慈化镇初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
慈化镇初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)二元一次方程7x+y=15有几组正整数解()
A.1组
B.2组
C.3组
D.4组
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:方程可变形为y=15﹣7x.
当x=1,2时,则对应的y=8,1.
故二元一次方程7x+y=15的正整数解有,,共2组.
故答案为:B
【分析】将原方程变形,用一个未知数表示另一个未知数可得x=,因为方程的解是正整数,所以15-y 能被7整除,于是可得15-y=14或7,于是正整数解由2组。
2.(2分)若k< <k+l(k是整数),则k的值为()
A.6
B.7
C.8
D.9
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵64<80<81,
∴8<<9,
又∵k<<k+1,
∴k=8.
故答案为:C.
【分析】由64<80<81,开根号可得8<<9,结合题意即可求得k值.
3.(2分)在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是()
A.2个
B.3个
C.4个 D 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:,, 2.101101110……,
∴无理数的个数为3个.
故答案为:B.
【分析】无理数:无限不循环小数,由此即可得出答案.
4.(2分)关于x、y的方程组的解x、y的和为12,则k的值为()
A.14
B.10
C.0
D.﹣14
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:解方程得:
根据题意得:(2k﹣6)+(4﹣k)=12
解得:k=14.
故答案为:A
【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。
5.(2分)如图,AB∥CD,CD∥EF,则∠BCE等于()
A.∠2-∠1
B.∠1+∠2
C.180°+∠1-∠2
D.180°-∠1+∠2
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠BCD=∠1,
又∵CD∥EF,
∴∠2+∠DCE=180°,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE,
=∠1+180°-∠2.
故答案为:C.
【分析】根据平行线的性质得∠BCD=∠1,∠DCE=180°-∠2,由∠BCE=∠BCD+∠DCE,代入、计算即可得出答案.
6.(2分)下列方程组是二元一次方程组的是()
A.
B.
C.
D.
【考点】二元一次方程组的定义
【解析】【解答】解:A、是二元二次方程组,故A不符合题意;
B、是分式方程组,故B不符合题意;
C、是二元二次方程组,故C不符合题意;
D、是二元一次方程组,故D符合题意;
故答案为:D.
【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
7.(2分)如果方程组的解中与的值相等,那么的值是()
A.1
B.2
C.3
D.4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:∵方程组的解中与的值相等,
∴x=y
∴3x+7x=10
解之:x=1
∴y=1
∴a+a-1=5
解之:a=3
故答案为:C
【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。
8.(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()
A. 63
B. 58
C. 60
D. 55
【考点】三元一次方程组解法及应用
【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,
由题意得:,
由①得:y-x=34-z,
由②得:x-y=92-z,
即34-z+92-z=0,
解得z=63;
即桌子的高度是63.
故答案为:A.
【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。
9.(2分)下列各组数值是二元一次方程x﹣3y=4的解的是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程的解
【解析】【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,符合题意;
B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,不符合题意;
C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,不符合题意;
D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,不符合题意.
故答案为:A
【分析】由二元一次方程的解的意义,将选项中的x、y的值代入已知的方程检验即可判断求解。
10.(2分)用加减法解方程组时,下列解法错误的是()
A. ①×3-②×2,消去x
B. ①×2-②×3,消去y
C. ①×(-3)+②×2,消去x
D. ①×2-②×(-3),消去y
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;
B、①×2-②×3,可消去y,故不符合题意;
C、①×(-3)+②×2,可消去x,故不符合题意;
D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.
故答案为:D
【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
的
11.(2分)下列方程中,是二元一次方程的是()
A.3x﹣2y=4z
B.6xy+9=0
C.
D.
【答案】D
【考点】二元一次方程的定义
【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D
【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。
12.(2分)已知关于x、y的方程组,给出下列说法:
①当a =1时,方程组的解也是方程x+y=2的一个解;②当x-2y>8时,;③不论a取什么实数,2x+y
的值始终不变;④若,则。
以上说法正确的是()
A.②③④
B.①②④
C.③④
D.②③
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;
通过加减消元法可解方程组为x=3+a,y=-2a-2,代入x-2y>8可解得a>,故②正确;
2x+y=6+2a+(-2a-2)=4,故③正确;
代入x、y的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.
故答案为:A
【分析】将a代入方程组,就可对①作出判断;利用加减消元法求出x、y的值,再将x、y代入x-2y>8 解不等式求出a的取值范围,就可对②作出判断;由x=3+a,y=-2a-2,求出2x+y=4,可对③作出判断;将x、y 的值代入y=x2+5,求出a的值,可对④作出判断;综上所述可得出说法正确的序号。
二、填空题
13.(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。
14.(1分)对于有理数,定义新运算:* ;其中是常数,等式右边是通常
的加法和乘法运算,已知,,则的值是________ .
【答案】-6
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:根据题中的新定义化简1∗2=1,(−3)∗3=6得:,
解得:,
则2∗(−4)=2×(−1)−4×1=−2−4=−6.
故答案为:−6
【分析】根据新定义的运算法则:* ,由已知:,,建立关于a、b的
方程组,再利用加减消元法求出a、b的值,然后就可求出的结果。
15.(1分)正数的两个平方根分别是和,则正数=________.
【答案】100
【考点】平方根
【解析】【解答】解:∵正数a的两个平方根分别是2m和5-m,
∴2m+5-m=0,
解得:m=-5,
∴a=(2m)2=(-5×2)2=100.
故答案为:100.
【分析】一个正数的两个平方根互为相反数,从而可得2m+5-m=0,解之求出m值,再由a=(2m)2即可求得答案.
16.(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。
17.(2分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是________,点P2表示的数是________.
【答案】﹣1﹣;﹣1+
【考点】实数在数轴上的表示
【解析】【解答】解:∵点A表示的数是﹣1,O是原点,
∴AO=1,BO=1,
∴AB= = ,
∵以A为圆心、AB长为半径画弧,
∴AP1=AB=AP2= ,
∴点P1表示的数是﹣1﹣,
点P2表示的数是﹣1+,
故答案为:﹣1﹣;﹣1+
【分析】根据在数轴上表示无理数的方法,我们可知与AB大小相等,都是,因在-1左侧,所以表示-1-,而在-1右侧,所以表示-1+
三、解答题
18.(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。
19.(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
20.(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
21.(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
22.(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
23.(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲ .
【答案】解:垂线段最短。
【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。
所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。
24.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
25.(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
成绩等级A B C D
人数60x y10
百分比30%50%15%m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,
即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.。