人教版七年级数学下册第六章 实数同步练习(含答案)

合集下载

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。

真命题的逆命题都是真命题B。

无限小数都是无理数C。

0.720精确到了百分位D。

16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。

3B。

7C。

3或7D。

1或73.3(-1)²的立方根是()A。

-1B。

1C。

-4D。

44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。

-1B。

-1/2C。

3/2D。

25.若a=2,则a的值为()A。

2B。

±2C。

4D。

±46.下列计算中,错误的是()A。

30.125=0.5B。

3-273=-644C。

33/31=1/82D。

-3/8²=-125/577.下列说法正确的是()A。

实数分为正实数和负实数B。

3/2是有理数C。

0.9是有理数D。

30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有() A。

2个B。

3个C。

4个D。

5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。

4 cm~5 cm之间B。

5 cm~6 cm之间C。

6 cm~7 cm之间D。

7 cm~8 cm之间10.计算-4-|-3|的结果是()A。

-1B。

-5C。

1D。

5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。

15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

一、选择题1.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】解:无理数有8,π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.2.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若53a=-,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-D24n- Bn-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣222n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.已知:m、n为两个连续的整数,且5<<,以下判断正确的是()m nA 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.14.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴)2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.18.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.(1)求x 的值:2490x -=;(2)计算:()2325227+-- 解析:(1)32x =或32x =-;(2)4 【分析】 (1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.计算:()23143282--⨯-⨯-() 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2 (4)13248()243-⨯-+-4354812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭22021 ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.。

人教版数学七年级下册第六章《实数》同步练习含答案试卷分析解析

人教版数学七年级下册第六章《实数》同步练习含答案试卷分析解析

《实数》同步练习一、选择题(每小题只有一个正确答案)1.下列各数中,为无理数的是( )A. B. C. 13 D. 2.下列各数中最小的是( )A. π-B. 3- D. 03.在数轴上标注了四段范围,如图,则表示 8的点落在( )A. 段①B. 段②C. 段③D. 段④4.在17-,-π,0,3.14,,0.3133-中,无理数的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个5的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间6.化简()101612π-⎛⎫-++- ⎪⎝⎭的结果为( )A. B. 2+ C. 2- D.7.定义新运算:对任意有理数a ,b ,都有a ⊕b=1a +1b ,例如2⊕1=12+11,那么(﹣2)⊕3的值是( ) A. 16 B. 56 C. ﹣56 D. ﹣168.已知整数a 0,a 1,a 2,a 3,a 4,……,满足下列条件:00a =,101a a =-+,212a a =-+,323a a =-+,…,以此类推,则2017a 的值为( )A. -1007B. -1008C. -1009D. -2016二、填空题9.201322-⎛⎫⨯+-= ⎪⎝⎭________.10.比较下列各组数大小:(Ⅰ)π________3.14 ________0.5.11.规定用符合[]x 表示一个实数的整数部分,例如[]3.693=,1=,按此规定,1⎤=⎦__________. 12.如果a =(-99)0,b =(-0.1)-1,c =(-53)-2,那么a 、b .c 三数大小关系为__________.(用“>”连接)13.已知6的小数部分为a ,6的小数部分为b ,则()2017a b +=__________.三、解答题14.计算: ()013π-+--.15.计算:()()0211432120.95103235⎛⎫⎛⎫÷----⨯+-⨯÷- ⎪ ⎪⎝⎭⎝⎭16, 2,0,﹣12及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.17.(1)若x 、y 都是实数,且8y =++,求3x y +的立方根.(2a ,小数部分为b ,求2a b +-的值.18.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下: 我们称使等式1a b ab -=+成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)判断数对(2-,1),(3,12)是不是“共生有理数对”,写出过程; (2)若(a ,3)是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则(n -,m -)“共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复)参考答案1.D2.A3.C4.B5.D6.A7.D8.C9.610.>>11.312.a> c>b13.114.215.解析:原式=3÷4+1-1-3÷(-3)=3÷4+1=1.7516.解:如图所示:故﹣2<﹣12<0<12<2. 17.解:(1)由题意可知,30x -≥,30x -≥,解得:3x =,∴8y =,∴333827x y +=+⨯=3=;(2)∵<<,∴34<<,∴的整数部分为3a =,小数部分为3b =-,∴22336a b +=+=.18.解析:(1)-2-1=-3,(-2) ×1+1=-1,-3≠-1,故(2-,1)不是共生有理数对; 3-12=52,3×12+1=52,故(3,12)是共生有理数对; (2)由题意得:331a a -=+,解得2a =-. (3)是.理由:()n m n m ---=-+, ()11n m mn -⋅-+=+,∵(m ,n )是“共生有理数对”∴m-n=mn+1,∴-n+m=mn+1,∴(-n ,-m )是“共生有理数对”;(4)(4,35)或(6,)等(答案不唯一,只要不和题中重复即可).。

人教版七年级数学下册第六章《实数》同步练习(含答案)

人教版七年级数学下册第六章《实数》同步练习(含答案)

第六章 实数 6.1 平方根 第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B )A .4B .2C .-2D .±22.(2018·南京)94的值等于( A ) A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根 D .以上说法都不对5.求下列各数的算术平方根: (1)121; (2)1; (3)964; (4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1. (3)因为(38)2=964,所以964的算术平方根是38,即964=38. (4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1.6.求下列各式的值: (1)81; (2)144289; (3) 1 000 000. 解:(1)因为92=81,所以81=9. (2)因为(1217)2=144289,所以144289=1217. (3)因为1 0002=1 000 000, 所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间. 7.(2017·柳州期末)估算65的值介于( D )A .5到6之间B .6到7之间C .7到8之间D .8到9之间8.一个正方形的面积为50 cm 2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 613.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.115.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或116.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D ) A.a+1 B.a+1 C.a2+1 D.a2+117.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正方形,则这个大正方形的边长是6.20.(教材P43探究变式)观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,52 170≈228.4;(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m 到110 m 之间,宽在64 m 到75 m 之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m 2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m ,则足球场的长为1.5x m ,由题意,得1.5x 2=7 560. ∴x 2=5 040.由算术平方根的意义可知x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71. ∴70<x <71.∴105<1.5x <106.5. ∴100<1.5x <110. ∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题: ①42=4;162=16;02=0;(19)2=19. 探究:对于任意非负有理数a ,a 2=a .②(-3)2=3;(-5)2=5;(-1)2=1;(-2)2=2.探究:对于任意负有理数a ,a 2=-a .综上,对于任意有理数a ,a 2=|a|.(2)应用(1)所得的结论解决问题:有理数a ,b 在数轴上对应的点的位置如图所示,化简:a 2-b 2-(a -b )2+|a +b|.解:a 2-b 2-(a -b )2+|a +b| =|a|-|b|-|a -b|+|a +b| =-a -b +a -b -a -b =-a -3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C )A .2B .-2C .±2D .16 2.±8是64的( A )A .平方根B .相反数C .绝对值D .算术平方根 3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.194.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D )A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算: ±425=±25,-425=-25,425=25. 7.填表:a 2 -2 37 ±37 ±9 ±15 a 244949949812258.(1)16; (2)2536; (3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4. (2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a 的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A ) A .-5是25的平方根 B .25的平方根是-5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根 10.下列各式中,正确的是( D )A.4=±2 B .±9=3 C.(-3)2=-3 D.(-3)2=311.求下列各数的平方根与算术平方根: (1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000. 解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值: (1)225; (2)-3649; (3)±144121. 解:(1)∵152=225,∴225=15. (2)∵(67)2=3649,∴-3649=-67. (3)∵(1211)2=144121,∴±144121=±1211.易错点 忽视一个正数的平方根有两个13.若x +3是4的平方根,则x =-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A .有平方根B .只有算术平方根C .没有平方根D .不能确定 15.(易错题)(2017·广州四校联考期中)16的平方根等于( D ) A .2 B .-4 C .±4D .±2 16.(易错题)若x 2=16,则5-x 的算术平方根是( D )A .±1B .±4C .1或9D .1或317.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4. 18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2; (2)-42; (3)-(a 2+1). 解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a 2+1)是负数.20.(教材P48习题T8变式)求下列各式中x 的值:(1)4x 2-1=0;解:4x 2=1. x 2=14.x =±12.(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根,即如果x 3=a ,那么x 叫做a 3a a 是被开方数,3是根指数.3-a =-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A .8B .-8C .4D .-4 2.(2018·济宁)3-1的值是( B )A .1B .-1C .3D .-33.若一个数的立方根是-3,则这个数为( B ) A .-33B .-27C .±33D .±274.下列说法中,不正确的是( D ) A .0.027的立方根是0.3 B .-8的立方根是-2 C .0的立方根是0D .125的立方根是±55.下列计算正确的是( C ) A.30.012 5=0.5 B.3-2764=34C.3338=112D .-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根: (1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-21027;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051 D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10C.0或10 D.0或-10 16.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2; ②已知30.000 456≈0.076 97,则3456≈7.697. 18.求下列各式的值: (1)-3-0.125; 解:原式=0.5.(2)-3729+3512; 解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001. 解:原式=0.3-31125+(-0.1) =0.3-15-0.1=0.19.比较下列各数的大小: (1)39与3; 解:39> 3.(2)-342与-3.4. 解:-342<-3.4.20.求下列各式中x 的值:(1)8x 3+125=0;解:8x 3=-125. x 3=-1258.x =-52.(2)(2017·广州期中)(2x -1)3=-8. 解:2x -1=-2. 解得x =-12.21.将一个体积为0.216 m 3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m ,则 8x 3=0.216. ∴x 3=0.027.∴x=0.3.∴6×0.32=0.54(m 2).答:每个小立方体铝块的表面积为0.54 m 2.综合题22.请先观察下列等式: 32+27=2327, 33+326=33326, 34+463=43463, …(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215. (2)3n +n n 3-1=n 3nn 3-1(n >1,且n 为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B ) A .1B. 2C .-3D.132.下列说法中,正确的是( C )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即|a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C )A.- 2 B.22C. 2 D.-225.π是1π的( B )A.绝对值B.倒数C.相反数D.平方根6.(2017·广州期中)3-8的绝对值是2.7知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数 D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C ) A .-|-2|与3-8B .-4与-(-4)2C .-32与|3-2|D .-2与1214.有一个数值转换器,原理如下:当输入的x 为4时,输出的y 是( C )A .4B .2 C. 2D .- 215.(2017·宁夏)实数a 在数轴上的位置如图所示,则|a -3|=3-a .16.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x. (1)|x|=45;解:x =±45.(2)|x -2|= 5. 解:x =2± 5.19.计算:(1)23+32-53-32; 解:原式=(2-5)3+(3-3) 2 =-3 3.(2)|3-π|+|4-π|. 解:原式=π-3+4-π =1.20.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.解:由题意可知ab =1,c +d =0,e =±2,f =64, ∴e 2=(±2)2=2,3f =364=4. ∴12ab +c +d 5+e 2+3f =12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n=a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2. 回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0; (2)归纳一个数的n 次方根的情况.解:当n 为偶数时,一个正数的n 次方根有两个,它们互为相反数;当n 为奇数时,一个数的n 次方根只有一个.负数没有偶次方根.0的n 次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根 1.(2017·泰州)2的算术平方根是( B )A .± 2 B. 2 C .- 2 D .2 2.(2018·铜仁)9的平方根是( C )A .3B .-3C .3和-3D .81 3.(2018·荆门)8的相反数的立方根是( C ) A .2B.12C .-2D .-124.下列各式正确的是( A ) A .±31=±1B.4=±2C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 000 1…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D ) A .3B .-3C .-13D.137.实数1-2的相反数是2-1,绝对值是2-1.知识点4 无理数的估算及实数的大小比较8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1 B .1 C. 2 D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值:(1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x 2-5=49;解:x 2=499,x =±73.(2)(x -1)3=125. 解:x -1=5, x =6.21.已知某正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,求3a +b 的算术平方根. 解:∵该正数的两个平方根分别是a +3和2a -15,b 的立方根是-2,∴a+3+2a -15=0,b =(-2)3=-8. ∴a=4,b =-8.∴3a +b =4=2,即3a +b 的算术平方根是2. 22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm 3. (1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2,边长为10cm.解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。

人教版七年级数学下册《第六章实数》单元练习题(含答案)

人教版七年级数学下册《第六章实数》单元练习题(含答案)

第六章实数一、选择题1.若81x2=49,则x的值是()A.B.C.D. ±72.的算术平方根是()A. ±3B. 3C.D.3.若a<-2<b,且a、b是两个连续整数,则a+b的值是() A. 1B. 2C. 3D. 44.下列说法正确的是()A.-4没有立方根B. 1的立方根为±1C.的立方根是D. 5的立方根为5.下列说法错误的是()A. 5是25的算术平方根B. ±4是64的立方根C. (-4)3的立方根是-4D. (-4)2的平方根是±46.的平方根是()A.B.C.D.7.下列判断中,正确的是()A.有理数是有限小数B.无理数都是无限小数C.无限小数是无理数D.无理数没有算术平方根8.实数,-3.14,0,中,无理数共有()A. 1个B. 2个C. 3个D. 4个二、填空题9.x是16的算术平方根,那么x的算术平方根是______.10.按规律填空:,,,,,,…,________.(第n个数)11.2-的绝对值是________.12.用代数式表示实数a(a>0)的平方根________.13.若a<<b,且a、b是两个连续的整数,则a5=________.14.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是________.15.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是________.16.已知某数的两个平方根分别是a+3与2a-15,则a=________,这个数是________.三、解答题17.已知某正数的两个平方根分别是m+4和2m-16,n的立方根是-2,求-n-m的算术平方根.18.已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b的平方根.19.实数a,b,c在数轴上的对应关系如图,化简下面的式子:|a-b|-|c-a|+|b-c|+|a|.20.如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x-)2的立方根.21.计算:-+.答案解析1.【答案】A【解析】由81x2=49得:x2=,得:x=.2.【答案】D【解析】因为=3,所以的算术平方根是.3.【答案】A【解析】因为的整数部分是2,所以0<-2<1,因为a、b是两个连续整数,所以a=0,b=1,所以a+b=1.4.【答案】D【解析】A.-4的立方根是,故此选项错误;B.1的立方根是1,故此选项错误;C.的立方根是,故此选项错误;D.5的立方根是,故此选项正确.5.【答案】B【解析】因为=5,=4,=-4,=±4,所以选项B错误.6.【答案】B【解析】因为=,所以的平方根是.7.【答案】B【解析】A.有理数是有限小数和无限循环小数,所以A选项错误;B.无理数是无限不循环小数,都是无限小数,所以B选项正确;C.无限小数分为无限循环小数和无限不循环小数,而无限不循环小数是无理数,所以C选项错误;D.负数没有算术平方根,而无理数可分为正无理数和负无理数,其中正无理数有算术平方根,所以D选项错误.8.【答案】A【解析】是无理数,-3.14,0,是有理数.9.【答案】2【解析】因为42=16,所以16的算术平方根是4,即x=4,因为22=4,所以x的算术平方根是2.10.【答案】【解析】因为=,=,=,=,=,……所以第n个数为=.11.【答案】-2【解析】2-的绝对值是-2.12.【答案】【解析】用代数式表示实数a(a>0)的平方根为:.13.【答案】32【解析】因为4<6<9,所以2<<3,由a<<b,且a、b是两个连续的整数,得到a=2,b=3,则a5=25=32.14.【答案】2-【解析】设A点表示x,因为B点表示的数是1,C点表示的数是,且AB=BC,所以1-x=-1.解得:x=2-.15.【答案】P【解析】因为4<7<9,所以2<<3,所以在2与3之间,且更靠近3.16.【答案】449【解析】由题意得:a+3+(2a-15)=0,解得:a=4,所以(a+3)2=72=49.17.【答案】解:因为某正数的两个平方根分别是m+4和2m-16,可得:m+4+2m-16=0,解得:m=4,因为n的立方根是-2,所以n=-8,把m=4,n=-8代入-n-m=8-4=4,所以-n-m的算术平方根是2.【解析】首先根据平方根的性质,求出m值,再根据立方根的性质求出n,代入-n-m,求出这个值的算术平方根即可.18.【答案】解:因为2a-3的平方根是±5,所以2a-3=52=25,解得a=14;因为2a+b+4的立方根是3,所以2a+b+4=33=27,所以2×14+b+4=27,解得b=-5;所以a+b=14-5=9,所以a+b的平方根是±3.【解析】首先根据2a-3的平方根是±5,可得2a-3=52=25,据此求出a的值;然后根据2a+b +4的立方根是3,可得2a+b+4=33=27,据此求出b的值;最后求出a+b的值,进而求出a +b的平方根.19.【答案】解:因为由图可知,a<b<0<c,|a|>c>|b|,所以a-b<0,c-a>0,b-c<0,所以原式=b-a-(c-a)+(c-b)-a=b-a-c+a+c-b-a=-a.【解析】根据各点在数轴上的位置判断出a、b、c的符号及绝对值的大小,再去绝对值符号,合并同类项即可.20.【答案】解:(1)因为点A、B分别表示1,,所以AB=-1,即x=-1;(2)因为x=-1,所以(x-)2=(-1-)2=(-1)2=1,故(x-)2的立方根为1.【解析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.21.【答案】解:原式=0.5-+=0.5-1.5=-1.【解析】原式利用平方根及立方根定义计算即可得到结果.。

人教版七年级数学下册 第六章 实数 练习题(含详细解题过程)

人教版七年级数学下册 第六章 实数 练习题(含详细解题过程)

第六章 实数一、单选题1.√9的值等于( A )A .3B .−3C .±3D .√3 解:由32=9 √9=3.2.16的平方根是( A )A .±4B .±2C .4D .﹣4 解:由(±4)2=16 16的平方根为±4.3.下列说法正确的是( D )A .(-3)2的平方根是3B .√16=±4C .1的平方根是1D .4的算术平方根是2解:①∵(-3)2=9,9的平方根为±3,∴选项A 错误.②∵√16=4,∴选项B 错误.③∵1的平方根为±1,∴选项C 错误.④∵√4=2,∴选项D 正确.4.下列等式正确的是( C )A .±√(−2)2=2B .√(−2)2=−2C .√−83=−2D .√0.013=0.1 解:①±√(−2)2=±√4=±2,故A 错. ②√(−2)2=√4=2,故B 错.③√0.01=0.1,故D 错.5.若a ,b (a≠b )是64的平方根,则√a 3+√b 3的值为( D )A .8B .-8C .4D .0解:64的平方根为±8,则当a=8时b=-8,当a=-8时b=8,因此√a 3+√b 3=0.6.估计√7+1的值在( B )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 解:由√4<√7<√9 2<√7<3,因此3<√7+1<4.7.实数a 、b 在数轴上对应点的位置如图所示,则化简√a 2−|a +b |的结果为( A )A .bB .−2a +bC .2a +bD .2a −b解:由图可知,a<0,b>0,且|a |>|b | -a>b a + b<0,因此√a 2−|a +b |=|a |-|a +b |=-a -[-(a + b)]= -a + a + b=b.8.下列说法:①实数和数轴上的点是一一对应的;①无理数是开方开不尽的数;①负数没有立方根;①16的平方根是±4,用式子表示是√16=±4.其中错误的个数有( D ) A .0个 B .1个 C .2个 D .3个解:①每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一点都表示一个实数,因此①正确。

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个&nbsp;C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

人教版七年级数学下册第六章《 实数》单元同步复习题及答案

人教版七年级数学下册第六章《 实数》单元同步复习题及答案

第六章《实数》单元同步检测试卷一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

人教版初中数学七年级下册《6.3实数》同步练习(含答案)

人教版初中数学七年级下册《6.3实数》同步练习(含答案)

《实数》同步练习课堂作业1.下列实数中,是无理数的为()A3B.1 3C.0D.-32.下列说法:①带根号的数都是无理数;②无理数是开方开不尽的数;③无理数是无限小数;④数轴上的所有点都表示实数.其中,错误的有()A.1个B.2个C.3个D.4个3.如图,数轴上的点P表示的数可能是()A5B.5-C.-3.8D.10-4.在实数1.41483,0,π,2271634________个.5.如图,在数轴上的A 、B 、C 、D 四点中,与表示数3-________.6.把下列各数分别填在相应的集合中:16-3163π64 3.14159265,|25--, 4.21-,1.103030030003…. (1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …}:(4)负实数集合:{ …}.课后作业7.下列说法正确的是( )A .实数分为正实数和负实数B 3C 0.9D 30.018.在实数12,22,2π中,分数的个数是( ) A .0B .1C .2D .39.如图,数轴上A 、B 2 5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个10.若无理数a 满足2<a <3,请写出a 的两个可能的取值为________.1113________.12.在实数-7.51543125-15π,22(2中,设有a 个有理数,b 个无理数,________b a =.13.把下列各数分别填在相应的集合中: 53316-3|1-,27-2π-,329,0.3. (1)整数集合:{ …};(2)分数集合:{ …};(3)无理数集合:{ …};(4)负实数集合:{ …}. 14.已知a 、b 都是有理数,且(31)233a b +,求a +b 的平方根.15.如图,数轴上点A 、B 表示的数分别是12C 也在数轴上,且AC =AB ,求点C 表示的数.答案[课堂作业]1.A2.B3.B4.35.点B6.(1)有理数集合:{16-64,3.14159265,|25--, 4.21-,…} (2)无理数集合:3163π,1.103030030003…,…} (3)正实数集合:3163π64 3.14159265,1.103030030003…,…} (4)负实数集合:{16-,|25--, 4.21-,…} [课后作业]7.D8.B9.C105611.412.213.(1)整数集合:{-331-}(2)分数集合:{0.3,…}(3)无理数集合:5316-27-2π-,329,…} (4)负实数集合:{-3316-27-,2π-,…} 14.∵(31)233a b +=,3233a a b -+=.∵a 、b 都是有理数,33a =-a +2b =3.解得a =1,b =2.∴a +b =3.∴a +b 的平方根是3±15.设点C 表示的数为x .∵AC =AB ,∴121x -=.解得22x =C 表示的数是22《实数》同步练习21.下列各数中是无理数的是( )A 2B .-2C .0D .132.下列各数中,3.141 59,380.131 131 113…,-π25-17,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个3.写出一个比-2大的负无理数__________.4.下列说法正确的是( )A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.66,0,1.101 001 000 1… 整数:{ ,…},负分数:{ ,…},无理数:{ ,…}.7.下列结论正确的是( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.若将三个数-3,7,17表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是__________.10.下列实数是无理数的是( )A .-2B .13C 4D 511.下列各数:2 ,0,90.23,227,0.303 003…(相邻两个3之间多一个0),12无理数的个数为( )A.2个B.3个C.4个D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个参考答案1.A2.B3.答案不唯一,如:34.D5.负实数正有理数正无理数负有理数负无理数6.-6,-|-3|,0-23,-0.4π6,1.1010010001…7.D879.π10.D11.B12.B《实数》同步练习3课堂作业12的相反数是()A.2B.2 2D22.277的值为()A7B.37C.2D.03.与15+() A.4B.3C.2D.1471________1-(填“>”“<”或“=”).523的相反数是________,|3.14-π|=________.6321________.7.计算下面各式的值;(1)3333232;(2)|21|23|32|++.8.求下列各数的相反数和绝对值:32; 31125- 课后作业9.下列说法正确的是( )A .两个无理数的和一定是无理数B .无理数的相反数是无理数C .两个无理数的积一定是无理数D .无理数与有理数的乘积是无理数10.已知三个数:-π,-3,7-( )A .37-<-π<-B .37-π<-<-C .73-<-<-πD .73-π<-<-11.设实数a 、b 在数轴上对应的位置如图所示,且|a|>|b|2||a a b +的结果是( )A .2a +bB .-2a +bC .bD .2a -b12.计算:(1)3525________=; 334|4________--=.13.725-________,绝对值是________. 14.已知a 是小于35|2-a|=a -2,那么a 的所有可能值是________.15.如图,一只蚂蚁从点A 沿数轴向右爬行了2个单位长度到达点B ,点A 表示2-点B 所表示的数为m ,则|m -1|的值是________.16.求下列各式的值: (1)632343 5|35; (3)(2332)(3322)-; 1102233(精确到0.01). 17.设x 、y 是有理数,且x 、y 满足等式221742x y y +=+2016()x y 的值.答案[课堂作业]1.A2.A3.B4.<532π-3.146.±2,±3,±47.73(2)18.(1)11-111132的相反数是23,绝对值是2331125-15,绝对值是15[课后作业]9.B10.B11.C 12.(1)55(2)013725 72514.2、3、4、5152116.(1)433(3)32-(4)3.1017.由题意,知x +2y =17,-y =4,解得x =25,y =-4. ∴201620162016()(254)(54)1x y ==-=。

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。

人教版七年级下册数学第六章《实数》单元练习题(含答案)

人教版七年级下册数学第六章《实数》单元练习题(含答案)

人教版七年级下册数学第六章《实数》单元练习题(含答案)一、单选题1.在实数130.210.7010728π-,,,,中,其中无理数的个数为( ) A .1 B .2 C .3 D .4 2.下列各数中,无理数是( )A .36B .7 C .227 D .3.1415926534 3.在实数:﹣,3.14159,,π,1.010010001 (4),中,无理数有( ) A .3个 B .4个 C .5个 D .6个4.在 -12,3,-1,0这四个实数中,最大的数是( ) A .3B .-12C .-1D .0 5.在3-,41-,0,2-四个数中,最小的数是( ) A .3- B .41- C .0 D .2- 6.计算|12||23||23|-+-+-的结果是( ) A .0 B .1 C .2 D .31-7.若2≈1.414,a ≈14.14,则整数a 的值为( )A .20B .2 000C .200D .20 0008.数轴上的,,,A B C D 四个点中,离表示2-的点最接近的是( )A .点AB .点BC .点CD .点D9.36的平方根是( ).A .6±B .36C . 6-D .6±10.规定:对任意有理数对(a ,b )=a 2+2b +1.例如:有理数对(-5,-2)=(-5)2+2×(-2)+1=22.若有理数对(-2,1)=n ,则有理数对(n ,-1)的值为( )A .36B .38C .46D .4811.2(0.7)-的平方根是( )A .-0.7B .±0.7C .0.7D .0.4912.下列各式中正确的是( )A .164=±B .382=C .93-=-D .49397±=二、填空题13.如图,点A ,B 在数轴上,以AB 为边作正方形,该正方形的面积是10,若点A 对应的数是-1,则点B 对应的数是________.14.比较大小:51-_______13(填“>”、“<”或“=”). 15.若2316,2a b =-=-,则+a b 的值是__________.16.(1)若一个数的算术平方根是7,那么这个数是______;(2)9的算术平方根是______;(3)22()3的算术平方根是______; (4)若22m +=,则2(2)m +=______;(5)16的算术平方根是______.17.A .如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为________.B .用科学计算器计算:31002tan 36-︒≈________(精确到0.01).18.49的算术平方根是 .19.有一种运算法则用公式表示为a c b d =ad ﹣bc ,依此法则计算4286--=_____.20.若21m +和5m +是一个正数的两个平方根,则这个正数是__________.三、解答题21.计算:2+22.求满足下列各式的未知数x :(1) (x+1)2=4 (2)3x 3 =2723.计算:03tan6012(2012π)---24.()()2201202012113.14323π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭25.求下列各等式中x 的值(1)4(x ﹣1)2=9(2)3(1﹣x )3﹣81=026+(1-y)2=0.(1)求x,y的值;(2)求1xy+()()1x1y1+++()()1x2y2+++…+()()1x2016y2016++的值.27.计算:101tan602()(2)3π-︒++-+28.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定(a,b)※(c,d)=bc-ad例如:(1,2)※(3,4)=2×3-1×4=2根据上述规定解决下列问题:(1)有理数对(4,-3)※(3,-2)=_______(2)若有理数对(-3,2x-1)※(1,x+1)=7,则x=______(3)当满足等式(-3,2x-1)※(k,x+k)=5+2k的x是非零整数时,求整数k的值.29.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i4= ,i5= .(2)计算:①(4+i)(4﹣i);②(3+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将22ii+-化简成a+bi的形式.参考答案1.B2.B3.A4.A5.A.6.B7.C8.B9.A.10.D11.B12.B13.14.>15.12或416.2316 217.4π318.719.-820.921.922.(1)x=1或-3;(2)39x. 23.1.24.-225.(1)x=52或x=﹣12;(2)x=﹣2.26.(1)21xy=⎧⎨=⎩;(2)2017201827.428.(1)-1;(2)1;(3)k=1,-1,-2,-429.(1) 1 I (2) 17 8+6i (3)x=3 y=-1 (4)2 1-3i。

人教版初中七年级数学下册第六单元《实数》习题(含答案解析)

人教版初中七年级数学下册第六单元《实数》习题(含答案解析)

一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 4.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133 5.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个 6.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S 7.下列实数中,是无理数的为( )A .3.14B .13C 5D 98.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( )A .2个B .3个C .4个D .5个 9.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 10.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×2014 11.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .1012.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68 13.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B > B .A B =C .A B <D .A B ≥ 1464 )A .8B .8-C .22D .22± 15.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a->> 二、填空题16.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 17.计算题.(1)12(7)6(22)-+----(2)2312272⨯ (3316(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭18.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 19.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.20.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当x=2时,()()1*-3*=x x x ______21.已知57+的整数部分为a ,57-的小数部分为b ,则2ab b +=_________. 22.求下列各式中的x :(1)29(1)25x -=(2)3548x += 23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.24.2 1.414≈,于是我们说:2的整数部分为1,小数部分则可记为21”.则:(121的整数部分是__________,小数部分可以表示为__________;(232的小数部分是a ,73-b ,那么a b +=__________; (311x 11的小数部分为y ,求1(11)x y --的平方根. 25.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).26.比较大小:3--2.(填“>”“=”或“<”)三、解答题27.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 28.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根. 29.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+= 30.计算题. (1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭。

2021-2022学年人教版七年级数学下册《第6章实数》同步达标测试题(附答案)

2021-2022学年人教版七年级数学下册《第6章实数》同步达标测试题(附答案)

2021-2022学年人教版七年级数学下册《第6章实数》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.的平方根是()A.±7B.﹣7C.±D.2.(﹣6)2的平方根是()A.﹣6B.36C.±6D.±3.估计﹣2的值()A.在4和5之间B.在3和4之间C.在2和3之间D.在1和2之间4.下列说法:①﹣27的立方根是3,②36的算术平方根是±6,③的立方根是,④的平方根是±3,其中正确说法的个数是()A.1B.2C.3D.45.已知a的平方根是2m﹣2和4﹣m,a是()A.36B.4C.36或4D.26.已知a,b,c三个数在数轴上的位置如图所示,则下列正确的是()①ab>0;②a2>b2;③|b﹣c|=c﹣b;④;⑤A.①②④B.③④C.②③⑥D.④⑤7.若2m﹣4与3m﹣1是同一个正数的不同平方根,则这个正数为()A.1B.4C.±1D.±48.设S1=1,S2=1,S3=1,…,S n=1,则的值为()A.B.C.D.二.填空题(共8小题,满分32分)9.16的平方根是,的平方根是,的立方根是.10.已知x,y为两个连续的整数,且x<<y,则5x+y的平方根为.11.已知一个数的两个平方根分别是2a+4和a+14,则这个数是.12.对于正实数a,b作新定义:a*b=b﹣a+b,在此定义下,若9*x=55,则x的值为.13.若a、b均为整数,当x=﹣1时,代数式x2+ax+b的值为0,则a b的算术平方根为.14.比较大小:(1)2;(2)﹣5﹣6.【变式】比较大小:(1)﹣﹣;(2).15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=.16.计算=.三.解答题(共7小题,满分56分)17.计算:|﹣5|﹣+(﹣2)2+4÷(﹣).18.把下列各数填在相应的集合里:….正分数集合:{…}.负有理数集合:{…}.无理数集合:{…}.非负整数集合:{…}.19.已知a、b互为相反数,c、d互为倒数,|m|=2,且m<0;(1)求2a﹣(cd)2018+2b﹣3m的值.(2)若=m,c=,求b﹣4d+m的值.20.若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.21.已知x=1﹣2a,y=3a﹣4.(1)已知x的算术平方根为3,求a的值;(2)如果一个正数的平方根分别为x,y,求这个正数.22.我们知道,是一个无理数,将这个数减去整数部分,差就是小数部分,即的整数部分是1,小数部分是﹣1,请回答以下问题:(1)的小数部分是,﹣2的小数部分是.(2)若a是的整数部分,b是的小数部分,求a+b﹣的立方根.23.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=,y=;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+y+(y﹣2x)=2a+b,求x、y的值.参考答案一.选择题(共8小题,满分32分)1.解:∵=7,∴=7的平方根是.故选:C.2.解:∵(﹣6)2=36,∴±=±6,∴(﹣6)2的平方根是±6.故选:C.3.解:∵25<35<36,∴5<<6,∴3<﹣2<4,∴﹣2的值在3和4之间.故选:B.4.解:①﹣27的立方根是﹣3,故①错误;②36的算术平方根是6,故②错误;③的立方根是,故③正确;④的平方根是±,故④错误;所以:正确说法的个数是:1个,故选:A.5.解:根据题意得:2m﹣2+4﹣m=0,解得:m=﹣2,当m=﹣2时,2m﹣2=﹣4﹣2=﹣6,∴a=36.故选:A.6.解:由题意得:b<c<0<a,|b|>|a|>|c|.①由图得:b<c<0<a,得ab<0,故①不正确.②由题意得:b<c<0<a,|b|>|a|>|c|,得a2<b2,故②不正确.③由题意得:b<c<0<a,|b|>|a|>|c|,得b﹣c<0,故|b﹣c|=c﹣b,那么③正确.④由题意得:b<c<0<a,|b|>|a|>|c|,得,故④正确.⑤由题意得:b<c<0<a,|b|>|a|>|c|,得,>0,故,那么⑤不正确.综上:正确的有③④.故选:B.7.解:由题意得:2m﹣4+3m﹣1=0.当2m﹣4+3m﹣1=0,则m=1,此时2m﹣4=﹣2,那么这个正数为(﹣2)2=4.∴这个正数为4.故选:B.8.解:,,,=,…,,∴=1+1…+1+﹣=24+1﹣=.故选:A.二.填空题(共8小题,满分32分)9.解:∵(±4)2=16,∴16的平方根是±4.∵,且(±2)2=4,∴的平方根是±2.∵,且23=8,∴的立方根是2.故答案为:±4;±2;2.10.解:∵4<<5,∴x=4,y=5,∴5x+y=25,∴5x+y的平方根是±5,故答案为:±511.解:∵一个数的两个平方根分别是2a+4和a+14,∴(2a+4)+(a+14)=0,解得a=﹣6,a+14=﹣6+14=8,8的平方是64.故这个数是64.故答案为:64.12.解:依题意得9*x=x﹣9+x=55,解得:x=16.故答案为:16.13.解:当x=﹣1时,代数式x2+ax+b的值为0,∴(﹣1)2+a(﹣1)+b=0,6﹣2+a﹣a+b=0,∵a、b均为整数,∴6﹣a+b=0,﹣2+a=0,∴a=2,b=﹣4,∴a b=2﹣4=,∴则a b的算术平方根为:=,故答案为:.14.解:比较大小:(1)因为()2=3,22=4,3<4,所以<2;故答案为:<;(2)因为(﹣5)2=150,(﹣6)2=180,150<180,所以5<6,所以﹣5>﹣6.故答案为:>;【变式】比较大小:(1)因为>,所以﹣<﹣;故答案为:<;(2)因为2<<3,所以﹣1﹣2=﹣3<0,所以﹣1<2,所以<,故答案为:<.15.解:∵|x﹣1|+(y﹣2)2+=0,∴x﹣1=0,y﹣2=0,z﹣3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.16.解:=+2=,故答案为:.三.解答题(共7小题,满分56分)17.解:原式=5﹣3+4﹣6=018.解:正分数集合:{3.5,10%…}.负有理数集合:{﹣4,﹣…}.无理数集合:{,﹣2.030030003•…}.非负整数集合:{0,2019…}.故答案为:3.5,10%;﹣4,﹣;,﹣2.030030003•;0,2019.19.(1)解:∵a,b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵|m|=2 且m<0,∴m=﹣2,∴2a﹣(cd)2018+2b﹣3m=2(a+b)﹣(cd)2018﹣3m=﹣1+6=5;(2)∵=m,∴a=m3=﹣8,∴b=8,∵,∴,∴b﹣4d+m==8﹣2﹣2=4.20.解:∵2a﹣1与﹣a+2都是正数x的平方根,而正数x的平方根有两个:一正一负,∴2a﹣1+(﹣a+2)=0或2a﹣1=﹣a+2∴a=﹣1或1此时,这个正数为:x=(2a﹣1)2=9或1.21.解:(1)∵x的算术平方根为3,∴x=32=9,即1﹣2a=9,∴a=﹣4;(2)根据题意得:x+y=0,即:1﹣2a+3a﹣4=0,∴a=3,∴x=1﹣2a=1﹣2×3=1﹣6=﹣5,∴这个正数为(﹣5)2=25.22.解:(1)∵3<<4.∴的整数部分是3,小数部分是﹣3.∵4<<5.∴2<﹣2<3.∴﹣2的整数部分是2,小数部分是﹣2﹣2=﹣4.故答案为:﹣3,﹣4.(2)∵,∴a=9.∵,∴,∴,∵=2.∴的立方根等于2.23.(1)解:∵x+y=(1﹣),其中x、y为有理数,∴x+y=﹣2+,∴x=﹣2,y=1,故答案为:﹣2,1;(2)证明:∵x+y=a+b,∴x﹣a+(y﹣b)=0,∵x、y、a、b为有理数,∴x﹣a,y﹣b都是有理数,∴x﹣a=0,y﹣b=0,∴x=a,y=b;(3)解:∵4<<5,又知的整数部分为a,小数部分为b,∴a=4,b=﹣4,∵17y+y+(y﹣2x)=2a+b,∴17y+y+y﹣34x=8+(﹣4),17y ﹣34x +2y =17+4,∵x 、y 为有理数, ∴2y=4, 17y-34x=17 解得:x=21,y=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数
一、单选题
1.16的算术平方根是( )
A .4
B .﹣4
C .±4
D .2
2.5的平方根是( )
A .25
B .25±
C
D .3.下列各式中,正确的是( )
A 4=±
B .2=
C .3=
D 3=-
4
1.147=
2.472=0.5325= ) A .24.72
B .53.25
C .11.47
D .114.7
5.在实数
22
7,3π,0.1010010001中,无理数有( ) A .1 B .2 C .3 D .4
6.如图,数轴上表示1A 、点B.若点B 关于点A 的对称点为点C ,则点C 所表示的数是( )
A 1
B .1
C .2
D 2
71的整数部分是a ,小数部分是b ,则-a b 的值是( )
A 7 B
.1C .5D .7-8.下列四个实数中,绝对值最小的数是( )
A .-5
B .
C .1
D .4
9.已知有理数1a ≠,我们把11a
-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112
=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……依此类推,那么12109a a a +++的值是( ) A .8 B .8- C .6 D .6- 10.定义新运算“⊕”⊕a⊕b=
1a +1b (其中a 、b 都是有理数),例如:2⊕3=12+13=56
,那么3⊕(﹣4)的值是( ) A .⊕712 B .⊕112 C .112 D .712
二、填空题
11.若1- 2a 与3a -4是同一个数的平方根,则a 的值为_____.
121=______.
13.比较大小:3________14.用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,
=__.
三、解答题
15.已知正数x 的两个不同的平方根分别是a +3和2a ﹣154.求x ﹣2y +2的值.
16.求出下列x 的值.
(1)16x 2﹣49=0;
(2)24(x ﹣1)3+3=0.
17.计算:
(1
(22+
18.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 数部分.
(1)求, , a b c 的值;
(2)求2a b c ++的算术平方根.
19.观察下列各式:
(x -1)(x+1)=x 2-1
(x -1)(x 2+x+1)=x 3-1
(x -1)(x 3+x 2+x+1)=x 4-1
……
(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.
(3)根据以上规律求1+3+32+…+349+350的结果
答案1.A 2.D 3.D 4.C 5.C 6.C 7.D 8.C 9.B 10.C
知识像烛光,能照亮一个人,也能照亮无数的人。

--培根 11.3或1 .
12.7
13.>
14.8
15.17
16.(1)x =±74
;(2)x =12. 17.(1)1.8 ;(2
)1
18.(1)5a =,4b =,c=4;(2)4
19.(1)x 7-1;(2)x n+1-1;(3)5131
2-。

相关文档
最新文档