【精选试卷】【解析版】营口市中考数学填空题专项练习复习题(培优提高)(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.
2.如图,反比例函数y=k
x
的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标
轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.
3.分解因式:2x2﹣18=_____.
4.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.
5.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)
6.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.
7.当m=____________时,解分式方程
5
33
x m
x x
-
=
--
会出现增根.
8.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2
BC3
=,那么
tan∠DCF的值是____.
9.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.
10.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:
(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;
(2)根据手中剩余线的长度出风筝线BC 的长度为70米;
(3)量出测倾器的高度AB =1.5米.
根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).
11.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a
+的值等于_______. 12.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.
13.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______
14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数
100 1000 5000 10000 50000 100000 “摸出黑球”的次数
36 387 2019 4009 19970 40008
“摸出黑球”的频率
(结果保留小数点后三
位) 0.360 0.387 0.404 0.401 0.399 0.400
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).15.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.
16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数
k y
x
=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.
17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、
△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-
S△BEF=_________.
18.一列数123,
,,
a a a……
n
a,其中123
121
111
1,,,,
111
n
n
a a a a
a a a
-
=-===
---,则1232014
a a a a
++++=__________.
19.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
20.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点
E ,则AD 的长为____________.
21.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.
22.已知10a b b -+-=,则1a +=__.
23.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.
24.如图,在平面直角坐标系xOy 中,函数y=
k x
(k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为_____.
25.计算:21(1)211
x x x x ÷-+++=________. 26.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .
27.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
28.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.
29.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.
30.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
【参考答案】
2016-2017年度第*次考试试卷参考答案
**科目模拟测试
一、填空题
1.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出
2.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴
3.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合
4.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=
5.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合
6.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是
90°+20°=110°;当等腰三角形的顶角
7.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2
8.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD=2xCF=3x∴∴tan∠DCF =故答案为:【点
9.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为
24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-
(AE+ED+DC+AC
10.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621
11.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:
12.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键
13.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE 的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=2
14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率
15.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】
16.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D点E∴2x=x+2
17.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2
18.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2
19.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A
20.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角
21.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE 为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:
22.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要
23.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多
24.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q
25.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛
26.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:
AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G
27.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正
28.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到
29.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R 到达Px=9时点R 到Q 点则PN=4QP=5∴矩形MNPQ 的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达
30.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式
2016-2017年度第*次考试试卷 参考解析
【参考解析】
**科目模拟测试
一、填空题
1.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出
解析:30
【解析】
【分析】
由图象可以V 甲=9030=3m/s ,V 追=90120−30=1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:
12004=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.
【详解】
由图象可得V 甲=9030=3m/s ,V 追=
90120−30=1m/s , ∴V 乙=1+3=4m/s ,
∴乙走完全程所用的时间为:12004=300s ,
此时甲所走的路程为:(300+30)×
3=990m . 此时甲乙相距:1200﹣990=210m
则最后相遇的时间为:
2103+4=30s
故答案为:30
【点睛】
此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.
2.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE 面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴
解析:-3
【解析】
分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.
详解:过点P做PE⊥y轴于点E,
∵四边形ABCD为平行四边形
∴AB=CD
又∵BD⊥x轴
∴ABDO为矩形
∴AB=DO
∴S矩形ABDO=S▱ABCD=6
∵P为对角线交点,PE⊥y轴
∴四边形PDOE为矩形面积为3
即DO•EO=3
∴设P点坐标为(x,y)
k=xy=﹣3
故答案为:﹣3
点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.
3.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合
解析:2(x+3)(x﹣3)
【解析】
【分析】
原式提取2,再利用平方差公式分解即可.
【详解】
原式=2(x2﹣9)=2(x+3)(x﹣3),
故答案为:2(x+3)(x﹣3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=
解析:10
【解析】
【分析】
试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.
【详解】
(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)
=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)
=(-2)2+2×3
=10
故答案为10
【点睛】
本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.5.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合
解析:2160
【解析】
【分析】
根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为
1 2a ,乙的效率应该为
1
a
,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运
相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.
【详解】
设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,
∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,
由题意列方程:
180270 180270
T T
t t
--
=
甲乙

t乙=2t甲,

180270
180135
T T
--
=,解得T=540.
∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,
∴甲车车主应得运费
1
540202160
5
⨯⨯= (元),
故答案为:2160.
【点睛】
考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.
6.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角
解析:110°或70°.
【解析】
试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.
考点:1.等腰三角形的性质;2.分类讨论.
7.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2
解析:2
【解析】
分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.
详解:分式方程可化为:x-5=-m,
由分母可知,分式方程的增根是3,
当x=3时,3-5=-m,解得m=2,
故答案为:2.
点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
8.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点
解析:
2
. 【解析】
【分析】
【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,
∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3
=.∴设CD =2x ,CF =3x ,
∴.
∴tan ∠DCF =DF =CD 2x 2
=.
【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.
9.6【解析】试题解析:∵DE 是BC 边上的垂直平分线∴BE=CE∵△EDC 的周长为24∴ED+DC+EC=24①∵△ABC 与四边形AEDC 的周长之差为12∴(AB+AC+BC )-(AE+ED+DC+AC
解析:6
【解析】
试题解析:∵DE 是BC 边上的垂直平分线,
∴BE=CE .
∵△EDC 的周长为24,
∴ED+DC+EC=24,①
∵△ABC 与四边形AEDC 的周长之差为12,
∴(AB+AC+BC )-(AE+ED+DC+AC )=(AB+AC+BC )-(AE+DC+AC )-DE=12,
∴BE+BD-DE=12,②
∵BE=CE ,BD=DC ,
∴①-②得,DE=6.
考点:线段垂直平分线的性质.
10.1【解析】试题分析:在Rt △CBD 中知道了斜边求60°角的对边可以用正弦
值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)
∵AB=15∴CE=6055+15≈621
解析:1.
【解析】
试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.
试题解析:在Rt△CBD中,
DC=BC•sin60°=70×
2
≈60.55(米).
∵AB=1.5,
∴CE=60.55+1.5≈62.1(米).
考点:解直角三角形的应用-仰角俯角问题.
11.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:
解析:【解析】
【分析】
根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.
【详解】
解:根据题意得:
△=4﹣4a(2﹣c)=0,
整理得:4ac﹣8a=﹣4,
4a(c﹣2)=﹣4,
∵方程ax2+2x+2﹣c=0是一元二次方程,
∴a≠0,
等式两边同时除以4a得:
1
2
c
a -=-,
则1
2
c
a
+=,
故答案为:2.
【点睛】
本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.
12.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键
解析:1
【解析】
解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.
点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.
13.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2
解析:15 2
【解析】
试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.
如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=5
3
m,由AB=DA+DB,得m+
5
3
m=10,解
得m=15
4
,此时AF=2m=
15
2
.
故答案为15
2
.
14.4【解析】【分析】大量重复试验下摸球的频
率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率
解析:4
【解析】
【分析】
大量重复试验下摸球的频率可以估计摸球的概率,据此求解.
【详解】
观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,
故摸到白球的频率估计值为0.4;
故答案为:0.4.
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的
频率能估计概率.
15.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】
【解析】
【分析】
根据圆周角定理可得∠BOC=90°,易求
OC ,从而可得cos ∠OCB 的值.
【详解】
∵∠A =45°,
∴∠BOC=90°
∵OB=OC ,
由勾股定理得,
OC ,
∴cos ∠OCB
=2OC BC ==.
故答案为
2
. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.
16.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12
x x 【解析】
【分析】
设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.
【详解】
解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x
=
在第一象限的图象经过点D 、点E , ∴2x =x+2,
解得x =2,
∴D (2,2),
∴OA =AD =2,
∴OD ==
故答案为
:
【点睛】
本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .
17.2【解析】由D 是AC 的中点且S△ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S△ADF-S△BEF=2
解析:2
【解析】
由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆=
=⨯=;同理EC=2BE 即EC=13BC ,可得11243
ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =2
18.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112
【解析】
【分析】
分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.
【详解】 解:1234123
11111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,
2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+
12+2)+(-1)=20112. 故答案为20112
. 考点:规律性:数字的变化类.
19.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A
解析:3
【解析】
【分析】
分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.
【详解】
如图,分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=3,即G的移动路径长为3.
故答案为:3.
【点睛】
本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.
20.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角
解析:33
【解析】
试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD==
【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
21.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB =25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-
DF=15故答案为15【点睛】直角三角形斜边上的中线性质:
解析:5
【解析】
【分析】
【详解】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=1
2
AB=2.5,
∵DE为△ABC的中位线,
∴DE=1
2
BC=4,
∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
22.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要
解析:【解析】
【分析】
利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】
b﹣1|=0,
≥,|1|0
b-≥,
∴a﹣b=0且b﹣1=0,
解得:a=b=1,
∴a+1=2.
故答案为2.
【点睛】
本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.
23.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的
定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66
【解析】
【分析】
首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.
【详解】
解:∵五边形ABCDE 为正五边形,
∴108EAB ∠=度,
∵AP 是EAB ∠的角平分线,
∴54PAB ∠=度,
∵60ABP ∠=︒,
∴180605466APB ∠=︒-︒-︒=︒.
故答案为:66.
【点睛】
本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.
24.【解析】【分析】过D 作DQ⊥x 轴于Q 过C 作CM⊥x 轴于M 过E 作EF⊥x 轴于F 设D 点的坐标为(ab )求出CE 的坐标代入函数解析式求出a 再根据勾股定理求出b 即可请求出答案【详解】如图过D 作DQ⊥x 轴于Q 解析:25
【解析】
【分析】过D 作DQ ⊥x 轴于Q ,过C 作CM ⊥x 轴于M ,过E 作EF ⊥x 轴于F ,设D 点的坐标为(a ,b ),求出C 、E 的坐标,代入函数解析式,求出a ,再根据勾股定理求出b ,即可请求出答案.
【详解】如图,过D 作DQ ⊥x 轴于Q ,过C 作CM ⊥x 轴于M ,过E 作EF ⊥x 轴于F ,
设D 点的坐标为(a ,b ),则C 点的坐标为(a+3,b ),
∵E 为AC 的中点,
∴EF=12CM=12b ,AF=12AM=12OQ=12
a ,
E 点的坐标为(3+12a ,12
b ), 把D 、E 的坐标代入y=
k x
得:k=ab=(3+12a )12b , 解得:a=2, 在Rt △DQO 中,由勾股定理得:a 2+b 2=32,
即22+b 2=9,
解得:

故答案为
【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.
25.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11
x + 【解析】
【分析】
先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到
()21x
x +÷111
x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.
【详解】
原式=()
21x x +÷111x x +-+ =
()21x x +·1x x
+ =11x +. 故答案为
11
x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.
26.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:
AG=BG=AB=×10=5cmGH ⊥AB ∴∠AGH=90°∵∠A=∠A ∠AGH=∠C=90°∴△。

相关文档
最新文档