《有理数的加法2》教学设计 (新版)新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!
有理数的加法
教学设计
意图综述
本节主要内容是有理数的加减法运算,从复习小学学过的加法运算出发,从而提出引入负
数的加法问题,再通过实例明确有理数的加法意义,进而引入有理数加法的法则。
培养学
生主动探索的良好学习习惯.
活动
目标及重
难点
知识与技能,理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加
法运算.二、过程与方法,引导学生观察符号及绝对值与两个加数的符号及其他绝对值的
关系,培养学生的分类、归纳、概括能力.三、情感态度与价值观,培养学生主动探索的
良好学习习惯.重点:掌握有理数加法法则,会进行有理数的加法运算.难点:异号
两数相加的法则.
教具准备投影仪.多媒体课件.用电脑制作动画体现有理数的分类过程.
一、复习提问,引入新课
1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?
2.比较下列每对数的大小.(1)-3和-2;(2)│-5│和│5│;(3)-2与│
-1│;
二、新课讲授
在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有
理数和零的范围内.然而实际问题中做加法运算的数有可能超出正数范围,例如,
足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.本
章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净
胜球多呢?
要解决这个问题,先要分别求出它们的净胜球数.红队的净胜球数为:4+(-2);
蓝队的净胜球数为:1+(-1).这里用到正数与负数的加法.怎样计算4+(-2)
呢?
下面借助数轴来讨论有理数的加法.看下面的问题:
一个物体作左右方向的运动,我们规定向左为负、向右为正.
(1)如果物体先向右运动5m,再向右运动3m,•那么两次运动后总的结果是什么?
我们知道,求两次运动的总结果,可以用加法来解答.这里两次都是向右运动,显
然两次运动后物体从起点向右运动了8m,写成算式就是:5+3=8 ①
这一运算在数轴上可表示,其中假设原点为运动的起点.(如下图)
(2)如果物体先向左运动5m,再向左运动3m,•那么两次运动后总的结果是什么?
显然,两次运动后物体从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8 ②这个运算在数轴上可表示为(如下图):
(3)如果物体先向右运动5m,再向左运动3m,•那么两次运动后物体与起点的位置关系如何?在数轴上我们可知物体两次运动后位于原点的右边,即从起点向右运动了2m.•(如下图)
写成算式就是:5+(-3)=2 ③探究:还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果:
(4)先向右运动3m,再向左运动5m,物体从起点向______运动了______m.
要求学生画出数轴,仿照(3)画出示意图.
写出算式是:3+(-5)=-2 ④(5)先向右运动5m,再向左运动5m,物体从起点向_____运动了_____m.
先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)•运动了0m,因为+0=-0,所以写成算式是:5+(-5)=0 ⑤(6)先向左运动5m,再向左运动5m,物体从起点向________运动了_______m.同样,先向左边运动5m,再向右运动5m,可写成算式是:(-5)+5=0 ⑥
如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(•或左)运动了多少呢?请你用算式表示它.可写成算式是:5+0=5或(-5)+0=-5 ⑦从以上写出的①~⑦个式子中,你能总结出有理数加法的运算法则吗?
引导学生观察和的符号和绝对值,思考如何确定和的符号?如何计算和的绝对值?
算式是小学已学过的两个正数相加.观察算式②,两个加数的符号相同,都是“-”号,和的符号也是“-”号与加数符号相同;和的绝对值8•等于两个加数绝对值的和,即│-5│+│-3│=│-8│.
由①②可归结为:同号两数相加,取相同的符号,并把绝对值相加.
例如(-4)+(-5)=-(4+5)=-9.观察算式③、④是两个互为相反数相加,和为0.
由算式③~⑥可归结为:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.由算式⑦知,一个数同0相加,仍得这个数.综合上述,我们发现有理数的加法法则,让学生朗读课本第18页中“有理数的加法法则”.
一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值.例1:计算.(1)(-3)+(-5);(2)(-4.7)+2.9;(3)+(-0.125).
分析:本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算.(1)是同号两数相加,按法则1,取原加数的符号“-”,并把绝对值相加.(2)是绝对值不相等的异号两数相加.(3)是绝对值相等的两数相加,根据法则2进行计算.解:(1)(-3)+(-5)=-(3+5)=-8;(2)(-4.7)+2.9=-
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。
因此, 写作教案具有重要地位。
然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课
时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。