴BF=AC;
(2)NE=1
2
AC,理由是:
如图2,由折叠得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,
∴EN=1
2 AC.
7.在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
【答案】(1)22)O'(9
2
33
3)P'(
27
5
63
).
【解析】
【分析】
(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
【详解】
(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,
∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB2AB2;
(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,
∴∠HAO'=60°,∴∠HO'A=30°,∴AH=1
2AO'=
3
2
,OH3
33
,∴OH=OA+AH=
9
2

∴O'(933
2

(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C 交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
∵点C 与点A 关于y 轴对称,∴C (﹣3,0).
∵O '(9332,),∴直线O 'C 的解析式为y =3x +33,令x =0,∴y =33,∴P (0,33),∴O 'P '=OP =33,作P 'D ⊥O 'H 于D . ∵∠B 'O 'A =∠BOA =90°,∠AO 'H =30°,∴∠DP 'O '=30°,∴O 'D =
12O 'P '=3310,P 'D =3O 'D =910,∴DH =O 'H ﹣O 'D =63,O 'H +P 'D =275,∴P '(27635,).
【点睛】
本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
8.在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图).
(1)求边OA 在旋转过程中所扫过的面积;
(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;
(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA 在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM 的度数;
(3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,
∴OA 旋转了45°.
∴OA 在旋转过程中所扫过的面积为24523602
ππ⨯=. (2)∵MN ∥AC ,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM .∴BM=BN .
又∵BA=BC ,∴AM=CN .
又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .
∴∠AOM=∠CON=12(∠AOC-∠MON )=12
(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.
证明:延长BA 交y 轴于E 点,
则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,
∴∠AOE=∠CON .
又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .
∴△OAE ≌△OCN .
∴OE=ON ,AE=CN .
又∵∠MOE=∠MON=45°,OM=OM ,
∴△OME ≌△OMN .∴MN=ME=AM+AE .
∴MN=AM+CN ,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC 的过程中,p 值无变化.
考点:旋转的性质.
9.如图1,在Rt △ADE 中,∠DAE=90°,C 是边AE 上任意一点(点C 与点A 、E 不重合),以AC 为一直角边在Rt △ADE 的外部作Rt △ABC ,∠BAC=90°,连接BE 、CD .
(1)在图1中,若AC=AB ,AE=AD ,现将图1中的Rt △ADE 绕着点A 顺时针旋转锐角α,得到图2,那么线段BE .CD 之间有怎样的关系,写出结论,并说明理由;
(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt △ADE 绕着点A 顺时针旋转锐角α,得到图3,连接BD 、CE .
①求证:△ABE ∽△ACD ;
②计算:BD 2+CE 2的值.
【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】
【分析】
(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;
(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.
②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.
【详解】
(1)结论:BE=CD,BE⊥CD.
理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.
∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.
在△CAD和△BAE中,∵
AB AC
BAE CAD
AE AD
=


∠=∠

⎪=

,∴△CAD≌△BAE,∴CD=BE,
∠ACD=∠ABE.
∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.
∵∠CABB =∠EAD =90°,∴∠CAD =∠BAE .
∵CA =3,AB =5,AD =6,AE =10,∴AE AB =AD AC
=2,∴△ABE ∽△ACD ; ②∵△ABE ∽△ACD ,∴∠AEB =∠CDA . ∵∠AFD =∠EFG ,∠AFD +∠CDA =90°,∴∠EFG +∠AEB =90°,∴∠DGE =90°,∴DG ⊥BE ,∴∠AGD =∠BGD =90°,∴CE 2=CG 2+EG 2,BD 2=BG 2+DG 2,∴BD 2+CE 2=CG 2+EG 2+BG 2+DG 2. ∵CG 2+BG 2=CB 2,EG 2+DG 2=ED 2,∴BD 2+CE 2=CB 2+ED 2=CA 2+AB 2+AD 2+AD 2=170.
【点睛】
本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.
10.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:
如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:
把图1中的△AEF 绕点A 顺时针旋转.
(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记AC BC
=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33
时,CPE V 总是等边三
角形
【解析】
【分析】
(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB =,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证
△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.
(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据
AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.
【详解】
解:(1)PC=PE 成立,理由如下:
如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,
∴EM FP MC PB
=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;
(2)PC=PE 成立,理由如下:
如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中
,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,
∴△DAF ≌△EAF (AAS ),
∴AD=AE ,在△DAP 和△EAP 中,
∵AD=AE ,∠DAP=∠EAP ,AP=AP ,
∴△DAP ≌△EAP (SAS ),
∴PD=PE ,
∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,
∴FD ∥BC ∥PM ,
∴DM FP MC PB =, ∵点P 是BF 的中点,
∴DM=MC ,又∵PM ⊥AC ,
∴PC=PD ,又∵PD=PE ,
∴PC=PE ;
(3)如图4,∵△CPE 总是等边三角形,
∴∠CEP=60°,
∴∠CAB=60°,
∵∠ACB=90°,
∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,
∵AC k BC =,AC BC
=tan30°, ∴k=tan30°=
3, ∴当k 为3时,△CPE 总是等边三角形.
【点睛】
考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.
11.如图1,是边长分别为6和4的两个等边三角形纸片ABC 和CD 1E 1叠放在一起.
(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;
(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE 的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.
探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);
(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.
【答案】(1)BE=CD.理由见解析;(2)△CHQ是等腰三角形;(3)2-x.
【解析】
试题分析:(1)根据等边三角形的性质可得AB=BC,CD=CE,∠ACB=∠ECD=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;
(2)求出∠ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出
∠CHQ=30°,从而得到∠ACF=∠CHQ,判断出△CHQ是等腰三角形;
(3)求出∠CGP=90°,然后利用∠ACF的余弦表示出CG,再根据等腰三角形的性质表示出CH,然后根据GH=CG-CH整理即可得解.
试题解析:(1)BE=CD.
理由如下:∵△ABC与△CDE是等边三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°.
∴∠ACB-∠ACE=∠ECD-∠ACE,
即∠BCE=∠ACD.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴BE=AD;
(2)∵旋转角为30°,
∴∠BCF=30°,
∴∠ACF=60°-30°=30°,
∴∠CHQ=∠RQP-∠ACF=60°-30°=30°,
∴∠ACF=∠CHQ,
∴△CHQ是等腰三角形;
(3)∠CGP=180°-∠ACF-∠RPQ=180°-30°-60°=90°,
∴CG=CP•cos30°=(x+4),
∵△CHQ是等腰三角形,
∴CH=2•CQcos30°=2x•=x,
∴GH=CG-CH=(x+4)-x=2-x.
考点:几何变换综合题.
12.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,
0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.
【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】
试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;
(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.
四边形OANM
②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S
=S△OCT-S△MN T,进而得出答案.
四边形OCMN
试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.
如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,
可以得出当P是MN的中点时S四边形MOFG=S△MON.
∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.
∴当点P是MN的中点时S△MON最小.
(2)分两种情况:
①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.
延长OC、AB交于点D,易知AD = 6,S△OAD=18 .
由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.
由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)
∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.
∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.
∴.
② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.
延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .
则T点的坐标为(9,0).
∴S△OCT=×9×=.
由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.
过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.
从而 NP1=P1M1,MM1=2PP1=4.
∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.
∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.
综上所述:截得四边形面积的最大值为10.
考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.
13.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将
△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM =BD,EN=CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是________________;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证
明.
【答案】(1)①BD=CE;
②AM=AN,∠MAN=∠BAC 理由如下:
∵在图①中,DE//BC,AB=AC
∴AD="AE."
在△ABD与△ACE中∴△ABD≌△ACE.
∴BD=CE,∠ACE=∠ABD.
在△DAM与△EAN中,
∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,
∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.
又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.
∴AM=AN,∠MAN=∠BAC.
(2)AM=kAN,∠MAN=∠BAC.
【解析】
(1)①根据题意和旋转的性质可知△AEC ≌△ADB ,所以BD=CE ;
②根据题意可知∠CAE=BAD ,AB=AC ,AD=AE ,所以得到△BAD ≌△CAE ,在△ABM 和△ACN 中, DM=BD ,EN=CE ,可证△ABM ≌△ACN ,所以AM=AN ,即∠MAN=∠BAC . (2)直接类比(1)中结果可知AM=k•AN ,∠MAN=∠BAC .
14.如图,正方形ABCD ,点M 是线段CB 延长线一点,连结AM ,AB a =,AM b =
(1)将线段AM 沿着射线AD 运动,使得点A 与点D 重合,用代数式表示线段AM 扫过的平面部分的面积.
(2)将三角形ABM 绕着点A 旋转,使得AB 与AD 重合,点M 落在点N ,用代数式表示线段AM 扫过的平面部分的面积.
(3)将三角形ABM 顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角
【答案】(1)2a ;(2)214b π或234b π;(3)见解析
【解析】
【分析】
(1)根据平移的性质和平行四边形的面积计算即可;
(2)根据扇形的面积计算即可;
(3)根据旋转的性质画出图形得出旋转中心和角度即可.
【详解】
解:(1)2AD DC a •=
答:线段AM 扫过的平面部分的面积为2a
(2)三角形ABM 绕着点A 旋转,使得AB 与AD 重合,则三角形ABM 旋转的角度是90°或270° ∴°2°90360AMN b S π⨯=扇形或°2°
270360AMN b S π⨯=扇形 ∴214AMN S b π=
扇形或234b π
答:扇形AMN 的面积为214b π或2
34b π
(3)如图1,旋转中心:AB 边的中点为O ,顺时针180o
如图2,旋转中心:点B ,顺时针旋转90o
如图3,旋转中心:正方形对角线交点O ,顺时针旋转90o
【点睛】
本题考查了旋转的性质,关键是根据旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角解答.
15.如图,四边形ABCD 中,45ABC ADC ∠=∠=o ,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.
(1)判断ABC ∆的形状,并说明理由;
(2)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.
【答案】(1)ABC ∆是等腰直角三角形,理由详见解析;(222
【解析】
【分析】
(1)利用旋转不变性证明A4BC 是等腰直角三角形.
(2)证明ACDE 是等腰直角三角形,再在Rt △ADE 中,求出AE 即可解决问题.
【详解】
解:(1)ABC ∆是等腰直角三角形.
理由:∵BC CA =,
∴45CBA CAB ∠=∠=o ,
∴90ACB ∠=o ,
∴ACB ∆是等腰直角三角形.
(2)如图:由旋转的性质可知:
90DCE ACB ∠=∠=o ,3CD CE ==,BD AE =, ∴32DE =45CDE CED ∠=∠=o ,
∵45ADC ∠=o ,
∴454590ADE ∠=+=o o o , ∴()222223222AE AD DE =+=+=
∴22BD AE ==
【点睛】
本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型。

相关文档
最新文档