初中数学人教版八年级上册13.4 课题学习 最短路径问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′.
A
·
C′ C
B
·
l
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
C,都保持CB 与CB′的长度
相等?
B
·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问2 你能利用轴对称的
A
·
有关知识,找到上问中符合条
件的点B′吗?
B
·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
点.
(2)求直线同侧的两点与直线上一点所连线段的和最 小的问题,只要找到其中一个点关于这条直线的对称 点,连接对称点与另一个点,则与该直线的交点即为 所求.
如图所示,点A,B分别是直线l同侧的两个点,在l上 找一个点C,使CA+CB最短,这时先作点B关于直线l 的对称点B',则点C是直线l与AB'的交点.
P
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
探索新知
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
八年级 上册
13.4 课题学习 最短路径问题
• 如图所示:从A地到B地有三条路可供 选择,你会选择哪条路距离最短?你
的理由是什么?
C A
E D
B
两点之间线段最短F
如图,要在燃气管道L上修建一个泵站,分别 向A、B两镇供气,泵站修在管道的什么地 方,可使所用的输气管线最短? 所以泵站建在点P可使输气管线最短
你能将这个问题抽象为数学问题吗?
B A
l
探索新知
追问1 这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
·B A·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
·
C′ C
B
·
l
B′
探索新知
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
B′
运用新知
练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径.
C
山Q
河岸
P
A
大桥
B
运用新知
基本思路:
由于两点之间线段最短,所以首先可连接PQ,线
段PQ 为旅游船最短路径中的必经线路.将河岸抽象为
一条直线BC,这样问题就转化为“点P,Q 在直线BC
的同侧,如何在BC上找到 一点R,使PR与QR 的和最 小”.
C 山Q
河岸
P
A
大桥
B
1.最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最 小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点A,B分别是直线l异侧的两个点,在l上找 一个点C,使CA+CB最短,这时点C是直线l与AB的交
作法: (1)作点B 关于直线l 的对称
点B′; (2)连接AB′,与直线l 相交
于点C. 则点C 即为所求.
B
·
A
·
l C
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
B
·
A
·
l C
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不
(二)变式训练 如图,小河边有两个村庄A,B,要在河边建一自来水厂 向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建 厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地 方?
(三)综合训练 茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a 所示两直排(图中的AO,BO),AO桌面上摆满了橘子 ,OB桌面上摆满了糖果,站在C处的学生小明先拿橘 子再拿糖果,然后到D处座位上,请你帮助他设计一条 行走路线,使其所走的总路程最短?
A
·
C′ C
B
·
l
B′
探索新知
追问1 证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问1 对于问题一侧B′
·
处,满足直线l 上的任意一点
相关文档
最新文档