青岛市高中物理必修第3册 静电场及其应用试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛市高中物理必修第3册静电场及其应用试卷检测题
一、第九章静电场及其应用选择题易错题培优(难)
1.如图所示,y轴上固定有两个电荷量相等的带正电的点电荷,且关于坐标原点O对称。
某同学利用电场的叠加原理分析在两电荷连线的中垂线(x轴)上必定有两个场强最强的点A、'A,该同学在得到老师的肯定后又在此基础上作了下面的推论,你认为其中正确的是()
A.若两个点电荷的位置不变,但电荷量加倍,则x轴上场强最大的点仍然在A、'A两位置
B.如图(1),若保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置
C.如图(2),若在yoz平面内固定一个均匀带正电圆环,圆环的圆心在原点O。
直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
D.如图(3),若在yoz平面内固定一个均匀带正电薄圆板,圆板的圆心在原点O,直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
【答案】ABC
【解析】
【分析】
【详解】
A.可以将每个点电荷(2q)看作放在同一位置的两个相同的点电荷(q),既然上下两个点电荷(q)的电场在x轴上场强最大的点仍然在A、A'两位置,两组点电荷叠加起来的合电场在x轴上场强最大的点当然还是在A、A'两位置,选项A正确;
B.由对称性可知,保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置,选项B正确;
C.由AB可知,在yOz平面内将两点电荷绕O点旋转到任意位置,或者将两点电荷电荷量任意增加同等倍数,在x轴上场强最大的点都在A、A'两位置,那么把带电圆环等分成一些小段,则关于O点对称的任意两小段的合电场在x轴上场强最大的点仍然还在A、A'两位置,所有这些小段对称叠加的结果,合电场在x轴上场强最大的点当然还在A、A'两位置,选项C正确;
D.如同C选项,将薄圆板相对O点对称的分割成一些小块,除了最外一圈上关于O点对称的小段间距还是和原来一样外,靠内的对称小块间距都小于原来的值,这些对称小块的合电场在x轴上场强最大的点就不再在A、A'两位置,则整个圆板的合电场在x轴上场强最大的点当然也就不再在A、A'两位置,选项D错误。
故选ABC。
2.如图所示,在圆心为O 、半径为R 的圆周上等间距分布着三个电荷量均为q 的点电荷
a 、
b 、
c ,其中a 、b 带正电,c 带负电。
已知静电力常量为k ,下列说法正确的是
( )
A .a 2
3kq B .c 2
3kq
C .a 、b 在O 点产生的场强为
2
3kq
R
,方向由O 指向c D .a 、b 、c 在O 点产生的场强为22kq
R
,方向由O 指向c 【答案】BD 【解析】 【分析】 【详解】
AB .根据几何关系得ab 间、bc 间、ac 间的距离
3r R =
根据库仑力的公式得a 、b 、c 间的库仑力大小
22
223q q F k k r R
==
a 受到的两个力夹角为120︒,所以a 受到的库仑力为
2
23a q F F k R
==
c 受到的两个力夹角为60︒,所以c 受到的库仑力为
2
2
333c kq F F R
== 选项A 错误,B 正确;
C .a 、b 在O 点产生的场强大小相等,根据电场强度定义有
02
q E k
R =
a 、
b 带正电,故a 在O 点产生的场强方向是由a 指向O ,b 在O 点产生的场强方向是由
b 指向O ,由矢量合成得a 、b 在O 点产生的场强大小
2q E k R
=
方向由O →c ,选项C 错误;
D .同理c 在O 点产生的场强大小为
02q
E k R
=
方向由O →c
运用矢量合成法则得a 、b 、c 在O 点产生的场强
22q
E k R
'=
方向O →c 。
选项D 正确。
故选BD 。
3.如图所示,a 、b 、c 、d 四个质量均为 m 的带电小球恰好构成“三星拱月”之形,其中 a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕 O 点做半径为 R 的匀速圆周运动,三小球所在位置恰好将圆周等分。
小球 d 位于 O 点正上方 h 处,且在外力 F 作用下恰处于静止状态,已知 a 、b 、c 三小球的电荷量大小均为 q ,小球 d 的电荷量大小为 6q ,h =2R 。
重力加速度为 g ,静电力常量为 k 。
则( )
A .小球 a 一定带正电
B .小球 c 2
3kq C .小球 b 2R mR
q k
πD .外力 F 竖直向上,大小等于mg +2
2
6kq R
【答案】BD 【解析】 【分析】 【详解】
A .a 、b 、c 三小球所带电荷量相同,要使三个做匀速圆周运动,d 球与a 、b 、c 三小球一定是异种电荷,由于d 球的电性未知,所以a 球不一定带正电,故A 错误。
BC .设 db 连线与水平方向的夹角为α,则
22
3cos 3
R h α=
=
+ 22
6sin 3
R h α=
+=
对b 球,根据牛顿第二定律和向心力得:
22222264cos 2cos302cos30()q q q k k mR ma h R R T
πα⋅-︒==+︒ 解得
23R
mR
T q k
π=
2
33kq a mR
= 则小球c 的加速度大小为2
2
33kq mR
,故B 正确,C 错误。
D .对d 球,由平衡条件得
2
226263sin q q kq F k mg mg h R R
α⋅=+=++ 故D 正确。
故选BD 。
4.如图所示,内壁光滑的绝缘半圆容器静止于水平面上,带电量为q A 的小球a 固定于圆心O 的正下方半圆上A 点;带电量为q ,质量为m 的小球b 静止于B 点,其中∠AOB =30°。
由于小球a 的电量发生变化,现发现小球b 沿容器内壁缓慢向上移动,最终静止于C 点(未标出),∠AOC =60°。
下列说法正确的是( )
A .水平面对容器的摩擦力向左
B .容器对小球b 的弹力始终与小球b 的重力大小相等
C .出现上述变化时,小球a 的电荷量可能减小
D .出现上述变化时,可能是因为小球a 的电荷量逐渐增大为3
2
(23)A q
【答案】BD 【解析】 【分析】 【详解】
A .对整体进行受力分析,整体受到重力和水平面的支持力,两力平衡,水平方向不受力,所以水平面对容器的摩擦力为0,故A 错误;
B .小球b 在向上缓慢运动的过程中,所受的外力的合力始终为0,如图所示
小球的重力不变,容器对小球的弹力始终沿半径方向指向圆心,无论小球a 对b 的力如何变化,由矢量三角形可知,容器对小球的弹力大小始终等于重力大小,故B 正确; C .若小球a 的电荷量减小,则小球a 和小球b 之间的力减小,小球b 会沿半圆向下运动,与题意矛盾,故C 错误;
D .小球a 的电荷量未改变时,对b 受力分析可得矢量三角形为顶角为30°的等腰三角形,此时静电力为
22sin15A qq mg k
L
︒= a 、b 的距离为
2sin15L R =︒
当a 的电荷量改变后,静电力为
2A qq mg k
L '='
a 、
b 之间的距离为
L R '=
由静电力
122
'q q F k
L = 可得
32
23A A q q -=
-'() 故D 正确。
故选BD 。
5.如图所示,A 、B 两点有等量同种正点电荷,AB 连线的中垂线上C 、D 两点关于AB 对称,0t =时刻,一带正电的点电荷从C 点以初速度v 0沿CD 方向射入,点电荷只受电场力。
则点电荷由C 到D 运动的v-t 图象,以下可能正确的是
A.B.
C.D.
【答案】BD
【解析】
【分析】
【详解】
由于AB是同种电荷,所以连线中点的场强为零,无穷远处场强也为零,其间有一点电场强度最大,所以粒子从C点向中点运动过程中,加速度可能一直减小,也可能先减小后增大,选项AC错误,BD正确。
故选BD。
6.真空中,在x轴上的坐标原点O和x=50cm处分别固定点电荷A、B,在x=10cm处由静止释放一正点电荷p,点电荷p只受电场力作用沿x轴方向运动,其速度与在x轴上的位置关系如图所示。
下列说法正确的是()
A.x=10cm处的电势比x=20cm处的电势高
B.从x=10cm到x=40cm的过程中,点电荷p的电势能一定先增大后减小
C.点电荷A、B所带电荷量的绝对值之比为9:4
D.从x=10cm到x=40cm的过程中,点电荷p所受的电场力先增大后减小
【答案】AC
【解析】
【分析】
【详解】
A.点电荷p从x=10cm处运动到x=30cm处,动能增大,电场力对点电荷做正功,则点电荷所受的电场力方向沿+x轴方向,因此,从x=10cm到x=30cm范围内,电场方向沿+x轴方向,所以,x=10cm处的电势比x=20cm处的电势高,故A正确;
B.点电荷p在运动过程中,只有电场力做功,电势能和动能之和保持不变,点电荷的动能先增大后减小,则其电势能先减小后增大,故B错误;
C.从x=10cm到x=30cm范围内,点电荷p所受的电场力沿+x轴方向,从x=30cm到
x=50cm范围内,点电荷p所受的电场力沿-x轴方向,所以,点电荷p在x=30cm处所受的电场力为零,则点电荷A、B对点电荷p的静电力大小相等,方向相反,故有
22
A B
A B
Q q Q q
k k
r r
=
其中r A=30cm,r B=20cm,所以,Q A:Q B=9:4,故C正确;
D.点电荷x=30cm处所受的电场力为零,由电场力公式F=qE可知:x=30cm处的电场强度为零,所以从x=10cm到x=40cm的过程中,点电荷p所受的电场力一定先减小后增大,故D错误。
故选AC。
7.某老师用图示装置探究库仑力与电荷量的关系。
A、B是可视为点电荷的两带电小球,用绝缘细线将A悬挂,实验中在改变电荷量时,移动B并保持A、B连线与细线垂直。
用Q和q表示A、B的电荷量,d表示A、B间的距离,θ(θ不是很小)表示细线与竖直方向的夹角,x表示A偏离O点的水平距离,实验中()
A.d可以改变B.B的位置在同一圆弧上
C.x与电荷量乘积Qq成正比D.tanθ与A、B间库仑力成正比
【答案】BC
【解析】
【分析】
【详解】
A.因实验要探究库仑力与电荷量的关系,故两电荷间距d应保持不变,选项A错误;B.因要保持A、B连线与细线垂直且A、B距离总保持d不变,可知B到O点的距离不变,故B的位置在同一圆弧上,选项B正确;
C.对A球由平衡知识可知
2
sin qQ x
k
mg mg d L
θ== 可知x 与电荷量乘积Qq 成正比,选项C 正确; D .因为
2tan =
qQ
k
d d L mgx
θ= 由于x 变化,所以不能说tan θ与A 、B 间库仑力成正比,故D 错误。
故选BC 。
8.在电场强度为E 的匀强电场中固定放置两个小球1和2,它们的质量相等,电荷量分别为1q 和2q (12q q ≠).球1和球2的连线平行于电场线,如图所示.现同时放开球1和球2,于是它们开始在电场力的作用下运动.如果球1和球2之间的距离可以取任意有限值,则两球刚被放开时,它们的加速度可能是( ).
A .大小不等,方向相同
B .大小不等,方向相反
C .大小相等,方向相同
D .大小相等,方向相反
【答案】ABC 【解析】 【详解】
AC .当两球的电性相同时,假定都带正电,则两球的加速度分别为:
12121kq q Eq l a m +
=
12222kq q Eq l a m
-
=
由于l 可任意取值,故当1
2kq E l
>
时,加速度1a 、2a 方向都是向右,且1a 、2a 的大小可相等,也可不相等,故AC 正确;
B .再分析1a 和2a 的表达式可知,当12kq
E l
<时,1a 和2a 方向相反,大小则一定不相等,
故B 正确;
D .将小球1和小球2视作为一个整体,由于12q q ≠,可判断它们在匀强电场中受到的电场力必然是不为零的。
由牛顿第二定律可知,它们的合加速度也必然是不为零的,即不可能出现两者的加速度大小相等、方向相反的情况,故D 错误。
故选ABC .
9.如图所示,MON是固定的光滑绝缘直角杆,MO沿水平方向,NO沿竖直方向,
A B、为两个套在此杆上的带有同种电荷的小球,用水平向右的力F作用在A球上,使两球
、两球连线与水平方向成θ角。
下列说法正确的是()
均处于静止状态,已知A B
Fθ
A.杆MO对A球的弹力大小为tan
Fθ
B.杆NO对B球的弹力大小为sin
Fθ
C.B球的重力大小为tan
Fθ
D.A B、两球间的库仑力大小为cos
【答案】C
【解析】
【详解】
对A球受力分析,设A的质量为m、拉力F、支持力N1,两球间的库仑力大小为F1,如图,根据平衡条件,有
x方向
F=F1cosθ①
y方向
N1=mg+F1sinθ②
再对B球受力分析,受重力Mg、静电力F1、杆对其向左的支持力,如图,根据平衡条件,有
x方向
F 1cosθ=N 2 ③
y 方向
F 1sinθ=M g ④
有上述四式得到
Mg=F tanθ
1F
F cos θ=
N 1=mg +Mg N 2=F 可知由于不知道A 的质量,所以不能求出A 受到的弹力N 1。
故ABD 错误,C 正确; 故选C 。
10.如图所示,光滑绝缘半球形的碗固定在水平地面上,可视为质点的带电小球1、2的电荷分别为Q 1、Q 2,其中小球1固定在碗底A 点,小球2可以自由运动,平衡时小球2位于碗内的B 位置处,如图所示.现在改变小球2的带电量,把它放置在图中C 位置时也恰好能平衡,已知AB 弦是AC 弦的两倍,则( )
A .小球在C 位置时的电量是
B 位置时电量的一半 B .小球在
C 位置时的电量是B 位置时电量的四分之一
C .小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小
D .小球2在B 点对碗的压力大小大于小球2在C 点时对碗的压力大小 【答案】C 【解析】 【详解】
AB .对小球2受力分析,如图所示,小球2受重力、支持力、库仑力,其中F 1为库仑力F 和重力mg 的合力,根据三力平衡原理可知,F 1=F N .由图可知,△OAB ∽△BFF 1
设半球形碗的半径为R ,AB 之间的距离为L ,根据三角形相似可知,
1F mg F
OA OB AB
== 即
1F mg F
R R
L
== 所以
F N =mg ①
L
F mg R
=
② 当小球2处于C 位置时,AC 距离为
2
L
,故 '1
2F F =
, 根据库仑定律有:
2
A B
Q Q F k
L = '21()2
A C Q Q F k
L = 所以
1
8
C B Q Q = , 即小球在C 位置时的电量是B 位置时电量的八分之一,故AB 均错误;
CD .由上面的①式可知F N =mg ,即小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小,故C 正确,D 错误。
故选C 。
11.如图所示,两个可视为质点的带同种电荷的小球a 和b ,放置在一个光滑绝缘半球面内,已知小球a 和b 的质量分别为m 1、m 2,电荷量分别为q 1、q 2,两球处于平衡状态时α<β.则以下判断正确的是
A .m 1>m 2
B .m 1<m 2
C .q 1>q 2
D .q 1<q 2
【答案】A 【解析】 【分析】
根据两小球处于平衡状态,通过对两个小球进行受力分析,进行正交分解后,列出关系式,即可解决问题。
【详解】
A 和
B 小球受力分析如下,对小球A :
1cos sin F F θα=库 11sin cos m g F F θα+=库
对小球B :
2cos sin F F θβ=库 22sin cos m g F F θβ+=库
通过上式可知:
12sin sin F F αβ=,
由于αβ<,则sin sin αβ<,所以12F F >,由于cos cos αβ>,则有:
12cos cos F F αβ>
所以有:
12sin sin m g F m g F θθ+>+库库
可推导出:12m m >,故选A 。
【点睛】
考察对物体的受力分析和正交分解的运用。
12.如图所示,导体球A 与导体球壳B 同心,原来都不带电,也不接地,设M 、N 两点的场强大小为E M 和E N ,下列说法中正确的是
A .若使A 带电,则E M ≠0,E N =0
B .若使B 带电,则E M ≠0,E N ≠0
C .若使A ,B 两球分别带上等量异种电荷,则E M ≠0,E N =0
D .若使A 球带电,B 球接地,则
E M =0,E N =0 【答案】C 【解析】 【详解】
A .如果A 带电,则会感应
B 内部带异种电荷,外部电性与A 相同,那么E M ≠0,E N ≠0;故
A 错误;
B .如果B 带电,由于同种电荷的排斥,电荷只分布在外表面E 内=0,即E M =0,E N ≠0,B 错误;
C .如果A 、B 带等量异种电荷,A 与B 的静电感应使B 外表面恰好无电荷量,则E M ≠0,E N =0,故C 正确;
D .如使A 球带电,B 球接地,是接地屏蔽,
E M ≠0,E N =0,D 错误。
13.如图所示,竖直绝缘墙上距O 点l 处固定一带电量Q 的小球A ,将另一带等量同种电荷、质量为m 的小球B 用长为l 的轻质绝缘丝线悬挂在O 点,A 、B 间用一劲度系数为k ′
原长为
54
l
的绝缘轻质弹簧相连,静止时,A 、B 间的距离恰好也为l ,A 、B 均可看成质点,以下说法正确的是( )
A .A 、
B 间库仑力的大小等于mg B .A 、B 间弹簧的弹力大小等于k ′l
C .若将B 的带电量减半,同时将B 球的质量变为4m ,A 、B 间的距离将变为2
l D .若将A 、B 的带电量均减半,同时将B 球的质量变为
2k l
m g
'+,A 、B 间的距离将变为2
l 【答案】D 【解析】 【分析】 【详解】
A .对小球受力分析如图;小球受弹簧的弹力与
B 所受的库仑力的合力(F 库+F 弹)沿AB 斜向上,由几何关系以及平衡条件可知
F 库+F 弹=mg
则
F 库= mg -F 弹
选项A 错误;
B .A 、B 间弹簧的弹力大小等于
''51=(
)44
l F k l k l -=弹 选项B 错误;
C .若将B 的带电量减半,A 、B 间的距离将变为2
l
,则库仑力变为2F 库,则弹力和库仑力的合力为
''
53=()22424
l l k l F k F F -+=+合库库
则由相似三角形关系可知
11'=13224
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'11
4=42
m g mg k l mg =+≠
选项C 错误;
D .若将A 、B 的带电量都减半,A 、B 间的距离将变为2
l
,则库仑力仍F 库,则弹力和库仑力的合力为
''
'
53=()424
l l k l
F k F F -+=+合库库
则由相似三角形关系可知
22''=1324
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'22m g mg k l =+
即
'22k l
m m g
=+
选项D 正确; 故选D 。
14.如图,质量分别为 m A 和 m B 的两小球带有同种电荷,电荷量分别为 q A 和 q B ,用绝缘细线悬挂在天花板上.平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为 θ1 与 θ2(θ1>θ2).两小球突然失去各自所带电荷后开始摆动,最大速度分别 v A 和 v B ,最大动能分别为 E kA 和 E kB .则( )
A .m A :m
B =tan θ1: tan θ2 B .q A :q B =1: 1
C .1
2
:tan
tan 2
2A B v v θθ=
D .1
2
:tan :tan
2
2
kA kB E E θθ=
【答案】D 【解析】 【分析】 【详解】
A .对A 球进行受力分析可知,A 所受到的库仑力大小为
A 1tan F m g θ=
同理B 受到的库仑力为
B 2tan F m g θ=
两球间的库仑力大小相等方向相反,因此
A B 21:tan :tan m m θθ=①
A 错误;
B .两个小球间的库仑力总是大小相等,与两小球带电量大小无关,因此无法求出两球电量间的关系,B 错误;
CD .由于两球处于同一高度,则
11
22cos cos =l l h θθ=②
又由于两球下摆的过程中,机械能守恒,则
2
k 1(1cos )2
mgl E mv θ-==
③ 由②③联立可得
11
2
2
1
1cos 1
1cos v v θθ-=-
由①②③联立利用三角函数关系可得
1
kA 2
kB tan
2tan 2
E E θθ=
C 错误,
D 正确。
故选D 。
15.两个等量异种电荷A 、B 固定在绝缘的水平面上,电荷量分别为+Q 和-Q ,俯视图如图所示。
一固定在水平桌面的足够长的光滑绝缘管道与A 、B 的连线垂直,且到A 的距离小于到B 的距离,管道内放一个带负电小球P(可视为试探电荷),现将电荷从图示C 点静止释放,C 、D 两点关于O 点(管道与A 、B 连线的交点)对称。
小球P 从C 点开始到D 点的运动过程中,下列说法正确的是( )
A .先做减速运动,后做加速运动
B .经过O 点的速度最大,加速度也最大
C .O 点的电势能最小,C 、
D 两点的电势相同 D .C 、D 两点受到的电场力相同 【答案】C 【解析】 【分析】 【详解】
A .根据电场分布和力与运动的关系可知带电小球先做加速运动,后做减速运动,选项A 错误;
B .经过O 点的速度最大,沿着光滑绝缘管道方向上的加速度为零,选项B 错误;
C .带电小球P 在O 点的电势能最小,C 、
D 两点的电势相同,选项C 正确; D .C 、D 两点受到的电场力方向不同,故电场力不同,选项D 错误。
故选C 。
二、第九章 静电场及其应用解答题易错题培优(难)
16.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,
(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?
(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216
109
C -⨯ ,为负电荷 【解析】 【分析】 【详解】
(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 1323
22
()Q Q Q Q k
k x L x =- ∴
1222
()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m
即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.
(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;
② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.
③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;
由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.
设电荷C 放在距A 右侧x 处,电荷量为Q 3 对C :1323
22(0.3)Q Q Q Q k
k x x =- ∴ x =0.2m 对B :3212
22
()Q Q Q Q k k L L x =- ∴ 12316
109
Q C -=
⨯,为负电荷. 【点睛】
此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.
17.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83
gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若
∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83
mg ,从A 至C 小球克服库仑力做的功为
23
2
mgR -,重力加速度为g .求:
(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;
(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】
(1)由动能定理求出小球第一次到达B 点时的动能.
(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.
(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】
(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:
()
02
11cos602
KB A mgR E mv --=-
代入数据解得:5
6
KB E mgR =
(2)小球第一次过A 时,由牛顿第二定律得:
22A v Qq
N k mg m R R
+-=
由题可知:8
3
N mg =
联立并代入数据解得:
2
Qq
k
mg R = 由几何关系得,OC 间的距离为:
cos30R r R =
=︒
小球在C 点受到的库仑力大小 :
22Qq Qq
F k
k r ==⎫⎪⎝⎭
库
联立解得3
=
4
F mg 库 (3)从A 到C ,由动能定理得:
2
102
f A W mgR W mv ---=-电
从C 到A ,由动能定理得:
212
f A W mgR W mv +=
'-电
由题可知:22
W mgR -=
电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:
22A
v Qq N k mg m
R R
'-'+= 联立以上解得:
(
283
N mg -'=
,
根据牛顿第三定律得,小球返回A 点时,对圆弧杆的弹力大小为(
)2833
3
mg -,方向向
下.
18.如图所示,均可视为质点的三个物体A 、B 、C 在倾角为30°的光滑绝缘斜面上,A 绝缘,A 与B 紧靠在一起,C 紧靠在固定挡板上,质量分别为m A =0.43kg ,m B =0.20kg ,m C =0.50kg ,其中A 不带电,B 、C 的电荷量分别为q B =+2×10-5C 、q C =+7×10-5C 且保持不变,开始时三个物体均能保持静止。
现给A 施加一平行于斜面向上的力F ,使A 做加速度a=2.0m/s 2的匀加速直线运动,经过时间t ,力F 变为恒力,已知静电力常量为k=9.0×109N·m 2/C 2,g 取10m/s 2。
求: (1)开始时BC 间的距离L ; (2)F 从变力到恒力需要的时间t 。
【答案】(1)2.0m ;(2)1.0s 【解析】 【分析】 【详解】
(1)A 、B 、C 静止时,以AB 为研究对象,受力分析有
2
sin30o B C
A B q q m m g k
L +=() 代入数据解得
L =2.0m
(2)AB 分离时两者之间弹力恰好为零,此后F 变为恒力,对B 用牛顿第二定律得
2sin30B B B C
m g m a q q k
l
︒=- 解得
3.0m l =
由匀加速运动规律得
212
l L at -=
解得
1.0s t =
19.如右图所示,在方向竖直向下的匀强电场中,一个质量为m 、带负电的小球从斜直轨道上的A 点由静止滑下,小球通过半径为R 的圆轨道顶端的B 点时恰好不落下来.若轨道
是光滑绝缘的,小球的重力是它所受的电场力2倍,试求:
⑴A点在斜轨道上的高度h;
⑵小球运动到最低点C时,圆轨道对小球的支持力.
【答案】(1)5
2
R (2) 3mg
【解析】
试题分析:由题意得:mg=2Eq
设小球到B点的最小速度为V B,则由牛顿第二定律可得:
mg-Eq=m
2
B
v
R
;
对AB过程由动能定理可得:
mg(h-2R)-Eq(h-2R)=1
2
mV B2;
联立解得:h=5
2 R;
(2)对AC过程由动能定理可得:
mgh-Eqh=1
2
mv c2;
由牛顿第二定律可得:
F+Eq-mg=m
2 C v R
联立解得:F=3mg;由牛顿第三定律可得小球对轨道最低点的压力为3mg.
考点:牛顿定律及动能定理.
20.如图所示,高为h的光滑绝缘直杆AD竖直放置,在D处有一固定的正点荷,电荷量为Q。
现有一质量为m的带电小球套在杆上,从A点由静止释放,运动到B点时速度达到
最大值,到C点时速度正好又变为零,B、C和D相距分别为1
3
h和
1
4
h,静电力常量为
k,重力加速度为g,求:
(1)小球的电荷量q 和在C 点处的加速度;
(2)C 、A 两点间的电势差。
【答案】(1)29mgh q kQ =,79a g = 方向竖直向上(2)274kQ h
【解析】
【详解】
(1)小球运动到B 点时速度达到最大,说明小球必带正电,在B 点应有:
2()3
kQq mg h =
得: 2
9mgh q kQ
= 在C 点,由牛顿第二定律:
2()4
kQq mg ma h -= 得:
79
a g =
,方向竖直向上。
(2)设C 、A 两点间的电势差为U ,则A 、C 间的电势差为-U 。
从A 到C 过程,由动能定理: ()04
h mg h qU --= 得:
274kQ U h
=
21.有一水平向右的匀强电场中,竖直平面内有半径为0.1m 的圆周,在圆心O 处放置电荷量为Q =10-8C 的带正电的点电荷,圆周a 点与圆心O 在同一水平线上,且E a =0(静电力常数K =9×109N.m 2/C 2)
(1)匀强电场场强大小?
(2)圆周最高点C 处的场强
【答案】(1)3910N/C ⨯ (2)41.2710N/C ⨯ 方向与水平方向成45斜向右上方
【解析】
【详解】
(1)在a 点的合场强等于零,则表明点电荷在a 点产生的场强与匀强电场的场强相等即:
32=910N/C kQ E r
=⨯ (2)正点电荷在C 点产生的场强大小为2kQ E r =
,方向竖直向上,匀强电场的场强大小2kQ E r
=,方向水平向右,根据矢量合可知C 点的合场强等于; 22
4222=2 1.2710N/C kQ kQ kQ E r r r ⎛⎫⎛⎫=+=⨯ ⎪ ⎪⎝⎭⎝⎭
合 方向与水平方向成45斜向右上方。