第4章 函数逼近的插值法3
插值法(共7张PPT)

( x 1 , y 1 ), ( x 2 , y 2 ), , ( x n , y n ), 有
n
[ y k ( x k )] 2
k 1
n
[ y k ( a 0 a 1 x k )] 2 k 1
f (a 0,a1)
可见 , f ( a 0 , a 1 )的极大值点
即为所待定的常数
(a 0,a1)
由a0,a1) 0 a0
f (a0,a1) 0 a1
2
n
(yk
a0
a1xk )
0
k 1
n
2 ( y k a 0 a 1 x k ) x k 0
k 1
na
0
n
xk
a1
n
yk
k 1
k 1
n k 1
x
k
a
0
n x k 2 a 1 k 1
g(x) f(x)
xx
0
1
x
x
2
第一页,共7页。
x
x
3
4
拟合曲线:从数据中找出的趋势性、规律性曲线。消除了数据 的 局部波动。
y
(xi , yi) , i = 1, 2, …, m
x
这时不是取 P(xi) = yi , 而要使 P(xi) yi 总体上尽可能小。
常见做法:
太复杂
➢ 使 m 1im a|P x(xi)yi |最小 /* mini(max()) problem? */
m
m
2
aj
y x
j i
k
=
xk
ii
j0
i1
i 1
m
m
记 bk xik , ck yi xik
数学中的函数逼近与插值方法

数学中的函数逼近与插值方法函数逼近和插值方法是数学中重要的概念与技术。
在数学与应用领域,我们经常会遇到需要近似计算或者重建一个函数的情况。
函数逼近和插值方法提供了一种有效的手段,能够用一个简单的函数或者曲线来近似代替原函数,并在一定程度上保留原函数的性质与结构。
1. 函数逼近在函数逼近中,我们需要给出一个近似函数,使其能够在原函数的一定范围内进行准确的近似。
这一方法常用于数据分析和拟合,以及在一些数学问题中的近似求解。
常见的函数逼近方法包括最小二乘逼近、Chebyshev逼近和插值型逼近等。
最小二乘逼近是一种通过使残差平方和最小化来确定近似函数的方法。
它的基本思想是将原函数表示为一个线性组合,通过求解线性方程组的最优解来确定系数。
Chebyshev逼近使用Chebyshev多项式来逼近函数。
这种方法的优点是能够在给定的逼近度下,取得最均匀的最小误差。
插值型逼近则是通过在一些数据点上确定一个插值多项式,然后用该多项式来逼近原函数。
这种方法的优点是能够在给定的数据点上实现完全的逼近。
2. 插值方法插值方法是一种通过给定的数据点来确定一个连续函数的方法。
在插值中,我们希望找到一个函数,使其通过给定的数据点,并且能够在这些点之间进行连续的插值。
常见的插值方法包括线性插值、拉格朗日插值和样条插值等。
线性插值是一种简单的插值方法,它假设插值函数在两个给定数据点之间是线性的。
通过连接两个邻近点,我们可以得到一个线性函数来近似整个区间上的函数。
拉格朗日插值是一种通过拉格朗日多项式来插值的方法。
它的基本思想是通过在每个数据点上构造一个插值多项式,然后将这些多项式进行线性组合来得到插值函数。
样条插值是一种在给定数据点上通过拟合一系列分段低次多项式来插值的方法。
这样可以在各个小区间上获得更好的逼近效果。
总结起来,函数逼近与插值方法是数学中重要且常用的技术。
它们在数学建模、数据分析以及计算数值方法中都起到了关键的作用。
逼近方法和插值方法的比较

逼近方法和插值方法的比较逼近方法和插值方法是数值分析中常用的两种数据处理技术,它们可以用于解决各种数学问题,例如函数逼近、信号处理、图像处理等。
虽然这两种方法都可以用于拟合数据,但是它们的原理与应用有很大的不同。
在本文中,我们将对逼近方法和插值方法进行比较,并分析它们的优缺点和应用场景。
一、逼近方法逼近方法是一种利用数学模型对实际数据进行拟合的方法。
与插值方法不同,逼近方法不要求通过数据点来直接计算出函数值,而是要求在整个拟合域内,最小化实际数据与拟合函数之间的误差。
因此,在逼近方法中,拟合函数不需要通过所有数据点,只需要通过一部分数据点,从而能够更好地逼近真实的函数。
逼近方法中常用的模型包括多项式模型、三角函数模型、指数模型、小波模型等。
逼近方法相较于插值方法的优点在于,它对数据中的噪声具有一定的容忍度。
由于在逼近过程中,并不要求通过所有数据点,因此可以为一些离群点和噪声点留下一定的空间。
而插值方法则要求通过所有数据点,一旦数据出现噪声点或者离群点,就会对插值结果产生极大的影响。
逼近方法缺点在于,由于逼近过程是基于模型的,因此需要先选定一种适合于实际数据的模型,否则拟合结果可能无法正确表达数据的真实本质。
逼近方法适用于数据比较平滑的情况,例如时间序列数据、声音处理等。
通过选取合适的模型,逼近方法可以更好地保留数据的特征,同时对于部分离群点的情况,也可以提供一定程度的容忍度。
二、插值方法插值方法是一种通过已知数据点,在数据点之间进行插值计算出未知数据点的数值的方法。
插值方法要求通过每个数据点,计算出它们之间的函数值,从而构建出全局的函数。
常见的插值方法包括拉格朗日插值法、牛顿插值法、分段线性插值法、三次样条插值法等。
插值方法的优点在于,它可以精确地通过所有数据来计算未知数据值。
但是,插值方法的缺点在于,它对于数据的噪声敏感,并且过度拟合的可能性会很大。
当数据点过多时,插值方法会使插值函数波动较大,从而无法反映数据的真实本质。
函数逼近的几种算法及其应用汇总

函数逼近的几种算法及其应用汇总函数逼近是数值计算中非常重要的技术之一,它主要用于用已知函数逼近未知函数,从而得到未知函数的一些近似值。
在实际应用中,函数逼近广泛用于数据拟合、插值、信号处理、图像处理等领域。
下面将介绍几种常用的函数逼近算法及其应用。
1. 最小二乘法(Least Square Method)最小二乘法将函数逼近问题转化为最小化离散数据与拟合函数之间的残差平方和的问题。
它在数据拟合和插值中应用广泛。
例如,最小二乘法可以用于拟合数据点,找出最佳拟合曲线;也可以用于信号处理中的滤波器设计。
2. 插值法(Interpolation)插值法旨在通过已知数据点之间的连线或曲线,来逼近未知函数在这些数据点上的取值。
常见的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。
插值法在图像处理中广泛应用,例如可以通过已知的像素点来重构图像,提高图像的质量和分辨率。
3. 最小二乘曲线拟合(Least Square Curve Fitting)最小二乘曲线拟合是一种将渐近函数与离散数据拟合的方法,常见的函数包括多项式、指数函数、对数函数等。
最小二乘曲线拟合可以在一定程度上逼近原始数据,从而得到曲线的一些参数。
这种方法在数据分析和统计学中经常使用,在实际应用中可以拟合出模型参数,从而做出预测。
4. 正交多项式逼近(Orthogonal Polynomial Approximation)正交多项式逼近是一种通过正交多项式来逼近未知函数的方法。
正交多项式具有良好的性质,例如正交性和递推关系,因此可以用于高效地逼近函数。
常见的正交多项式包括勒让德多项式、拉盖尔多项式和切比雪夫多项式等。
正交多项式逼近广泛应用于数值计算和信号处理中,例如用于图像压缩和数据压缩。
5. 插值样条曲线(Interpolating Spline)插值样条曲线是将多个局部的多项式插值片段拼接在一起,从而逼近未知函数的方法。
插值样条曲线在实现光滑拟合的同时,还能逼近离散数据点。
_函数逼近问题的研究

函数逼近论题目学院专业班级学生姓名摘要函数逼近问题是函数论的一个主要组成部分, 它涉及的主要问题是函数的近似表示. 在数学的理论研究中经常遇到以下问题: 在选定的一些函数中寻找到某个函数g,使它是已知函数f在一定意义下的近似表示, 并求出用g近似表示f产生的误差. 这就是函数逼近问题.本课题采用理论和实例相结合的方法进行研究. 首先, 对Weierstrass魏尔斯特拉斯逼近定理及其推广进行介绍; 其次, 介绍了一致逼近定理与证明, 给出一直逼近定理在函数逼近中的应用;最后, 对Lagrange插值、Newton插值、Herimte插值等研究.关键词:函数逼近; 一致逼近; 插值AbstractFunction approximation function theory is a key component of the involved, it is the main problem of function approximation said. In the study of the theory of the mathematics always met in the following problem: some of the function of the selected for to a certain function, make it is known g ƒ function in certain significance of the approximate, and get the use "to approximate the ƒ produce error. This is the f unction approximation problem.This subject adopts the theory and practical method of combining the research. First of all, to Weierstrass Weierstrass las approximation theorem is introduced and its extension; Secondly, this paper introduces uniform approximation theorem are given, and proof has been approximation theorem in the application of the function approximation; Finally, the Lagrange interpolation, Newton interpolation, Herimte interpolation.Key words:The function approximation:Uniform approximation;Interpolation目录摘要 (I)Abstract (II)绪论 (1)第1章Weierstrass逼近定理 (2)1.1 Weierstrass第一定理 (2)1.2 Weierstrass第二定理 (5)1.3 Weierstrass定理的推广 Stone定理 (7)第2章一致逼近的研究 (11)2.1Borel存在定理 (11)2.2 最佳逼近定理 (12)2.3 Kolmogorov最佳逼近定理 (15)第3章多项式插值方法的研究 (17)3.1 Lagrange差值公式 (17)3.2 Newton插值公式 (20)3.2.1 差商的概念与性质 (20)3.2.2 Newton插值公式的导出 (22)3.3Hermite插值公式 (24)结论 (28)参考文献 (29)致谢 (30)绪 论Weierstrass 逼近定理是函数逼近论中的重要定理之一, 定理阐述了闭区间上的连续函数可以用一多项式去逼近. 将该定理进行推广: 即使一个函数是几乎处处连续的,也不一定具有与连续函数相类似的逼近性质, 但是一个处处不连续的函数却有可能具有这样的性质. 证明了定义在闭区间上且与连续函数几乎处处相等的函数具有类似的逼近性质[]1.随着对于数学研究的不断深入, 正交多项式在数学问题中得到了广泛的应用, 尤其在数值计算方面更显示出它的优越性. 研究一直逼近的性质及应用问题,阐述一直逼近的定义、性质及最佳逼近定理的定义与证明. 主要对最佳逼近定理的最佳逼近多项式的性质与特征进行分析研究[]2[]3.在给定f 并且选定了逼近函数类之后, 如何在逼近函数类中确定作为f 的近似表示函数g 的方法是多种多样的. 例如插值就是用以确定逼近函数的一种常见方法. 所谓插值就是要在逼近函数类中找一个()x g , 使它在一些预先指定的点上和()x f 有相同的值, 或者更一般地要求()x g 和()x f 在这些指定点上某阶导数都有相同的值[]4. 利用插值方法来构造逼近多项式的做法在数学中已有相当久的历史. 微积分中著名的泰勒多项式便是一种插值多项式[]5.本文共分三章, 在第一章中我们给出了并给出了Weierstrass 逼近定理的证明与Weierstrass 逼近定理的一个推广应用. 在第二章中, 我们主要介绍了最佳逼近定理的研究. 给出了最佳逼近定理的介绍与证明. 在第三章中我们主要介绍了Lagrange 差值公式, Newton 差值公式以及Hermite 差值公式, 在函数逼近中的应用.第1章 Weierstrass 逼近定理1.1 Weierstrass 第一定理在实变函数的数学分析中, 最重要的函数类实连续函数类[],C a b 与连续的周期函数类2C π.[],C a b 是定义在某一闭区间[],a b 上的一切连续函数所成的集合; 2C π是定义在整个实轴(,)-∞+∞上的以2π为周期的连续函数全体所成的整体.定理1.1 (Weierstrass 第一定理) 设[](),f x C a b ∈, 那么对于任意给定的0ε>, 都存在这样的多项式()p x , 使max ()()a x bp x f x ε≤≤-<关于这个著名的定理, 现在已经有很多种不同的证法, 下面我们将介绍Bernstein 的构造证法.Bernstein 证法:不妨假设函数的定义区间是[][],0,1a b ≡. 事实上, 通过下面的线性代换()t b a x a =-+就能将x 的区间01x ≤≤变换成t 的区间a t b ≤≤. 同时, 可以轻易得出多项式将变成t 的多项式, x 的连续函数将变成t 的连续函数. 因此只须就连续函数类[],C a b 来证明Weierstrass 定理就行了.对于给定的[]()0,1f x C ∈, 作如下多项式(1,2,3,)n =()0()1nn k fknk n k B x f x x k n -=⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭∑ (1-1)显然()f n B x 是一个n 次多项式. 下面我们证明极限关系式lim ()()f n n B x fx x →∞=换而言之, Weierstrass 定理中提及的()p x , 只要取()f n B x (其中x N ≥)就可以了.为证明上述命题, 只需要用到一个初等恒等式()()20()11nn k kk n nx k x x nx x k -=⎛⎫--=- ⎪⎝⎭∑ (1-2) 这个恒等式是很容易证明. 事实上, 由于()()0111nnn kk k n x x x x k -=⎛⎫-≡+-≡⎡⎤ ⎪⎣⎦⎝⎭∑. 可知左端()()222021nn kk k n n x k nkx x x k -=⎛⎫=+-- ⎪⎝⎭∑()()22200121nnn k n kk k k k n n n x k x x nx x x k k --==⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭∑∑()()()()220011121nnn k n kk k k k n n n x k k x x nx x x k k --==⎛⎫⎛⎫=+--++- ⎪ ⎪⎝⎭⎝⎭∑∑()()()22222211122n n kk k n n x n n xk x k nx nx k --=-⎛⎫=+--++ ⎪-⎝⎭∑()()222112n x n n x n x n x =+-+-=右端对于[]0,1中的每一个固定的x 及任一固定的正整数n , 令()()max n k x f x f n ε⎛⎫=- ⎪⎝⎭, 上式右端代表当k 取所有合乎条件1/41k x n n ⎛⎫-< ⎪⎝⎭, 的正整数式所得的最大差数. 根据()f x 在[]0,1上的一致连续性, 可知比存在一组0n ε>, 使()0n n x εε<↓ ()n →∞记()()()()()()12,,f n n k n k x k k f x B x f x f x f x f n n λλ⎡⎤⎡⎤⎛⎫⎛⎫-=-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦∑∑, 其中1∑,2∑分别代表对满足如下条件的一切k 所取的和3/43/4,k nx n k nx n -<-≥而()(),1n kk n k n x x x k λ-⎛⎫=- ⎪⎝⎭令()max M f x =, 则显然有()()()()123,,,2f n n n k n k n n k f x B x xM x M x ελλελ-<+<+∑∑∑,而且利用恒等式(1-2)可知()()()()23/23,,04nn k n k k n nx k nx x nx x λλ=≤-=≤∑∑.因此()1/22,114n k x n λ⎛⎫≤ ⎪⎝⎭∑()1/212f n n M f x B n ε⎛⎫-<+ ⎪⎝⎭上述的不等式的右端与x 无关, 而且随着x 的无线增大而趋向0, 这就证明了多项式f n B 对于()f x 上的一致连续性.Weierstrass 的第一定理实际上正好解决了如何利用多项式作成的函数项级数来表示连续函数的问题. 因此任意取定一个单调下降于0的列n δ, 则对每个n δ都可以找到一个多项式()n p x 使得:()()n n p x f x δ-<. 于是令()()()()()111,,1n n n Q x p x Q x p x p x n -==->可知级数()1n n Q x ∞=∑的前n 项之和恰好与()n p x 相合, 因而该级数也就一致的收敛于()f x .在Bernstein 的证明中, 不仅证明了近似多项式序列()n p x 的存在性, 而且还给出了构成()n p x 的一个具体方法. 事实上, ()()1,2,3,f n B x n =便构成了连续函数()f x ()01x ≤≤的一个近似多项式序列. 这样的证法通常称之为构造性的证明方法. 他要比一般数学上的纯粹存在性的证明方法更具有价值[]6.1.2 Weierstrass 第二定理周期连续函数(我们设周期为#)的最简单逼近工具具有如下三角多项式()()1cos sin nk k k T x A a kx x kx ==++∑.如果其中的系数,k k a b 不全为0, 则称()T x 为n 阶三角多项式.相应Weierstrass 第一定理, 有如下的定理定理1.2(Weierstrass 第二定理) 设()2f x C π∈, 则对任意给定的0ε>, 都有三角多项式()T x 存在, 使得()()max x f x T x ππε-≤≤-< (1-3)这个定理可以从Weierstrass 第一定理, 通过诱导函数来证明. 此处直接采用Vallee-Poussin 算子[]()()()22!!11;cos 221!!2x n x x V f x f t dt n ππ--=-⎰ 来证明, 其中()()()()()()2!!22242,21!!212331n n n n n n =-⋅-=--⋅作平移, 显然有220cos 2cos 2xx nn n xt xI dt dt --==⎰⎰在做变换#, 可算得上述积分为()()11/2012121xnn I v dt v dv v v -=-=-⎰⎰()()()112221!!2212!!n n n n π⎛⎫⎛⎫ΓΓ+ ⎪ ⎪-⎝⎭⎝⎭==Γ+ 从而()[]()()21;cos 2n n nt x f x V f x f x f t dt I ππ---=-⎡⎤⎣⎦⎰ 因为()f x 2C π∈, 所以()f x 一致连续, 即对任意给定的0ε>存在, 使得当x x δ'''-<时,()()/2.f x f x ε'''-<现在将()[];n f x V f x -分成两部分()[];n f x V f x -()()21cos 2nn t x t xf x f t dt I δ-<-=-⎰()()211cos 1222nn t x t x C f x f t dt I δεε-≥-=-<=⎰12C C =+ (1-4)下面估计12,C C()()211cos 1222nn t x t x C f x f t dt I δεε-≥-≤-<=⎰(1-5) 记()max ,cos12x M f x q ππδ-≤≤==<, 则()()211cos 2nn t x t xC f x f t dt I δ-≥-≤-⎰212c o s 22n n M I δπ≤⋅⋅⋅()()22!!221!!n n M q n =⋅-24nM n q <⋅⋅因此存在自然数N 使得当n N >时2/2C ε< (1-6)综合(1-4)(1-5)和(1-6), 即可知Weierstrsaa 第二定理成立.1.3 Weierstrass 定理的推广-Stone 定理1948年, Stone 拓宽了Weierstrass 定理的推广, 使其和现代函数分析形成了紧密的联系, 因此成为了逼近论与分析数学中的重要定理之一, 在这一节中我们会将Stone 定理来进行重点介绍.下面的定理虽然在叙述形式上就是Weierstrass 定理, 但是其证明方法和证明过程完全不同, 因此我们将在证明之后说明其证明的特点, 然后给出一个一般定理. 因此可以得到多种逼近定理. 这个证明方法是属于Stone 的.定理1.3 任何一个在[],a b 上的连续函数都能再闭区间上被多项式一直逼近. 证明 设()f x 在∈c [],a b , 因此有M =max ()a x bf x <<, min ()a x bm f x <<=在这里我们设M m >, 否则()f x M m ==, 它就一定可以被一个多项式逼近. 在这里我们设1M =, 0m =, 考虑函数(())/()f x m M m --.有 0()1f x ≤≤, [],x a b ∈ (1-7) 取任意的0ε>, 取自然数n , 满足2()nε<, 令[]{},0()/k M x ab f x k n =∈≤≤, 0,1,2,1k n =-[]{},(1)/()1k Q x a b k n f x =∈+≤≤, 0,1,2,1k n =- (1-8)由于[](),f x a b ∈, 我们可以得到,M Q 都是闭集, 显然, 他们互不相交. 0,1,2,1k n =-,并且有,k k M nQ ϕ=1k k M M +⊂, 1k k Q Q +⊃ (1-9)有定理:闭集,Q M [],a b ⊂互不相交, 则有在[],a b 上的连续函数()g x , 他满足()g x =1,0,x Qx M∈⎧⎨∈⎩ 且0≤()g x 1≤, []0,1x ∈, 他在[],a b 上能被多项式一直逼近, 可以得到对于0,1,2,1k n =-在区间[],a b 上都存在连续函数()f x 他满足1,()0,1,,10,kk kx Q f x k n x M ∈⎧==-⎨∈⎩ (1-10)01k f x ≤≤≤, a x b ≤≤ (1-11)在[],a b 上能被多项式一直逼近.令11()()n k x F x f x n -==∑ (1-12)对于人一点x ∈[],a b , 由(4-1)可知, 存在k , 01k n ≤≤-, 可以得到/()(1)/k n f x k n ≤≤+ (1-13)因此由(1-12)(1-13)得到121,,,k k n x M M M ++-∈ (1-14)比较(1-10)(1-11)(1-12)可以得到011()()k k x k F x f x n n∞+=≤∑ (1-15) 比较(1-9)(1-10)(1-11)可以得到01()()k k x kF x f x n n∞=≤∑ (1-16)由(1-11)(1-12)(1-13)得, 对于任意的x ∈[],a b 有1()()2x f x F x n ε-≤< (1-17) 由()k f x , 0,1,2,1k n =-及()F x 的构造可以知道, ()F x 在[],a b 上可以被多项式一致逼近, 即有多项式()p x 使()()2n F x p x ε-<(1-18)比较(1-17)(1-18)就可以得到()()f x p x ε-<定理证毕.如果我们仔细检查这个定理的证明过程, 我们会发现, 在证明过程中只用到了下面的几个事实1. 实现逼近的区间[],a b 可以控成任何一个距离的空间. 我们称一个集合x 为距离空间. 如果对于任意两个元素,x y x ∈, 都对应一个在非负实数(,)D x y , 称为这两个元素,x y 之间的距离, 他满足以下条件[]7(1) (,)D x y 0=, 当且仅当x y =时; (2) (,)D x y =(,)D y x(3) (,)D x z ≤(,)D x y +(,)D y z , ,,x y z x ∈ 这个距离空间中至少包含有两个元素的子集E , 且对此集合成立有限覆盖定理.2.实现逼近的多项式可以换成定义在E 上的某个实函数空间Y 他具有以下性质(1)Y 包含常数1.(2)Y 关于加法及乘法是封闭的, 因此Y 是一个子环.(3)对于E 中任意两个不同的元素1x 与2x , 在子环Y 中必存在函数()p x , 使12()()p x p x ≠这样一来就有了下面的定理.定理1.4 设E 是某个质量空间的任意子集, 它至少包有两个不同的元素, 并且在E 上成立有覆盖定理. 设定义在E 上的实函数{}()p x 组成一个线性空间, 且构成一个环Y , 这0ε>. Y 上存在元素()p x , 使得有()(),f x p x x E ε-<∈利用Stone 定理可以得到很多有用的逼近定理[]8.定理1.5 设F 是K 维空间R 中的有界闭集. 则对于任何一个在F 上的实连续函数1,2()(,,)x x x x →=⎰⎰, 对于任意的0ε>. 将在k 维空间中代数多项式11111110()()()ni n n n k k nk i i p x p n x x ix x →-====∑∑ (1-19)使得()()f x p x ε→→--<, x F →∈证明 显然, 对R 中任意一个有界闭集F 成立Borel 有限覆盖定理. 此外, 如(4.13)()10,1,,0,1,n n ==的全体多项式构成线性空间及环, 又对于任何两个不同点()111,y hx x x→=, ()2221,y h x xx →=, 令()12111(,)x p x x xx ∞=∑它是形如(4-13)的多项式, 且有()2211(,,)0,,y p x x p x x ''=≠因此, 这就满足了Stone 定理的一切条件.定理1.5证毕.第2章 一致逼近的研究2.1 Borel 存在定理定理2.1(Borel 存在定理) 对任何给定的()f x ∈[],a b , 总是存在()p x ∈n p , 使得,()()n p E f ∆=.证明 因为()n E p ∆的下确界, 因此对任何给定的0ε>, 必有()n p x p ε∈, 使得()n n E p E εεε≤∆+.在这里我们取1mε=, 存在()m n p x p ∈, 使 1()n m n E p E m≤∆≤+(2-1) 所以, 如果能证明{}m p 或他的某个子序列一致收敛于某*n p p ∈, 则上式中令m →∞, 即可证明*()()n p E f ∆=.以下集中于从{}()m p x 中选取收敛的子序列. 首先, 按()m p x 的选取方法可知()m p x 有界. 即可得出()()()()()1max ()m m n a x bp x p x f x f x E f x ≤≤≤-+≤++进而可得出0,1,,,()n m m m x m n m p x a a x a x a x =++++中的各系数0,1,,,,,,,m m x m n m a a a a 皆有界, 为此, 在[],a b 中任意取定1n +个互异点01n x x x <<<. 由0,1,02,0,000,1,2,,()#()m m m n m m m m n m n n m n m n a a x a x a x p x a a x a x a x p x ++++=⎧⎨++++=⎩可推出000,01()1()1()1()1n m n nm n i m m j j i n j t s i si nnnp x x p x x a p x Q x x x x x x =>==-∑∏其中j Q 为多项式在确定点上的值, 从而得,i m a 有界.由Weierstrass 定理, 可逐一选出1n +同时收敛得子序列{},,0,,j i m a i n =. 使得,lim ,0,,j i m i j a a i n →∞==做多项式01()n n p x a a x a x =+++ (2-2)显然当j →∞时, 多项式()mj p x 在[],a b 上一致收敛到()p x .证明 ()p ∆=n E =inf np p ∈()p ∆, 由于()n p x p ∈按定义()p ∆>n E 下面只需证明()p ∆n E ≤. 由()mj p x 得取法可知1()m a x()()m nmj mj n p p p f x p x E mj∈∆=-<+ 但()max ()()max ()()max ()()mj mj mj a x ba x ba x bp f x p x f x p x p x p x ≤≤≤≤≤≤∆=-≤-+-1n E j mjε<++ 令j →∞得到, ()p ∆≤n E , 从而()p ∆=n E .证毕.2.2 最佳逼近定理由Borel 存在定理, 对任意给定的()f x ∈[],a b , 均有多项式()p x n p ∈, 使得()mj p ∆=max ()()inf max ()()n n q p a x ba x bp x f x E q x f x ∈≤≤≤≤-==-, 这样的多项式()p x 成为n p 中的最佳逼近多项式. 显然, n E 0=等价于()f x ∈n p , 即出()f x ∈n p 外, n E 均取正值.下面我们来讨论最佳逼近多项式的本质特征:()()()x p x f x ε=-. 由于()x ε∈[],a b , 所以存在[]0,x a b ∈, 使得0()max ()()a x bx x p εε≤≤==∆, 我们称这样的0x 为()p x 关于()f x 的偏离点. 如果0()()x p ε=∆或()p -∆, 则称0x 为()p x 关于()f x 的正或负偏离点10.如果()p x 不是()f x 的最佳逼近多项式, 则()p x 关于()f x 的正, 负偏离点必须同时存在, 但如果()p x 是()f x 的最佳逼近多项式. 则它关于()f x 的正, 负偏离点必然都存在. 事实上, 我们不妨假设最佳逼近多项式()p x 无负偏离点存在, 则可证明()p x 不是()f x 的最佳逼近多项式. 按以上的反证法假定, 必然存在一个足够小的整数h , 使得()(),n n E h p x f x E a x b -+≤-≤≤≤于是在[],a b 上有/2(()/2)()/2n n E h p x h f x E h -+≤--≤-(/2)()p h p ∆-<∆ 矛盾.定理2.2(Poussin 定理——最佳逼近误差下界的估计) 设n p p ∈且()()()x p x f x ε=-于[],a b 中的点列:12N x x x <<<. 取异于0的正负相间值11,,,(1)N N λλλ---,Q 且2N n ≥+, 则对任意()n q x p ∈, 均有1()min(,,)N q λλ∆≥. (2-3)证明 设有某()n q x p ∈, 使1()min(,,)N q λλ∆< (2-4)考虑到:[][]()()()()()()()x p x q x p x f x q x f x η=-=---. 因此有:()1,()max ()()min N a x bq q x f x λλ≤≤∆=-<所以:s i ()s i (()(j j j g n x g n p x f xη=- 即()x η于点列1,2,,N x x x 上交错变号, 由连续函数的介值定理, ()x η于[],a b 内至少有11N n -≥=个零点, 但()n x p η∈所以()x η0=, 即()()p x q x =, 与(2-3)的反证法 矛盾, 定理即得证[]11.定理 2.3(Tchebyshev 定理) ()f x 于n p 中的最佳逼近多项式是存在的, 且()p x 是()f x 于n p 中的最佳逼近多项式, 必须且只须()p x -()f x 在[],a b 上点数不少于2n +的列12N x x x <<<, 2N n ≥+以上正负交错的符号取得()p ∆的值.证明 充分性:假定()p x -()f x 于[],a b 中点列12N x x x <<<, 2N n ≥+上以正负交错的符号取到()p ∆, 由Poussin 定理, 对任意()n q x p ∈, 均有()q ∆≥()p ∆所以()p x 是()f x 于n p 中的最佳逼近多项式.必要性:假定()p x 是正负交错的偏离点数1N n '≤+, 接下来证明()p x 不是()f x 的最佳逼近多项式. 显然:()q x -()f x =()p x -()f x +[]()()q x p x -, 将[],a b 分成N '个子区间[]1,a ξ,, []1,n b ξ-. 使在该区间上的轮流满足下面两个不等式中的一个.()p x -∆≤()p x -()f x ()p a <∆-, ()p x a -∆+<()p x -()f x ()p ≤∆其中a 是某一充分小的整数, 引入n p 中的多项式121()()()()N x x x x ϕξξξ'-=---并作()q x =()p x -()f x ()x ωϕ+, 则()q x -()p x =()p x -()f x ()x ωϕ+取足够小的ω, 并选出正负号, 即可使下列不等式成立.()()n q p E ∆=∆=他们相互的正负交错偏离点组中点数2,2p q N n N n ≥+≥+. 我们设q p N N ≥, 并设()q x 的正负交错偏离点组为12q N βββ<<< (2-5)在这里我们考虑:()x η=()q x -()p x =[][]()()()()q x f x p x f x ---, 并考虑()x η于点(2-4)上的符号, 注意()j B η可能为零, 也可能不为零, 但若()0j B η≠, 则必有()(),()j j j sign B sign q B f B η⎡⎤=⎣⎦ (2-6)若1()0j B η-≠1()0,()0i k ik ηβηβ+++===≠ (2-7) 因为:[]111()(),()i i i sign B sign q B f B η---=, 且[]111()(),()i k i k i k sign B sign q B f B η++++++=, 而()q x -()f x 于12q N βββ<<<上正负交错变号, 即[]1111(1)()(),()i i i i sign B q B f B -----与[]1111(1)()(),()i k i k i k i k sign B q B f B ++++++++-同号, 即11(1)()i i B η---与11(1)()i k i k B η++++-同号. 从而有:1()i B η-与1(1)()k i k B η++-, (2-8)若K 为偶数, 则1()i B η-与1()i k B η++同号, 所以期间必有偶数的跟, 但是(2-6)中已有1k +(偶数)个根, 所以必定还有一个根, 及至少有2k +个根.总之, ()x η于[],a b 中根的个数11q N n ≥-≥+, 从而()0x η=, 与假设矛盾 定理证毕.2.3 Kolmogorov 最佳逼近定理1948年, Kolmogorov 给出了另一种形式的最佳逼近定理下面我们叙述与证明仅在实多项式中该定理的应用.定理2.4(Kolmogorov 定理) ()p x n p ∈是()f x [],c a b ∈在n p 中的最佳逼近多项式, 必须且只须对所有的()q x n p ∈均有[]{}0m a x ()()()0x A f x p x q x ∈-≥ (2-9) []{}0,()()A def x a b f x p x =∈-由(2-8)可得出关系式:[]()()()0f x p x q x -<, 不能对一切0x A ∈都成立. 即()()f x p x -与()q x 不能对一切0x A ∈都相反的符号.证明 假设()p x 是()f x 在n p 中的最佳逼近多项式, 如(2-8)不成立, 则有多项式()q x n p ∈存在, 使得对其某一0ε>, 有[]{}0max ()()()2x A f x p x q x ε∈-=-根据()f x 的连续性, 存在[],a b 的一个开子集G , 0A G ∈, 使对一切的x G ∈均有[]()()()f x p x q x -ε<-对于充分小的0λ>, 构造一个新的多项式1()()()p x p x q x λ=-. 若x G ∈, 则[]221()()()()()f x p x f x p x q x λ-=-+=2()()f x p x -[][]222()()()f x p x q x λλ+-+[]222()2p M λελ<∆-+ 其中max ()a x bM q x ≤≤=, 若取2M λε<, 则21()()f x p x -[]2(),p x G λε<∆-∈ (2-10)我们考虑到G 的余集是闭集[],H a b ⊂, 且()()f x p x -(),p x H <∆∈因此存在0∂>, 使得1()()()()()f x p x f x p x q x λ-≤-+1()2p ≤∆-∂+∂1()2p =∆-∂, x H ∈. (2-10)由(2-9)(2-10)可知, 对充分小的整数λ, 1()p x 比()p x 更好的逼近()f x , 从而(2-8)是必须的.继续证明(2-8)也是充分的, 假设(2-8)对任何()n q x p ∈, 皆成立. 于是对任意制定的1()n p x p ∈, 构造1()()()n q x p x p x p =-∈必存在点00x A ∈, 使得[]000()()()0f x p x q x -≥注意到点O A 的定义可知[][]222010000000()()()()2()()()()f x p x f x p x f x p x q x q x -=-+-+[]200()()f x p x ≥- []2()p =∆ 从而1()p ∆≥()p ∆, 证毕.第3章 多项式插值方法的研究插值法是函数逼近的重要方法之一, 有着广泛的应用, 在生产和实验中, 函()f x 或者其表达式不便于计算或者无表达式而只有函数在给点的函数值(或其导数值), 此时我们希望建立一个简单的便于计算的()x ϕ, 使其近似的代替()f x , 有很多种的差值法, 其中以Lagrange (拉格朗日)插值和Newton (牛顿)插值为代表的多项式插值最有特点. 常用的还有Hermit 差值, 分段差值, 和样条差值. 在本章中我们主要介绍Lagrange 差值, Newton 差值, 与Hermit 差值[]12.3.1 Lagrange 差值公式设y =()f x 是实变量x 的点值函数, 且已知()f x 在给定的1n +各互异点01,,,nx x x 处得值01,,,n y y y 即(),0,,i i y f x i n ==差值的基本问题是, 寻求多项式()p x , 使得(),0,,i i p x y i n == (3-1) 设()p x 是一个m 次多项式()p x =2012m m a a x a x a x ++++, 0m a ≠则差值问题是, 如何确定()p x 中的系数01,,,m a a a , 使得(3-1)式满足, 所以该问题等价于求解下述的线性方程组20102000211121112012mm m m m mm m m na a x a x a x y a a x a x a x y a a x a x a x y ⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩ (3-2)上述的线性方程组的系数矩阵为200021112111m m m nnm x x x x x x A x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦他是一个()()11n m +⨯+的矩阵.当m A >时, A 的列数大于行数, 不难证明矩阵A 的秩数为1n +. 因为A 的前1n +列所组成的行列式为()2000211101211,,,1m mn n m nnmx x x x x x w x x x defx x x -=我们有:()01,,,n n w x x x -()j i j ix x >--∏ (3-3)为了证明(3-3), 我们考虑n 此多项式()01,,,n w x x x -=2002111211121111n nnn n n nx x x x x x x x x xx x ---显然01,,n x x -村委它的零点, 且它的n x 系数恰为()01,,,n w x x x -.()01,,,n w x x x -()()()0101,,n n w x x x x x x --=-- 可以得出下面的递进关系式()01,,,n n w x x x -()()()0101,,n n n n w x x x x x x --=--运用他便可证明(3-3)式.根据(3-3)并注意到诸01,,,n x x x 互异, 从而线性方程组(3-2)的系数矩阵的秩数1n +它表明(3-2)的解是不唯一的, 即差值问题(3-1)的解是不唯一的.当m n <时, 矩阵A 的行数大于列数, 按照(3-3)式, 线性方程组(3-2)的每1m +个程组成的方程组均有唯一一组解. 01,,,m a a a , 但是一般来说, 这样求出的各组01,,,m a a a 不一定相同, 即此时(1-2)可能是矛盾方程组.鉴于上述情况, 看来取m n =是最为适合的, 现在我们从提多项式插值问题:给定1n +个互异点, 01,,,n x x x 对任意组数01,,,n y y y , 是否尊在唯一的()()f x p x ∈, 使之满足下面差值条件.(),0,,i i p x y i n == (3-4)上述问题的答案是肯定的, 现在采用构造性方法把所要求的多项式()p x 求出来, 试想:如果可求出具有下面性质的特殊的差值多项式:(),(0,,)i n l x p i n ∈=0,,0,,()1,i j i i n l x j i ≠=⎧=⎨=⎩ (3-5)则多项式0()()ni i i p x y l x ==∑ (3-6)必满足(3-4)的多项式, 但(3-5)中上面的等式, 之处01,,,n x x x 中出i x 外, 均为()i l x 的零点, 因此()i l x 011()()()()i i n c x x x x x x x x -+=----, 其中c 为常数, 但(3-5)中的等式指出()()()()0111i i i i i i n c x x x x x x x x -+=----所以:()()()()()()()()011011()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+---------记做0()()()n w x x x x x =--, 则()i l x 还可表示更加简单的形式:()i l x ()()()i w x x x w x ='-.总之n 次多项式:()()()()nii i w x p x y x x w x =='-∑ (3-7)满足差值条件(3-4).若()n q x p ∈也满足差值条件(3-4), 则()()()n x q x p x p η=-∆必以01,,,n x x x 为零点.即()0,0,,i x i n η==, 这样一来, n 次多项式()x η依然有1n +个不同的零点, 所以()()q x p x =, 所以有(3-7)表示的n 次多项式是n p 中满足差值条件的唯一多项式, 他被称作为Lagrange 差值多项式, 并记做0()()()()nn ii i w x L x y x x w x =='-∑ (3-8)按上面的推理可得Lagrange 差值多项式()n L x 也可看做是从下面的行列式方程中解出来的220000211112()11011n n nnnnnn nL x x xxy x x x y x x x y x x x = (3-9)由(3-1)所示的条件成为差值条件, 点组01,,,n x x x , 称为差值结点, 上面所得到的结果可以从集合上解释为, 有且仅有一条n 次代数曲线, 通过平面上事先给定的1n +个点(,),0,,i i x y i n =, 其中,()i j x x i j ≠=.Lagrange 差值公式(3-8)具有结构清晰, 紧凑的特点, 因此适合于工作理论分析和应用.3.2 Newton 插值公式3.2.1 差商的概念与性质Newton 插值公式的导数是非常不好记的, 因此有必要另寻方法来确定它们, 为此我们引进差商的概念, 并指出Newton 插值公式中的各导数01(,,,)n f x x x , 1,,i n =,即是()f x 的i 阶差商, 设已知不同的自变量01,,,n x x x 上的函数值()i f x , 1,,i n =, 我们称()()(,)i j i j i jf x f x f x x x x -=-, ()i j ≠为()f x 的一阶差商(或均差), 一阶差商的一阶差商[]13()()(,,)i j j k i j k i kf x x f x x f x x x x x ---=-, ()i k ≠叫做()f x 的二阶差商, 一般来说我们称(1)n -阶差商的一阶差商10120110(,,)(,,)(,,)n n n n n n n f x x x f x x x f x x x x x -----=-为函数()f x 的n 阶差商.差商有以下几个性质1.若()(),F x cf x c =为常数, 则:1010(,,,)(,,,)n n n n F x x x cf x x x --=.2.若()()()F x f x g x =+, 则:101010(,,,)(,,,)(,,,)n n n n n n F x x x f x x x g x x x ---=+.3.若(),m f x x m =为自然数, 则:100,(,,,)1,n n in m f x x x n m x m n n m ->⎧⎪==⎨⎪-<⎩诸的次得齐次函数,4.差商10(,,,)n n f x x x -是01,,,n x x x 的堆成函数, 即当任意调换, 01,,,n x x x 的位置,差商的值均不变.5.差商可以表示成两行列式之商注:规定, 当0n =, 时0()1n i j l l i x x =≠⎧⎫-=⎨⎬⎩⎭∑1010111111101010101111111(,,,)()()()nnn n n n n n n nn n nn n nx x x x x x f x x x x x x x x x f x f x f x x x x ------=∙性质1和性质2由定义可以直接退出, 接下来我们证明性质3m x 的一阶差商可根据定义直接计算出来1210101210(,)m mm m m x x f x x x x x x x ---∂∂-==+++- 上面的式子是10,x x 的1m -次齐次函数.相继作出各阶差商并依照完全归纳法, 可证的下列公式011001(,,,)nn n nf x x x x x x γγγ-=∑ 10n n m n γγγ-+++=-上面的式子求和运算所有可能出现的形式如:11n n nn n nx x x γγγ--的10,,,n n x x x -的m n -次齐次项, 这样性质3的证.接下来证明性质4, 作出想继续的各阶差商之后, 我们不难看出他们是由形如0,()/()ni ijl l if x x x =≠-∏的(1)n +个项的和表示出来的. 由完全归纳法可求出:01(,,,)n f x x x 可由(2-1)式中的右端表出, 使用前面的记号, 01()()()()n w x x x x x x x =---, 也可将它写成010()(,,,)()ni n i i f x f x x x w x =='∑如此便证明了性质4.最后用完全归纳法同样可以证明性质5.由性质4得知Newton 插值公式(2-2)中的系数001(),(,)f x f x x 01(,,,)n f x x x 恰标出.因此当已知(),(0,1,,)i i y f x i n ==, 时利用差商表可以很容易算出()f x 的各阶差商值,而不必去刻意的记忆公式(2-1).因为在(1)n +个不同点01,,,n x x x 上取给定值的次数不超过n 的多项式使唯一的,所以次数相同的Newton 差值多项式与Lagrange 差值多项式使恒等的, 他们的差异仅仅是书写形式不同. 但是这差异却为计算实践带来了很大的方便. 实际上, 对于Newton 差值公式来说, 当需要增加一个差值结点时, 只需在原插值多项式的后面在添加一个新项就可以了.3.2.2 Newton 插值公式的导出Lagrange 插值公式的却是在于, 当差值结点的个数有所变动时, Lagrange 因子()(0,1,,)i l x i n =就要随之发生变化, 从而整个公式的结构也要发生变化, 这在计算实践中是不方便的, 为了克服这个缺点, 在这一节中我们引进了Newton 形势的差值公式.虽然1n +个结点01,,,n x x x 上的n 次Lagrange 差值多项式也可以写成下列形式010011()()()()()n n n p x a a x x a x x x x x x -=+-++--- (3-10)下面我们确定上式的01,,,n a a a . 令1()n p x -表示n 个结点011,,,n x x x -上的(1)n -次Lagrange 差值多项式. 因为:1()(),(0,,1)n i n i i p x p x y i n -===-, 所以:1011()()()()()n n n p x p x c x x x x x x ---=---,c 为常数. 由条件()n n p x y =可以得出1011()()()()n n n n n n n y p x c x x x x x x ---=---又因为:110()()n n n i i n i p x y l x --==∑, 所以有011011()()()()()()()nin n n n i i i i i i n y y c x x x x x x x x x x x x x x --+=+-------∑100,()n ni i j i l l i y x x -==≠⎧⎫=-⎨⎬⎩⎭∑∏引进记号10100,(,,,)()n nn i i l i l l i f x x x c y x x -==≠⎧⎫==-⎨⎬⎩⎭∑∏得()n p x 与1()n p x -之间的关系101011()()(,,)()()()n n n n p x p x f x x x x x x x x x --=+---同理得:12011012()()(,,)()()()n n n n p x p x f x x x x x x x x x ----=+---一直写下去, 最后得到001001011()()(,)()(,,)()()()n n n p x f x f x x x x f x x x x x x x x x -=+-++--- (3-11)公式(3-11)就是Newton 型差值公式, 系数00101(),(,)(,,,)n f x f x x f x x x 由(3-11)式来确定.3.3 Hermite 插值公式为了理论和应用上的需求, 我们在这里介绍一类具有重结点的多项式差值方法, 即Hermite 差值方法, 因为此类差值问题要求点处满足相应的导数条件, 所以也被称为切触差值.设 12s x x x <<< (3-12)()1(0,,,1,,)h k k y h a k s -==为事先指定的实数, 其中1,,s a a 为正整数121,1(1,,)s k a a a n a k s +++=+≥= (3-13)现构造一个n 次多项式()n p x p ∈, 使之满足差值条件()()1()(0,,;1,,)h h k k k p x y h a k s -=== (3-14) 为解决(3-14), 最直接的办法就是采用代定系数法, 或者求解由(3-3)所确定的线性方程组.此处我们采用构造基本多项式的办法来解决Hermite 差值问题(3-3), 构造一批n 次多项式()1,,,0,,1ik i j i L x l s k a ==-使之满足()()0,(;0.1)h ik m m L x m i h a =≠=- (3-15)和()0,()(0,1)1,h ik i k h k L x h a h k≠⎧==-⎨=⎩ (3-16)显然, 只要上述问题解决, 则n 次多项式()10()()sa s h i ih i h p x y L x ===∑∑(3-17)就必满足差值条件(3-14).以下集中来构成()k L x , 由(3-15)和(3-16)可知111111()()()()()()()i i a a a k as ik i i i s ik L x x x x x x x x x x x l x -+-+=--⋅-⋅--其中1i ik a k l p --∈是满足1i k a --次多项式. 若令11()()()s a a s w x x x x x =--则上式了缩写成()()()()ik ik i i kw x L x l x x x a -=- (3-18)为确定()ik L x 还需要利用条件(3.5)和Taylor 展开式可得()ik L x ()1()!()i a k i i i x x a x x k w x δ--'=⋅+-+ (3-19)其中δ和2δ为确定的常数, ()ik L x ∈1i k a p --所以必定是函数()1!()i i x x a k w x -⋅于i x x =处Taylor 展开的前i k a -项和, 若把这i k a -项和记为()ik L x 1()()1!()i k i a i i x x x a k w x --⎧⎫-=⎨⎬⎩⎭ 则(3-18)式, 有()ik L x =1()()()()()()!()i k i a i i i i i x x x k x x a w x x x a k w x --⎧⎫--=⎨⎬-⎩⎭从而有11()22110()()()()()()!()i k i i a a si i k i x x x n x x k w x p x y x x k w x ---==⎡⎤⎧⎫--=⎢⎥⎨⎬-⎢⎥⎩⎭⎣⎦∑∑ (3-20) 若于(3-14)中取()()1(),(0,,),(1,,)h h k k c y fx h a k s -===, 则相应的Hermite差值多项式为11()()210()()()()()()()!()i k i ii a a sk i i ia i k i x x x a x x k w x p x f x x x k w x ---==⎡⎤⎧⎫--=⎢⎥⎨⎬-⎢⎥⎩⎭⎣⎦∑∑ (3-21) 例 3.1 设121a a q ξ====, 则差值问题(3-3)就是通常多项式差值问题, 此时, 按定义有1()()1()()i i ix x x w x w x ⎧⎫-=⎨⎬'⎩⎭其中()()()i s w x x x x x =--相应的Hermite 差值多项式恰为一般Lagrange 差值多项式.1()()()()()si i i i w x p x f x x x w x =='-∑ 例 3.2 设仅有一个a 重的结点x a =, 则()()n w x x a =-, 而相应的Hermite 差值多项式恰为()f x 于x a =点, x a =点附近Taylor 展开式的部分和.1()()()()!k n k k k a p x fa k -=-∑ 例 3.3 设122s a a q ====, 则相应的Hermite 差值问题为求21n s =-次多项式.()p x 使之满足()()i i p x f x = (1,,)i s = ()()i i p x f x ''= (3-22)这个H e r m i t e 差值问题的集合意义在于使得曲线()y p x =不仅通过给定的点(,())(1,,i i x f x s , 而且在,(1,,)i x x x s ==处与曲线()y f x =有相同的切线.为推导相应的Hermite 插值公式, 记1()()()s x x x x x δ=--则[]2()()w x x δ=, 222()()()i x x x x w x x δ⎡⎤--=⎢⎥⎣⎦又因为[][]222()1()()()()i i i i i x x x x x x x x δδδδ''⎡⎤-=--+⎢⎥''⎣⎦[]2()()11()()()2()i i i i x x x x x w x x x δδδ''-=--+'故由(3-21)式, 有21()()()()()(1()()()()()()si i i i i i m i i x x p x f x x x f x x x x x x x δδδδ=⎡⎤'''=⨯--+-⎢⎥''-⎣⎦∑特别的,当2s =, 且12a a =时, 相应插值公式为下面的3次多项式2121212()()(12)()i x x x x p x f x x x x x --=--- 2221112122121()()()()(12)()x x x x x x f x x x f x x x x x x x ---'=-+---- 12221()()()x x f x x x x x -'+-- (3-23) 这是一个非常重要的Hermite 差值多项式, 他所刻画的曲线()y p x =是这样一条曲线其在区间[]12,x x 两个端点处, 不仅通过曲线()y p x =上的点11(,())x f x 与22(,())x f x , 而且与()y p x =有相同的切线.结论本文主要论述了Weierstrass逼近定理,一致逼近定理,以及几种常用的插值的性质、特征和证明. 并总结出其在函数逼近中的应用.Weierstrass逼近定理是函数逼近论中的重要结论之一, Weierstrass逼近定理是关于实变函数逼近定理, 第一章介绍了Weierstrass逼近定理的研究介绍以及推广Stone定理. Weierstrass逼近定理本身包含两个结论:Weierstrass第一逼近定理和Weierstrass第二逼近定理. 他们是互相独立的, 但又有关系的. 这两个定理都是1885年由Weierstrass 所得到的. Weierstrass-Stone是Weierstrass定理在抽象空间的推广[]15.函数逼近论不外乎研究下面三个问题:第一, 给定一个函数)(xf, 能否用更为简单的函数列近似逼近?第二, 如果能近似逼近?精确度又如何?第三. 逼近的结果是否最佳?在第一章中我们队第一、二两个问题给出了回答, 在第二章中我们研究了第三个问题—最佳逼近理论, 给出了最佳逼近的研究与证明, 以及最佳逼近多项式的性质与应用.插值法是函数逼近的重要方法之一, 在函数逼近中有着广泛的应用, 在一般插值问题中, 若选取φ为n次多项式类, 由插值条件可以唯一确定一个n次插值多项式满足上述条件. 从几何上看可以理解为:已知平面上1n个不同点, 要寻找一条n次多项式+曲线通过这些点. 插值多项式一般有两种常见的表达形式, 一个是拉格朗日插值多项式, 另一个是牛顿插值多项式. 在第三章中, 我们主要研究了Lagrange插值多项式, 牛顿插值多项式, 以及Hermite插值[]16.由于所学知识有限, 本文只在粗浅的层面上描述了做出了简单的研究, 矩函数逼近的根源还有待于深入研究, 我会在今后的学习工作中继续关注函数逼近的研究和发展.参考文献[1] 陈传璋, 金福临. 数学分析[M]. 上海: 上海科学技术出版社, 1962[2] 阎庆旭, 陈北斗, 刘慧芳.Weierstrass逼近定理的应用[J].数学实践与认识, 2004.[3] 周民强.实变函数[M].北京:北京大学出版社, 2001.[4] 聂铁军.计算方法[M].国防工业出版社,1982.[5] 张可村,赵英良.数值计算的算法与分析[M].北京:科学出版社2003.[6] 黄志远.随机分析学基础[M], 北京:科学出版社, 2001[7] 龙熙华.数值分析[M].西安:陕西科学技术出版社, 2005[8] 王仁宏.数值逼近[M].北京:高等教育出版社, 1999.[9]陈传璋, 金福临. 数学分析[M]. 上海: 上海科学技术出版社, 1962[10] 文世鹏, 张明.应用数值分析[M].北京:石油工业出版社, 2005.[11] W.Da.hmen, C.A.Micchelli. Recent, eprogress in multivariate splies, interpolat-ingcardinal splines as their degree rends to infinity, IsraelJ.Whrd(des.), AedaeePress, 1983, 27-29.[12] O.Davydov. On almost interpolation, J.Approx, Theory 91 1997,398-412.[13] O.VSeleznjev. Spline approximation of random processes and design problems, J. Statist.Plann Inference 84(2000), 249-252.[14] H.B.Curry, I.J.schoenberg. OnP6lya frequency functins, VI:The fundamental splinefunctions and their limits, J.analysis Math.171966, 71-75.[15] P.Sablonniere. A Family of Bernstein quasi-interpolants on[]1,0, Apprxo.Theory & itsAppl.(8)3(1992), 62-63[16] R.H.Wang. Multivariate spline and algebraic geometry, put.Appl.Math., 121(2000),153-155.。
实验四 插值法

实验四、插值法插值法是函数逼近的一种重要方法,它是数值积分、微分方程数值解等数值计算的基础与工具,其中多项式插值是最常用和最基本的方法。
拉格朗日插值多项式的优点是表达式简单明确,形式对称,便于记忆,它的缺点是如果想要增加插值节点,公式必须整个改变,这就增加了计算工作量。
而牛顿插值多项式对此做了改进,当增加一个节点时只需在原牛顿插值多项式基础上增加一项,此时原有的项无需改变,从而达到节省计算次数、节约存储单元、应用较少节点达到应有精度的目的。
一、实验目的1、理解插值的基本概念,掌握各种插值方法,包括拉格朗日插值和牛顿插值等,注意其不同特点;2、通过实验进一步理解并掌握各种插值的基本算法。
二、Matlab 命令和程序命令 poly :创建一个向量,其分量为一个多项式的系数,该多项式具有给定的根。
命令polyval:求多项式的值,命令 conv : 创建一个向量,其分量为一个多项式的系数,该多项式是另外两个多项式的积polyval(C,2)>> P=poly(2)P=1 -2Q=poly(3)Q=1 -3>> conv(P,Q)ans=1 -5 6>> polyval(P,2)ans=1、拉格朗日插值( 基于N+1个点 ,计算0(()()nn k k k L x f x l x ==∑)拉格朗日多项式)function [C,L]=lagran(X,Y)%input --X is a vector that contains a list of abscissas% Y is a vector that contains a list of ordinates%output--C is a matrix that contains the coefficient of the lagrane % interplatory polynomial% -- L is a matrix that contains the Lagrange coefficent polynomials w=length(X);n=w-1;L=zeros(w,w);%Form the Lagrange coefficient polynomialsfor k=1:n+1V=1;for j=1:n+1if k~=jV=conv(V,poly(X(j)))/(X(k)-X(j));endendL(k,:)=V;end%Determine the coefficiants of the Lagrange interpolating polynomial C=Y*L;2、牛顿插值function [C,D,Newton]=newpoly(X,Y,p)%Input -X is a vector that contains a list of abscissas% -Y is a vector that contains a list of ordinates% -p is the%Output -C is a vector that contains the coefficents of% the Newton interpolatory polynomia% -D is the divided-difference table% -Newton is the value of Newton interplatory polynomia in pn=length(X);D=zeros(n,n);D(:,1)=Y';%Use formula to form the divided-difference tablefor j=2:nfor k=j:nD(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1));endend%Determine the coefficient fo the newton interpolating polynomialC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)=C(m)+D(k,k);End%Determine the value of the newton interpolating polynomial at pNewton=D(n,n);for k=(n-1):-1:1Newton=Newton*(p-X(k))+D(k,k);End三、实验任务1、已知函数表x 0.56160 0.56280 0.56401 0.56521iy 0.82741 0.82659 0.82577 0.82495i用二次拉格朗日插值多项式求5635x时的函数近似值。
插值法

i 0 i j
n
x x
j
x xi
i
将 l j ( x)代入
P P
n
( x) l j ( x) y
j 0
n
j
中得
n
( x)
j 0 n
n
( x x0)(x x1)...(x x j 1)(x x j 1)...(x xn ) ( x j x0)( x j x1)...(x j x j 1)( x j x j 1)...(x j xn )y
于是
(x-x1)(x-x2) (x-x0)(x-x2) (x-x0)(x-x1) P2(x)=-----------------y0 + -----------------y1 + ------------------y2 ...(6) (x0-x1)(x0-x2) (x1-x0)(x1-x2) (x2-x0)(x2-x1)
而ai(i=0,1,2,…,n)的系数行列式是Vandermonde行 列式
1 V( x0 , x1 ,...,x n ) 1 ... 1
n i 1
x x x x
0 1
2 0 2
... ... ... ...
1
x x x
n 0 n
1
...
n
...
2 n
...
n n
x x
i
=
( x x )
0.01892 =0.314567+ ——— (0.0167) =0.330365 . 0.02
其截断误差得
其中 M 2
R1 ( x)
// 1
M
2
函数逼近的几种算法及其应用

函数逼近的几种算法及其应用函数逼近是数值计算中的一种重要技术,用于在给定的函数空间中找到与目标函数最相近的函数。
函数逼近算法可以在不知道目标函数解析表达式的情况下,通过对给定数据进行处理来逼近目标函数的结果。
这篇文章将介绍几种常见的函数逼近算法及其应用。
1.多项式逼近:多项式逼近是一种利用多项式函数逼近目标函数的方法。
多项式逼近算法有很多种,常见的有最小二乘法、拉格朗日插值法和牛顿插值法等。
多项式逼近广泛应用于数据拟合、信号处理和图像处理等领域。
最小二乘法是一种通过最小化实际观测值与多项式模型之间的差异来确定多项式系数的方法。
最小二乘法可以用于拟合非线性和线性函数。
拉格朗日插值法和牛顿插值法是通过插值多项式来逼近目标函数的方法,可以用于填充缺失数据或者生成曲线过程中的中间点。
2.三角函数逼近:三角函数逼近是一种利用三角函数来逼近目标函数的方法。
三角函数逼近算法有傅里叶级数逼近和小波变换等。
傅里叶级数逼近是一种利用三角函数的线性组合来逼近目标函数的方法。
这种方法广泛应用于信号处理、图像处理和数学建模等领域。
小波变换是一种通过特定的基函数来逼近目标函数的方法。
小波变换可以用于信号去噪、图像压缩和模式识别等应用。
3.插值逼近:插值逼近是一种通过已知数据点在给定区间内的函数值来确定目标函数的方法。
常见的插值逼近方法有拉格朗日插值法、牛顿插值法和差值多项式法等。
插值逼近广泛应用于任何需要通过已知数据点来逼近目标函数的领域。
在实际应用中,函数逼近常用于数据分析和模型构建。
例如,在金融领域,函数逼近可以用于确定股票价格走势的模型和预测。
在工程领域,函数逼近可以用于建立复杂系统的模型和优化控制。
在计算机图形学领域,函数逼近可以用于生成真实感图像和动画。
总结起来,函数逼近是一种重要的数值计算技术,有多种算法可供选择。
多项式逼近、三角函数逼近和插值逼近是常见的函数逼近算法。
函数逼近广泛应用于数据分析、模型构建和优化控制等领域,对于解决实际问题具有重要作用。
数值分析插值法

-
K
(
x)
n
(t
-
xi
)
推广:若 ( x0 ) = ( x1 ) = ( x2 ) = 0
0 ( x0 , x1 ), 1 i (=0x1 , x2 )
(x)有 n使+2得个不(同0 )的= 根(x10)…= 0xn x (0 ,1(n)使1) (得x ) =0(, )=x 0 (a, b)
有 余
娜
原
创
多项式插值----polynomial interpolation
Problem I. 给定y=f(x)的函数表, xi[a,b]
Interpolation interval
Interpolation points
求 次数不超过 n 的多项式
Pn ( x) = a0 a1 x an x n
1 h4 max | 24 x0xx3
f
4(x) |
手 有 余 娜 原 创
证明
n
(1) xikli (x) = xk , k = 0,1, 2, n i=0
n
(2) (xi - x)k li (x) = 0,k = 0,1, 2, n i=0
(3) p(x)是任一最高次项系数为1的n+1次多项式,则
Interpolation polynomial
(2.1)
Interpolation condition
使得
P ( x ) = y , i = 0, ... , n
ni
i
(2.2)
条件:无重合节点,即 i j xi x j
手 有 余 娜 原 创多项式 Nhomakorabea值的几何意义 Pn(x) f(x)
函数的数值逼近-插值

课程名称计算方法实验项目名称函数的数值逼近-插值实验成绩指导老师(签名)日期2011-9-16一. 实验目的和要求1.掌握用Matlab计算Lagrange、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
2.通过实例学习如何用插值方法解决实际问题。
二. 实验内容和原理1)编程题2-1要求写出Matlab源程序(m文件),并对每一行语句加上适当的注释语句;2)分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab源程序、运行结果和结果的解释、算法的分析等写在实验报告上。
2-1分析应用题用12y x=在0,1,4,9,16x=产生5个节点15,,P P。
用以下五种不同的节点构造Lagrange插值公式来计算5x=处的插值,与精确值比较并进行分析。
function y=lagr(x0,y0,x)n=length(x0);m=length(x);L=zeros(1,n);y=zeros(1,m);for k=1:ms=0;for i=1:nL(i)=1;for j=1:nif j~=iL(i)=L(i)*(x(k)-x0(j))/(x0(i)-x0(j));endends=s+y0(i)*L(i);endy(k)=s;end1) 用34,P P 构造;>> x0=[4,9]; >> y0=[2,3]; >> lagr(x0,y0,5) ans =2.20002) 用234,,P P P 构造;>> x0=[1,4,9]; >> y0=[1,2,3]; >> lagr(x0,y0,5) ans =2.26673) 用2345,,,P P P P 构造;>> x0=[1,4,9,16]; >> y0=[1,2,3,4]; >> lagr(x0,y0,5) ans =2.25404) 用1245,,,P P P P 构造;>> x0=[0,1,9,16]; >> y0=[0,1,3,4]; >> lagr(x0,y0,5) ans =2.95245) 用全部插值节点12345,,,,P P P P P 构造。
工程常用算法04插值方法

工程常用算法04插值方法插值是指根据已知的数据点,通过一定的方法来估计数据点之间的未知数据点的数值。
在工程领域,插值方法常用于数据处理、图像处理、信号处理、计算机图形学等方面。
下面介绍一些常用的插值方法。
1.线性插值法:线性插值法是最简单的插值方法之一,它假设两个相邻数据点之间的数值变化是线性的。
线性插值法的计算公式为:y=y1+(x-x1)*(y2-y1)/(x2-x1)其中,y1和y2为已知数据点的数值,x1和x2为已知数据点的横坐标,x为待估计数据点的横坐标,y为待估计数据点的纵坐标。
2.拉格朗日插值法:拉格朗日插值法是一种常用的插值方法,它通过一个多项式来逼近已知数据点的取值。
拉格朗日插值法的计算公式为:L(x) = Σ(yi * li(x))其中,yi为已知数据点的数值,li(x)为拉格朗日插值基函数,计算公式为:li(x) = Π((x - xj) / (xi - xj)),其中i ≠ j拉格朗日插值法的优点是简单易实现,但在数据点较多时计算量较大。
3.牛顿插值法:牛顿插值法是一种递推的插值方法,通过不断增加新的数据点来逼近已有的数据点。
牛顿插值法的计算公式为:P(x) = f[x0] + f[x0, x1](x - x0) + f[x0, x1, x2](x - x0)(x - x1) + ⋯ + f[x0, x1, ⋯, xn](x - x0)⋯(x - xn)其中,f[x0]为已知数据点的数值,f[x0,x1]为已知数据点间的差商,计算公式为:f[x0,x1]=(f[x1]-f[x0])/(x1-x0)牛顿插值法的优点是计算效率高,但在增加新的数据点时需要重新计算差商。
4.样条插值法:样条插值法是一种光滑的插值方法,通过拟合一个或多个插值函数来逼近已有的数据点。
S(x) = Si(x),其中xi ≤ x ≤ xi+1Si(x) = ai + bi(x - xi) + ci(x - xi)2 + di(x - xi)3样条插值法的优点是插值函数的曲线平滑,可以更好地逼近原始数据,但需要寻找合适的节点和插值函数。
初识插值法和逼近法

初识插值法和逼近法插值法和逼近法是数值分析领域中常用的数值逼近方法。
两者在数学和工程领域均有广泛的应用。
本文将会介绍插值法和逼近法的基本原理、常用方法以及应用实例等内容。
一、插值法1. 插值法的基本原理插值法是利用一系列已知数据点,通过构造一个适当的函数来近似代替这些数据点之间未知函数的数值。
插值方法的基本思想是通过已知数据点的数值来推导出未知函数在数据点之间的数值,从而利用得到的函数对其他未知数据进行估计预测。
2. 常用插值方法(1)拉格朗日插值法:拉格朗日插值法是一种基于多项式的插值方法。
通过构造一个多项式函数,使其经过已知数据点,从而利用该多项式函数来逼近未知函数。
(2)牛顿插值法:牛顿插值法也是一种基于多项式的插值方法。
它通过构造一个递推公式,逐步逼近未知函数。
(3)样条插值法:样条插值法是一种相对较为复杂的插值方法。
它将函数划分为多个小区间,并在每个区间上构造一个低次多项式,利用这些多项式来逼近真实函数。
3. 插值法的应用实例插值法在工程和科学领域有广泛应用。
例如,在图像处理中,插值法常用于图像的放大和缩小。
在地理信息系统中,插值法可用于构建高程模型。
此外,插值法还在金融领域中用于利率曲线的估计等。
二、逼近法1. 逼近法的基本原理逼近法是指通过选择一个适当的函数类,使其与所需逼近的函数相似,从而用该函数类逼近未知函数。
逼近方法的基本思想是通过一些已知的函数,找到一个最接近未知函数的函数。
2. 常用逼近方法(1)最小二乘逼近法:最小二乘逼近法是一种通过最小化残差平方和来逼近未知函数的方法。
它通过构造一个最优解,选择一个函数类,使其与未知函数的残差平方和最小。
(2)离散逼近法:离散逼近法是一种基于离散数值数据的逼近方法。
它通过选择一个函数类,在已知数据点上的函数值与未知函数在这些数据点上的函数值之间的差异最小。
3. 逼近法的应用实例逼近法在信号处理、数据拟合和函数逼近等领域有广泛应用。
例如,在信号处理中,逼近法可用于去除噪声信号。
第4章-多项式插值方法

f [ x, x0 ,L , xn1] f [ x0 , x1,L , xn ]
f [ x, x0 , x1,L , xn ]( x xn ).
22
4.3.2 Newton均差插值多项式 只要把后一式代入前一式,就得到
f ( x) f ( x0 ) f [x0 , x1]( x x0 ) f [ x0 , x1, x2 ]( x x0 )( x x1) L
ln1.46 (1.46 1.5)(1.46 1.6) ln1.4 (1.46 1.4)(1.46 1.6) ln1.5
(1.4 1.5)(1.4 1.6)
(1.5 1.4)(1.5 1.6)
(1.46 1.4)(1.46 1.5) ln1.6 0.378402 (1.6 1.4)(1.6 1.5)
f (n1) ( )
(n 1)!
n1
(
x
),
x
[a,
b]
其中 ( x) (a, b).
注 (1)余项公式主要用于理论分析。实际使用时,代 之以误差估计式
Rn ( x)
Mn1 (n 1)!
n1( x)
11
(2)插值节点的选取应尽量靠近插值点,以使n1(x)
尽可能小,以减小误差。
若 f ( x) =xk (k n), 那么f (n1)( x) 0,
x( x
1)
13
L2( x) f ( x0 )l0( x) f ( x1)l1( x) f ( x2 )l2( x) 1.25l0( x) 0.75l1( x) 1.25l2( x)
5
5
x( x 1) 0.75( x 1)( x 1) x( x 1)
8
8
3 1 x2 42
《计算方法》第四章 插值方法

Ln ( x) f ( xk ) l k ( x)
k 0
n
n
其中,
l k ( x)
j 0 j k
x xj x k x j (k 0,1,...n) .
20
构造插值多项式的方法:
(1) (2) 先求插值基函数. 构造插值多项式.
以下的问题:如何分析插值的余项?
21
例题 已知连续函数 f (x) 的函数表如下: x f (x) -1 0 1 2 -2 -2 1 2
Return
13
§4.2 拉格朗日多项式 /* Lagrange Polynomial */
1. 构造线性插值基函数的方法:
n=1 已知 x0 , x1 ; y0 , y1 ,求 L1(x) = a0 + a1 x 使得
L1 ( x0 ) y0 , L1 ( x1 ) y1
可见 L1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
由 l k ( xk ) 1, 得:
1 A ( xk x0 ) ( xk xk 1 ) ( xk xk 1 ) ( xk xn )
l k ( x)
k = 0, 1 ,⋯, n .
( x x0 )( x xk 1 ) ( x xk 1 )( x xn ) , ( x k x0 )( xk xk 1 ) ( xk xk 1 )( xk xn )
18
一般情形
希望找到 li (x),i = 0, …, n 使得 li (xj) = ij ;然后令
Ln ( x ) f ( x k ) l k ( x ),则显然有 Pn(xi) = yi 。
k 0 n
Lagrange插值法.ppt

第1列是病人编号,第2列是4种疗法的代码:
1 = 600mg zidovudine(齐多夫定) 与400mg
didanosine(去羟肌苷)按月轮换使用;
2 = 600mg zidovudine 加2.25mg zalcitabine(双脱
氧胞苷 );
3 = 600mg zidovudine 加400mg didanosine;
4 = 600mg zidovudine 加400mg didanosine 加
400mg nevirapine(奈韦拉平 )。
第3列是病人年龄,第4列是测试CD4的时刻(周),第5列是
测得的CD4,取值log(CD4+1).
ID 疗法 年龄
时间 Log(CD4 count+1)
1 2 36.4271 0
第四章 插值与拟合
1/46
引例及问题综述
在生产和实验中,函数f (x)无表达式, 只知道f(x) 在一些给定点的函数值(或其导数值) ,或者其表达式 复杂不便于计算,此时我们希望建立一个简单而又便 于计算的函数(x),使其近似的代替f(x).
求近似函数(x)的方法一般分为两类: 一类是插值, 另一类是拟合.
CD40 0
第一组
20
40
时刻(周)
第二组
CD4(/mm3)
400 300 200 100
0 0
20
40
时刻(周)
计算方法四①
CD4浓度(/mm3)
60
400 300 200 100
0 0
60
8/46
第三组
20
40
60
时刻(周)
CD4/HIV
CD4/HIV
指数函数与对数函数的函数逼近与插值理论

指数函数与对数函数的函数逼近与插值理论指数函数与对数函数是数学中常见的两类基本函数。
它们在数学建模、数据拟合和函数逼近等领域中扮演着重要的角色。
本文将探讨指数函数与对数函数的函数逼近与插值理论。
一、指数函数的函数逼近与插值指数函数可表示为f(x) = a^x,其中a为常数,x为自变量。
指数函数具有单调递增的特点,且在x轴上存在一个水平渐近线。
要进行指数函数的逼近与插值,常用的方法之一是最小二乘逼近。
最小二乘逼近是通过最小化函数残差的平方和来确定逼近函数的系数。
对于指数函数的逼近,我们可以选择一组离散点(x1, y1), (x2,y2), …, (xn, yn),其中y = a^x。
然后,通过最小二乘法计算出使得残差平方和最小的a值,进而得到逼近的指数函数。
此外,我们还可以使用拉格朗日插值法进行指数函数的插值逼近。
拉格朗日插值法是通过构造满足离散点上函数值和导数连续的多项式来逼近原函数。
在指数函数的插值逼近中,我们可以根据离散点构造拉格朗日多项式,从而得到插值逼近的指数函数。
二、对数函数的函数逼近与插值对数函数可表示为f(x) = loga(x),其中a为常数,x为自变量。
对数函数具有单调递增的特点,且在x轴上存在一个垂直渐近线。
与指数函数类似,对于对数函数的逼近与插值,我们同样可以采用最小二乘逼近法和拉格朗日插值法。
在最小二乘逼近中,我们可以选择一组离散点(x1, y1), (x2, y2), …, (xn, yn),其中y = loga(x)。
通过最小二乘法计算出使得残差平方和最小的a值,从而得到对数函数的逼近。
对于对数函数的插值逼近,我们可以使用拉格朗日插值法。
根据离散点构造拉格朗日多项式,从而得到插值逼近的对数函数。
三、函数逼近与插值的应用指数函数与对数函数的函数逼近与插值在实际应用中具有广泛的应用。
以下是一些典型的应用场景:1. 数据拟合:在某些实验或调查中,得到的数据可能符合指数函数或对数函数的规律。
函数逼近的插值法

分段三次Hermite插值
三次Hermite插值 x [x j1, x j ]时
H3 (x) j1(x) y j1 j (x) y j j1(x) f j1 j (x) f j
令
A1
j 1 (u )
(1
2
u
x j1 hj
u )(
xj hj
M
n1
2M n
6
f
[ xn1 ,
xn ,
xn ]
三次样条插值
第二类边界条件 s'' (x0 ) f '' (x0 ) M 0 , s'' (xn ) f '' (xn ) M n 同理可得
i
2M1 M i1
1M
2M i
2 6 f [x0 , x1, x2 ]
三次多项式; (3) 在开区间(a,b)上s(x)有连续的二阶导数,
则称s( x)为区间[a, b]对应于划分的三次样条函数。
三次样条插值
设三次样条函数s(x)在每个子区间[x j1, x j ]上有表达式
s(x) s j (x) a j x3 bj x2 c j x d j x (x j1, x j ), j 1,2...n
算法: 1.输入x j , f j , f j (j 0,1,...,n); 2.计算插值
(1)输入插值点u;
(2)对于j 1,2,...,n做
如果u x j则计算A1, A2 , B1, B2; v A1 f j1 A2 f j B1 f j1 B2 f j; 3.输出u, v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三次样条插值
周期函数边界条件下的三弯方程 2M 1 + λ1M 2 + 1M n = f [ x0 , x1 , x2 ] i M i 1 + 2 M i + λi M i +1 = 6 f [ xi 1 , xi , xi +1 ] λ M + M + 2 M = 6 f [ x , x , x ] n n 1 n n 1 n n +1 n 1 i = 2,3,..., n 1
三次样条插值
对于待定系数a j , b j , c j .d j j = 1,2,...n, 即4n个未知系数,
而插值条件为4n 2个,还缺两个,因此须给出两个 条件称为边界条件,有以下三类: 第一类 已知两端点的一阶导数
s′( x0 ) = f ′( x0 ) = m0 s′( xn ) = f ′( xn ) = mn
三次样条插值
用三弯矩阵构造三次样条插值函数 令s′′( xi ) = M i (i = 0,1,2,...n).因为s( x)在[ xi , xi +1 ]上 是三次多项式,所以s′′( x)在[ xi , xi +1 ]上是一次多 项式,故有 M i +1 M i s′′′( x) = xi +1 xi x ∈ [ xi , xi +! ]
两边同除 xi +1 xi 1 = ( xi +1 xi + xi xi 1 ) = hi +1 + hi hi hi 得 M i 1 + 2M i + M i +1 = 6 f [ xi 1 , xi , xi +1 ] hi +1 + hi hi +1 + hi 即得
i M i 1 + 2M i + λi M i +1 = 6 f [ xi 1 , xi , xi +1 ] i = 1,2,...n 1
三次样条插值
同理在[ xi 1 , xi ]上讨论得 s′( xi ) = yi yi 1 2 1 + ( M i + M i 1 )( xi xi 1 ) xi xi 1 6 6 ( 2)
因为s′( x)连续,所以( )(2)即 1 = yi +1 yi 1 2 yi yi 1 2 1 ( M i +1 + M i )( xi +1 xi ) = + ( M i + M i 1 )( xi xi 1 ) xi +1 xi 6 6 xi xi 1 6 6 记hi = xi xi 1 hi i = hi +1 + hi hi +1 λi = 1 i = hi +1 + hi
例题
所以得 H 3 ( x) = 2(2 x 1)( x 2) 2 + 3(2 x 3)( x 1) 2 = ( x 1)( x 2) 2 ( x 2)( x 1) 2 = 3 x 3 + 8 x 2 9 x + 5
4.4.2 三次样条插值
定义 设函数f ( x)是区间[a, b]上的二次连续可微函数, 在区间[a,b]上给出一个划分 :a = x0 < x1 < ... < xn 1 < xn = b 如果函数s ( x)满足条件 ( )( x j ) = f ( x j ) 1 s 三次多项式; (3) 在开区间(a, b)上s ( x)有连续的二阶导数, 则称s ( x)为区间[a, b]对应于划分的三次样条函数. ( j = 0,1,2,...n);
u xj hj
分段三次Hermite插值算法
则 v = A1 y j 1 + A2 y j + B1 f j′1 + B2 f j′
算法: 1.输入x j , f j , f j′ (j = 0,1,..., n); 2.计算插值 (1)输入插值点u; (2)对于j = 1,2,..., n做 如果u ≤ x j 则计算A1 , A2 , B1 , B2 ; v = A1 f j 1 + A2 f j + B1 f j′1 + B2 f j′; 3.输出u , v.
三次样条插值
第一类边界条件:s′( x0 ) = f ′( x0 ) (1) 式中令i = 0得 y1 y0 1 2 s′( x0 ) = ( M 1 + M 0 )( x1 x0 ) x1 x0 6 6 既有 2 M 0 + M 1 = 6 f [ x0 , x0 , x1 ] s′( xn ) = f ′( xn )
分段线性插值
10 20 v = y j 1 + (u x j 1 )( y j y j 1 ) /( x j x j 1 ) 输出u , v
分段插值函数 I ( x) x ∈ ( x , x ) 0 1 1 I ( x) x ∈ ( x , x ) 1 2 I ( x) = 2 ...... I ( x) x ∈ ( x , x ) n 1 n n
1≤ j ≤ n
分段三次Hermite插值 上述分段线性插值曲线是折线,光滑性 差,如果交通工具用这样的外形,则势 必加大摩擦系数,增加阻力,因此用 hermite分段插值更好.
分段三次Hermite插值
三次Hermite插值 x ∈ [ x j 1 , x j ]时 H 3 ( x) = α j 1 ( x) y j 1 + α j ( x) y j + β j 1 ( x) f j′1 + β j ( x) f j′ 令 u x j 1 u x j 2 A1 = α j 1 (u ) = (1 + 2 )( ) hj hj u x j u x j 1 2 )( ) A2 = α j (u ) = (1 + 2 hj hj B1 = β j 1 (u ) = (u x j 1 )( B2 = β j (u ) = (u x j )( u xj hj )2 )2
三次样条插值
同理(2)式中令i = n得 M n 1 + 2M n = 6 f [ xn 1 , xn , xn ] 即有 2M 0 + M 1 = 6 f [ x0 , x0 , x1 ] ) i M i 1 + 2M i + λi M i +1 = 6 f [ xi 1 , xi , xi +1 ] (i = 1,2,..., n 1 M + 2M = 6 f [ x , x , x ] n n 1 n n n 1
4.4 三次样条插值 前面我们根据区间[a,b]上给出的节点做 插值多项式Ln(x)近似表示f (x).一般总 以为Ln(x)的次数越高,逼近f (x)的精度 越好,但实际并非如此,次数越高,计 算量越大,也不一定收敛.因此高次插 值一般要慎用,实际上较多采用分段低 次插值.
4.4.1 分段插值
已知(x j , y j) j = 0,1,..., n, 判断x ∈ [ x j 1 , x j ] , 则f ( x)用[ x j 1 , x j ]上的现性插值函数表示. 计算机上实现 若u ≤ x2 , 取j = 2 u ← x,,若u < x1取j = 1,
三次样条插值
则上式为 1 1 f [ xi +1 , xi ] ( M i +1 + 2M i )hi +1 = f [ xi , xi 1 ] + (2M i + M i 1 )hi 6 6 即 (2 M i + M i 1 )hi + ( M i +1 + 2 M i )hi +1 = 6( f [ xi +1 , xi ] f [ xi , xi 1 ]) 也就是 hi M i 1 + 2(hi + hi +1 ) M i + hi +1M i +1 = 6( f [ xi +1 , xi ] f [ xi , xi 1 ])
三次样条插值
第二类: .已知两端点二阶导数 s′′( x0 ) = f ′′( x0 ) = M 0 s′′( xn ) = f ′′( xn ) = M n 当M 0 = M n = 0时为自然边界条件 第三类:周期边界条件 s ( x0 ) = s ( xn ) s′( x0 + 0) = s′( x0 0) s′′( xn = 0) = s′′( xn 0)
例题
例 设 f (1) = 2,f (2) = 3,f ′(1) = 1,f ′(2) = 1, 求满足条件的Hermite插值多项式. 解:x0 = 1, x1 = 2, h = 2 1 = 1 则
A1 = (1 + 2( x 1))( x 2) 2 = (2 x 1)( x 2) 2 A2 = (1 + 2( x 2))( x 1) 2 = (2 x 3)( x 1) 2 B1 = ( x 1)( x 2) 2 B2 = ( x 2)( x 1) 2
其中a j , b j , c j .d j为待定常数,插值条件为: ( )s ( x j ) = f ( x j ) (j = 0,1,..., n); 1 ( 2) (n 1)内节点处连续及光滑性条件: s ( x j 0) = s ( x j + 0) s′( x j 0) = s′( x j + 0) j = 1,2,..., n 1 s′′( x j 0) = s′′( x j + 0)
即x ∈ [ x0 , x1 ], u ≤ x0 , 也选j = 1,则外插) (若
分段线性插值
一般的,x j 1 ≤ u ≤ x j , 则线性插值函数为 u = y j 1 + (u x j 1 )( y j y j 1 ) /( x j x j 1 ) 这是因为 y= x xj x j 1 x j y j 1 + x x j 1 x j x j 1 yj