老虎台初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

老虎台初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)在表示某种学生快餐营养成分的扇形统计图中,如图所示,表示维生素和脂肪的扇形圆心角的度数和是()
A. 54°
B. 36°
C. 64°
D. 62°
【答案】A
【考点】扇形统计图
【解析】【解答】解:由图可知,维生素和脂肪占总体的百分比为:5%+10%=15%,
故其扇形圆心角的度数为15%×360°=54°.
故答案为:A
【分析】先根据扇形统计图得出维生素和脂肪占总体的百分比,然后乘以360°可得对应的圆心角的度数.
2、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()
A. 全区所有参加中考的学生
B. 被抽查的1000名学生
C. 全区所有参加中考的学生的数学成绩
D. 被抽查的1000名学生的数学成绩
【答案】D
【考点】总体、个体、样本、样本容量
【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.
考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.
全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.
故答案为:D
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.
3、(2分)如果方程组与有相同的解,则a,b的值是()
A. B. C. D.
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:由已知得方程组,
解得,
代入,
得到,
解得.
【分析】把4x-5y=41和2x+3y=-7组成方程组,剩下的两个组成方程组,由4x-5y=41和2x+3y=-7解得x和y 的值,并把它们代入到另一个方程组中,求出a和b的值.
4、(2分)如图为张小亮的答卷,他的得分应是()
A. 100分
B. 80分
C. 60分
D. 40分
【答案】B
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算
【解析】【解答】解:①-1的绝对值是1,故①正确;
②2的倒数是,故②错误;
③-2的相反数是2,故③正确;
④1的立方根是1,故④正确;
⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;
小亮的得分为:4×20=80分
故答案为:B
【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。

5、(2分)如果a>b,c≠0,那么下列不等式成立的是()
A. a-c>b-c
B. c-a>c-b
C. ac>bc
D.
【答案】A
【考点】不等式及其性质
【解析】【解答】解:A、不等式的两边都加(或减)同一个数(或整式),故A符合题意;
B、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,故B不符合题意;
C、c<0时,不等号的方向改变,故C不符合题意;
D、c<0时,不等号的方向改变,故D不符合题意;
故答案为:A
【分析】根据不等式的性质:不等式的两边都加(或减)同一个数(或整式),不等号方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,根据性质一一判断即可。

6、(2分)已知两数之和是25,两数之差是3,则这两个数分别为()
A. 12,10
B. 12,9
C. 15,10
D. 14,11
【答案】D
【考点】解二元一次方程组,二元一次方程组的应用-数字问题
【解析】【解答】解:设两个数分别为x、y,根据题意得:

解得:,
故这两个数分别为14、11.
故答案为:D.
【分析】抓住题中关键的已知条件,将其转化为等量关系是:两数之和=25;两数之差=3,设未知数,建立方程组,利用加减消元法求出方程组的解即可。

7、(2分)已知是二元一次方程组的解,则2m﹣n的算术平方根是()
A.4
B.2
C.
D.±2
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:由题意得:,
解得;
∴= = =2;
故答案为:B.
【分析】将代入方程组,建立关于m、n的方程组,解方程组求出m、n的值,然后代入求出2m-n的算术平方根。

8、(2分)周敏一月各项消费情况如图所示,下面说法正确的是()
A. 从图中可以看出各项消费数额
B. 从图中可以看出总消费数额
C. 从图中可以看出餐费占总消费额的40%,且在各项消费中最多
【答案】C
【考点】扇形统计图
【解析】【解答】解:因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一月中的具体变化情况,所以选项A、B不正确;
从图中可以直接看出餐费占总消费数额的40%,因为40%>30%>20%>10%,所以在各项消费中最多.
故答案为:C.
【分析】扇形统计图中只有各部分占整体的百分率,所以只能根据百分率的大小判断各部分的大小.
9、(2分)下列命题不成立的是()
A. 等角的补角相等
B. 两直线平行,内错角相等
C. 同位角相等
D. 对顶角相等
【答案】C
【考点】余角、补角及其性质,对顶角、邻补角,平行线的性质
【解析】【解答】A、同角或等角的补角相等,故A不符合题意;
B、两直线平行,内错角相等,故B不符合题意;
C、同位角不一定相等,故C符合题意;
D、对顶角相等,故D不符合题意;
故答案为:C
【分析】根据两角互补的性质可对A作出判断;根据平行线的性质可对B、C作出判断;根据对顶角的性质可对D作出判断;即可得出答案。

10、(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()
A.1,0
B.0,1
C.﹣1,2
D.2,﹣1
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,
∴a﹣2b=1,a+b=1,解得:a=1,b=0.
故答案为:A
【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。

11、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∵∠C=50°,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.
12、(2分)图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间
包厢里欢唱?()
A. 6
B. 7
C. 8
D. 9
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设晓莉和朋友共有x人,
若选择包厢计费方案需付:(900×6+99x)元,
若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),
∴900×6+99x<780x,
解得:x>=7 .
∴至少有8人.故答案为:C
【分析】先设出去KTV的人数,再用x表示出两种方案的收费情况,利用“包厢计费方案会比人数计费方案便宜”列出包厢费用小于人数计费,解一元一次不等式即可求得x的取值范围,进而可得最少人数.
二、填空题
13、(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。

【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。

14、(2分)若方程的解中,x、y互为相反数,则________, ________
【答案】;-
【考点】解二元一次方程组
【解析】【解答】解:∵x、y互为相反数,
∴y=-x,
将y=-x代入方程
得2x+x=
解得x=
所以y=- .
故答案是:,- .
【分析】根据x、y互为相反数得出y=-x,然后用-x替换方程中的y,即可得出关于x的方程,求解得出x的值,进而得出y的值。

15、(1分)二元一次方程组的解是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:原方程可化为:,
化简为:,
解得:.
故答案为:
【分析】先将原方程组进行转化为并化简,就可得出,再利用加减消元法,就可求出方程组的解。

16、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
17、(1分)方程2x-y= 1和2x+y=7的公共解是________;
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:联立方程组得:
解得:
【分析】解联立两方程组成的方程组,即可求出其公共解。

18、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。

三、解答题
19、(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。

正有理数、0、负有理数统称有理数。

非负整数包括正整数和0;无理数是无限不循环的小数。

将各个数准确填在相应的括号里。

20、(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.
21、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,
即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.
22、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。

23、(5分)把下列各数表示在数轴上,并比较它们的大小(用“<”连接).
,0,,,
【答案】解:
【考点】实数在数轴上的表示,实数大小的比较
【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可一一将各个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,最后根据数轴上所表示的数,右边的总比左边的大即可得出得出答案。

24、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
25、(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。

26、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.。

相关文档
最新文档