成都市七中育才学校七年级上学期期末数学试题及答案
成都市七中育才学校七年级上学期期末数学试题及答案
成都市七中育才学校七年级上学期期末数学试题及答案一、选择题1.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.2 0 2.若关于 x 的方程2k 3x 4 与 x B .10的解相同,则k 的值为( ) 10D .5A . C . 5x1 2x 1 3.对于方程 ,去分母后得到的方程是( ) 3 21 1 2x x 6 3(1 2x) 2x 3 3(1 2x)2x 6 3(1 2x)D .A . xB .C . 4.某厂准备加工 500 个零件,在加工了 100 个零件后,引进了新机器,使得每天的工作 效率是原来的两倍,结果共用了 6 天完成了任务,若设该厂原来每天加工 x 个零件,则由 题意可列出方程()100 5006 6 6 6 A .B .C .D .2x 100 500x x 2x 100 4002x 100 400x x2x5.互不相等的三个有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C 。
若:| a b | | b c || a c |,则点 B ()A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能6.已知单项式 2x y 与 3x y 的和是单项式,则 m ﹣n 的值是() 3 1+2m n +1 3 A .3B .﹣3 )C .1D .﹣1 7.计算:2.5°=( A .15′ B .25′C .150′D .250′M 5,3() 8.点在第 象限.A .第一象限B .第二象限C .第三象限D .第四象限9.若 a<b,则下列式子一定成立的是( ) a bc cA .a+c>b+cB .a -c<b -cC .ac<bcD .10.某中学进行义务劳动,去甲处劳动的有30 人,去乙处劳动的有 24 人,从乙处调一部 分人到甲处,使甲处人数是乙处人数的 2 倍,若设应从乙处调 x 人到甲处,则所列方程是 ()A .2(30+x )=24﹣x C .30﹣x =2(24+x )2x 1 B .2(30﹣x )=24+x D .30+x =2(24﹣x ) x 21 11.将方程 去分母,得( )3 44(2x 1) 3(x2) 4(2x 1) 12(x 2) A . C . B . (2x 1) 6 3(x 2) 4(2x 1) 12 3(x 2)D . 12.某商店出售两件衣服,每件卖了 200 元,其中一件赚了 25%,而另一件赔了 20%.那么商店在这次交易中( ) A .亏了 10 元钱B .赚了 10 钱C .赚了 20 元钱D .亏了 20 元钱二、填空题13.若代数式 mx +5y 2﹣2x2+3 的值与字母 x 的取值无关,则 m 的值是__.2 x3 2020x n 14.已知关于 x 的一元一次方程①与关于 y 的一元一次方程 20203y 23 2020(3y 2) n ②,若方程①的解为 x =2020,那么方程②的解为_____.202015.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放 在一个底面为长方形(一边长为 4)的盒子底部(如图 2、图 3),盒子底面未被卡片覆盖 的部分用阴影表示.已知阴影部分均为长方形,且图2 与图 3 阴影部分周长之比为 5:6, 则盒子底部长方形的面积为_____.16. 已知线段 AB =8 cm ,在直线 AB 上画线段 BC ,使得 BC =6 cm ,则线段 AC =________cm.1 2 417.﹣30×( + )=_____.2 3 518.对于有理数 a ,b ,规定一种运算:a b a a b .如 12 1 121,则计算2 2 532=___.19.将 520000 用科学记数法表示为_____. 20.化简:2x+1﹣(x+1)=_____.21.计算 7a b﹣5ba =_____. 2 2 x a 22.已知二元一次方程 2x -3y=5 的一组解为,则 2a -3b+3=______.y b23.钟表显示 10 点 30 分时,时针与分针的夹角为________. 24.通常山的高度每升高100米,气温下降0.6C,如地面气温是4 ,那么高度是C2400米高的山上的气温是____________________.三、压轴题25.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:个;边长为1的正三角形,第一层有1个,第二层有3个,共有边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三个;边长为角形,第一层有1个,第二层有3个,第三层有5个,共有2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为 1 的正三角形和边长为 2 的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为 25 的正三角形的三条边分别 25 等分,连接各边对应的等分点,则该 三角形中边长为 1 的正三角形有______个和边长为 2 的正三角形有______个. 29.(1)探究:哪些特殊的角可以用一副三角板画出?在①135,②120,③75,④25中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线 EF ,然后将一副三角板拼接在一起,其中45 角(A O B)的顶点与60 角 ( 、 CO D )的顶点互相重合,且边O A O C 都在直线 EF 上.固定三角板C O D不动,将三角板 A O B 绕点O 按顺时针方向旋转一个角度 ,当边OB 与射线 止.第一次重合时停O F ①当OB 平分EO D 时,求旋转角度 ;②是否存在BOC 2AO D?若存在,求旋转角度 ;若不存在,请说明理由.30.如图,己知数轴上点 A 表示的数为 8,B 是数轴上一点,且 AB=22.动点 P 从点 A 出 发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点 B 表示的数____,点 P 表示的数____(用含 t 的代数式表示); (2)若动点 Q 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同 时出发,问点 P 运动多少秒时追上点 Q?(列一元一次方程解应用题)(3)若动点 Q 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同 时出发,问 秒时 P 、Q 之间的距离恰好等于 2(直接写出答案)(4)思考在点 P 的运动过程中,若 M 为 AP 的中点,N 为 PB 的中点.线段 MN 的长度是否发 生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.31.如图,已知数轴上点 A 表示的数为 8,B 是数轴上位于点 A 左侧一点,且 AB=20,动 点 P 从 A 点出发,以每秒 5 个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t > 0)秒.(1)写出数轴上点 B 表示的数______;点 P 表示的数______(用含 t 的代数式表示) (2)动点 Q 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同 时出发,问多少秒时 P 、Q 之间的距离恰好等于 2?(3)动点 Q 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向左匀速到家动,若点P 、Q同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
成都七中育才学校2015-2016学年七年级上期末数学试卷含解析
2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题1. 3的相反数是( )A .3B .C .﹣3D .﹣2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是( )A .圆柱体B .正方体C .长方体D .球体3.下列调查方式合适的是( )A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为( )平方米.A .126×104B .1.26×104C .1.26×106D .1.26×1075.下列计算正确的是( )A .2x+3y=5xyB .5a 2﹣3a 2=2C .(﹣7)÷=﹣7D .(﹣2)﹣(﹣3)=1 6.代数式3x a y b 与x 2y 是同类项,则a ﹣b 的值为( )A .1B .0C .﹣2D .27.有理数a 、b 在数轴上的位置如图所示,则下列结论正确的是( )A .B .a ﹣b >0C .ab >0D .a+b <08.用代数式表示“a 与b 两数的差的平方”,正确的是( )A .a 2﹣bB .a ﹣b 2C .a 2﹣b 2D .(a ﹣b )29.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.二、填空题11.单项式4x2y的系数是.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是.13.|a﹣1|+|b﹣2|=0,则a+b= .14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是.15.下列说法正确的是(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为人,m= ,n= ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题1.3的相反数是()A.3 B.C.﹣3 D.﹣【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:3的相反数是﹣3,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是()A.圆柱体B.正方体C.长方体D.球体【考点】由三视图判断几何体.【分析】根据三视图的知识,主视图以及左视图都是矩形,俯视图为一个圆,故易判断该几何体为圆柱.【解答】解:根据主视图和左视图是矩形,得出该物体的形状是柱体,根据俯视图是圆,得出该物体是圆柱体.故选:A.【点评】本题考查由三视图确定几何体的形状,同时考查学生空间想象能力,从主视图、左视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状.3.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;D、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为()平方米.A.126×104B.1.26×104C.1.26×106D.1.26×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 260 000=1.26×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列计算正确的是()A.2x+3y=5xy B.5a2﹣3a2=2 C.(﹣7)÷=﹣7 D.(﹣2)﹣(﹣3)=1 【考点】合并同类项;有理数的混合运算.【分析】直接利用合并同类项法则以及有理数混合运算法则分别分析得出答案.【解答】解:A、2x+3y,无法计算,故此选项错误;B、5a2﹣3a2=2a2,故此选项错误;C、(﹣7)÷=﹣,故此选项错误;D、(﹣2)﹣(﹣3)=1,正确.故选:D.【点评】此题主要考查了合并同类项以及有理数混合运算,正确掌握运算法则是解题关键.6.代数式3x a y b与x2y是同类项,则a﹣b的值为()A.1 B.0 C.﹣2 D.2【考点】同类项.【专题】计算题;整式.【分析】利用同类项定义求出a与b的值,即可求出a﹣b的值.【解答】解:∵3x a y b与x2y是同类项,∴a=2,b=1,则a﹣b=2﹣1=1.故选A【点评】此题考查了同类项,熟练掌握同类项定义是解本题的关键.7.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.B.a﹣b>0 C.ab>0 D.a+b<0【考点】数轴.【分析】根据数轴可以判断a、b的正负和它们的绝对值的大小,从而可以解答本题.【解答】解:由数轴可得,a<0<b且|a|>|b|,∴<0,故选项A错误,a﹣b<0,故选项B错误,ab<0,故选项C错误,a+b<0,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点.8.用代数式表示“a与b两数的差的平方”,正确的是()A.a2﹣b B.a﹣b2C.a2﹣b2D.(a﹣b)2【考点】列代数式.【分析】a与b两数的差的平方则是先分别计算差再计算乘方.【解答】解:a与b两数的差的平方表示为(a﹣b)2;故选D【点评】本题考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.9.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可以得到方程中x的次数应该为1,从而可以解答本题.【解答】解:∵方程2x m+1=0是一元一次方程,∴m=1,故选B.【点评】本题考查一元一次方程的定义,解题的关键是明确一元一次方程中未知数的次数是一次.10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.【考点】规律型:数字的变化类.【分析】仔细观察给出的数字,找出其中存在的规律从而解题即可.【解答】解:∵1=;;;∴第n个数是:故选B.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.二、填空题11.单项式4x2y的系数是 4 .【考点】单项式.【分析】根据单项式的概念即可求出答案.【解答】解:故答案为:4;【点评】本题考查单项式的概念,属于基础题型.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是0 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程求得a的值.【解答】解:把x=2代入方程得1﹣1=a,解得:a=0.故答案是:0.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.13.|a﹣1|+|b﹣2|=0,则a+b= 3 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出a、b的值,再将它们代代数式中求解即可.【解答】解:根据题意得:,解得:,则a+b=1+2=3.故答案是:3.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是30°.【考点】角平分线的定义.【分析】根据邻补角定义可得∠BOC的度数,再根据角平分线定义可得∠AOC的度数.【解答】解:∵∠BOD=120°,∴∠BOC=180°﹣120°=60°,∵OA平分∠BOC,∴∠AOC=∠BOC=60°=30°,故答案为:30°.【点评】此题主要考查了角平分线,关键是掌握角平分线把角分成相等的两部分.15.下列说法正确的是①②③④(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.【考点】有理数;绝对值.【专题】常规题型.【分析】①单独的一个数和字母是单项式,所以﹣3.1是整式;②可通过正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0做出判断;③0特殊的有理数,它有很多特殊的性质,它是数轴上正负数的分界点;④是有理数的定义.【解答】解:﹣3.1是单项式,所以﹣3.1是负数,是分数也是整式故①正确;当a为实数时,|a|≥a,所以一个数的绝对值不小于它本身,故②正确;0是特殊的有理数,不是正数也不负数,故③正确;整数和分数统称有理数,故④正确.故答案为:①②③④【点评】本题考查了数的分类、绝对值的性质、0及有理数的定义.0是特殊的有理数,它不是正数与不是负数,它的绝对值和相反数都是它本身,它没有倒数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.【考点】解一元一次方程;有理数的混合运算.【专题】计算题;实数;一次方程(组)及应用.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及乘法运算,再计算加减运算即可得到结果;(3)方程去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=1+3+2=6;(2)原式=﹣1+3﹣2=0;(3)去括号得:2x﹣2+x=4,移项合并得:3x=6,解得:x=2;(4)去分母得:2x+2=x﹣1+6,移项合并得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.【考点】整式的混合运算—化简求值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再代入求值可得.【解答】解:原式=2ab﹣(a2b3﹣a2b4)=2ab﹣a2b3+a2b4,当a=﹣1,b=2时,原式=2×(﹣1)×2﹣(﹣1)2×23+(﹣1)2×24=﹣4﹣8+16=4.【点评】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?【考点】两点间的距离;一元一次方程的应用.【分析】(1)先根据中点的定义,求得AB长,再根据BC的长求得AC长即可;(2)成本价×(1+20%)×90%=270元,根据此等量关系列方程即可.【解答】解:(1)∵点D是线段AB的中点,BD=4,∴AB=2BD=8,又∵BC=2,∴AC=AB+BC=8+2=10,故线段AC的长度为10;(2)设这种商品的成本价为x元,依题意得:x(1+20%)×90%=270,解得:x=250.答:这种商品的成本价是250元.【点评】本题主要考查了两点间的距离以及一元一次方程的应用,解题关键是要读懂题目的意思,理清线段之间的和差关系;根据题目给出的条件,找出合适的等量关系,列出方程求解.19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为20 人,m= 15% ,n= 35% ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【考点】条形统计图;统计表;扇形统计图.【分析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【解答】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为:20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?【考点】一元一次方程的应用;列代数式.【分析】(1)根据题意可以求得某户某月用了6吨水,应付的水费;(2)根据题意可以求得某户某月用了x吨水(x>7),应付的水费;(3)根据题意可以判断出32元水费在哪个用水范围内,从而可以解答本题.【解答】解:(1)由题意可得,某户某月用了6吨水,应付水费为:4×2+(6﹣4)×3=14(元),即某户某月用了6吨水,应付14元的水费;(2)由题意可得,某户某月用了x吨水(x>7),应付水费为:4×2+(7﹣4)×3+(x﹣7)×5=(5x﹣18)元,即某户某月用了x吨水(x>7),应付水费(5x﹣18)元;(3)当x=7时,收费为:4×2+(7﹣4)×3=17,∵17<32,∴32=5x﹣18,解得,x=10即某户某月付了水费32元,用水10吨.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出所求问需要的条件.。
七年级上册成都市七中育才学校数学期末试卷测试卷 (word版,含解析)
七年级上册成都市七中育才学校数学期末试卷测试卷(word版,含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.3.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)不是;是(2)0(3)5或10【解析】【解答】解:(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;⑵如图2,4﹣(﹣2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,点P走完所用的时间为:60÷4=15(秒),当PB=2PA时,即4t=2(60﹣4t),t=10(秒),当PA=2PB时,即2×4t=60﹣4t,t=5(秒),∴当经过5秒或10秒时,P、A和B中恰有一个点为其余两点的好点;故答案:(1)不是,是;(2)0;(3)5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B 的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0;(3)根据题意得:PB=4t,AB=40+20=60,PA=60﹣4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.4.已知:,OB、OC、OM、ON是内的射线.(1)如图1,若OM平分,ON平分当OB绕点O在内旋转时,则的大小为________;(2)如图2,若,OM平分,ON平分当绕点O在内旋转时,求的大小;(3)在的条件下,若,当在内绕着点O以秒的速度逆时针旋转t秒时,和中的一个角的度数恰好是另一个角的度数的两倍,求t的值【答案】(1)78°(2)解:∵OM平分∠AOC,ON平分∠BOD,∴∠COM ∠AOC,∠BON∠BOD,∴∠MON=∠BON+∠COM﹣∠BOC ∠AOC ∠BOD﹣24°(∠AOC+∠BOD)﹣24°,∴∠MON (∠AOD+∠BOC)﹣24° 180°﹣24°=66°.(3)解:∵∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒,OM平分∠AOC,ON平分∠BOD,∴∠AOC=54°+2t,∠AOM=27+t,∠BOD=126﹣2t,∠DON=63﹣t.若∠AOM=2∠DON时,即27+t=2(63﹣t),∴t=33;若2∠AOM=∠DON,即2(27+t)=63﹣t,∴t=3.综上所述:当t=3或t=33时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍.【解析】【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM ∠AOB,∠BON ∠BON.∵∠MON=∠BOM+∠BON ∠AOD,∴∠MON=78°.故答案为:78°.【分析】(1)由角平分线的定义可得∠BOM=∠AOB,∠BON=∠BOD,然后根据∠MON=∠BOM+∠BON=∠AOD即可求解;(2)由角平分线的定义可得∠COM=∠AOC,∠BON=∠BOD,∠MON=∠BON+∠COM-∠BOC=∠AOC+∠BOD﹣24°=(∠AOC+∠BOD)﹣24°=(∠AOD+∠BOC)﹣24°可求解;(3)由题意可得∠AOC=54°+2t,∠AOM=27+t,∠BOD=126−2t,∠DON=63−t,分∠AOM=2∠DON,∠DON=2∠AOM两种情况讨论,列方程即可求解.5.如图,直线AB、CD相交于点O,已知,OE把分成两个角,且::3(1)求的度数;(2)过点O作射线,求的度数.【答案】(1)解:,,::3,;(2)解:,,,OF在的内部时,,,,OF在的内部时,,,,综上所述或【解析】【分析】(1)根据对顶角相等得出,然后根据::3 即可算出∠BOE的度数;(2)根据角的和差,由算出∠DOE的度数,根据垂直的定义得出∠EOF=90°;当OF在的内部时,根据,算出答案;OF在的内部时,根据,算出但,综上所述即可得出答案。
2021-2022学年四川省成都七中育才学校七年级(上)期末数学试卷(解析版)
2021-2022学年四川省成都七中育才学校七年级第一学期期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2的相反数是()A.﹣B.C.﹣2D.22.如图,由5个完全一样的小正方体组成的几何体的左视图是()A.B.C.D.3.2021年成都市常住人口约20900000人,这个数据用科学记数法表示为()A.2.09×106B.20.9×106C.2.09×107D.2.09×1084.如图,点B为线段AC上一点,则图中线段的条数为()A.1条B.2条C.3条D.4条5.下列各组代数式中,不是同类项的是()A.3x与﹣3x2B.2和﹣8C.4x3y2与2y2x3D.2ab与6.为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是()A.此次调查的总体是600名学生B.此次调查属于全面调查C.此次调查的个体是被抽取的学生D.样本容量是507.已知x=2是关于x的一元一次方程mx﹣2=m+3的解,则m的值是()A.2B.3C.4D.58.下列说法正确的是()A.直线AB=2cmB.射线AB=3cmC.直线AB与直线BA是同一条直线D.射线AB与射线BA是同一条射线9.如果多项式A减去﹣2x+1后得3x2+7x﹣2,则A为()A.3x2+5x﹣1B.3x2﹣9x﹣3C.3x2﹣5x﹣1D.3x2+9x+310.如图,用菱形纸片按照如下规律拼成下列图案,若第n个图案中有2021张纸片,则n 的值为()A.503B.504C.505D.506二.填空题(共4小题,满分16分,每小题4分)11.单项式x2y3的系数为,次数为.12.已知数轴上A、B两点间的距离为3,点A表示的数为1,则点B表示的数为.13.如图,OC平分∠AOB,若∠BOC=22°,则∠AOB=.14.若关于x的方程x|m|﹣1+3=0是一元一次方程,则m=.三.解答题(共6小题,满分54分)15.计算:(1)15﹣(﹣4)+2﹣52;(2).解方程:(1)2(x+1)=﹣3+3x;(2).16.先化简,后求值:2ab﹣(a2﹣b+ab)+3(ab﹣2b)+2a2,其中a=1,b=﹣1.17.如图:已知线段AB=16cm,点N在线段AB上,NB=3cm,M是AB的中点.(1)求线段MN的长度;(2)若在线段AB上有一点C,满足BC=10cm,求线段MC的长度.18.第31届世界大学生夏季运动会定于2022年6月26日至7月7日举办,为了了解成都市锦江区中学生对大运会的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,调查组绘制了如图两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)填空:这次被调查的同学共有人,其中“不太了解”的有人;(2)根据图中数据,求扇形统计图中类别为“不太了解”的学生数所对应的扇形圆心角度数;(3)我区七年级大约有20000名学生,请估计“理解”的学生有多少名?19.已知一个长方体合金底面长为80,宽为40,高为60.(1)现要锻压成新的长方体,其底面是边长为40的正方形,则新长方体的高为多少?(2)若将长方体合金锻压成圆柱体,其底面是直径为80的圆,则新圆柱体合金的高为多少?(π取3)20.2021年12月22日国家发展改革委印发了《成渝地区双城经济圈多层次轨道交通规划》,目标实现重庆、成都“双核”间1小时通达.在一条双轨铁路上迎面驶来一快一慢两列火车,快车长AB=40,慢车长CD=30.正在行驶途中的某一时刻,以两车之间的某点为原点,取水平向右为正方向画数轴,如图,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c.若快车AB以22个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以18个单位长度/秒的速度向左匀速继续行驶,且|a+60|与(c﹣70)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少个单位长度?(2)从此时刻开始算起,再行驶多少秒钟两列火车恰好满足AD=2BC?(3)此时在行驶过程中,快车的车尾B上有一位学生P,慢车的车尾D上也有一位学生Q.两位学生同时起身以1个单位长度/秒的速度向各自车头跑去,请问几秒之后两位学生的距离为4个单位长度?一.填空题(共5小题,满分20分,每小题4分)21.a、b所表示的有理数如图所示,则|2a﹣b|+2(1+a)=.22.把100分为两个数的和,使第一个数减1,与第二个数乘2的结果相等,则第一个数的值为.23.若a2+2ab=1,b2﹣2ab=2,则﹣a2﹣6ab+2b2=.24.一艘旅游船从A点出发沿北偏东55°方向航行,到达B景点后,进行了90°的转弯,然后沿着BC方向航行,则BC为方向.25.斐波那契数列,是由一串有数学美感的数字排列而成,因以兔子繁殖为例作引入,故又称为“兔子数列”.仿照“兔子数列”有如下问题:一般而言,兔子在出生两个月后,就有繁殖能力,假设一对兔子每个月能生出2对小兔子来,且兔子不会死亡.育才校园养了1对小兔子:一个月后,小兔子没有繁殖能力,所以还是1对;两个月后,兔子生下两对小兔子,所以是3对;三个月后,小兔子没有繁殖能力,老兔子生下2对小兔子,所以一共是5对;以此类推,八个月后,一共有对兔子.五、解答题(共3小题,满分0分)26.已知关于x的方程(a﹣2)x|a|﹣1+4b=0为一元一次方程,且该方程的解与关于x的方程的解相同.(1)求a、b的值;(2)在(1)的条件下,若关于y的方程|m﹣1|y+n=a+1+2by有无数解,求m,n的值.27.今年成都的天气比往年要寒冷许多,进入12月份以后人们对暖手宝热水袋的需求开始增加,某超市第一次共购进300件甲、乙两种品牌的暖手宝热水袋,全部出售后赚得2700元.已知甲品牌暖手宝的进价为22元/件,售价为29元/件,乙品牌暖手宝的进价为30元/件,售价为40元/件.(1)该超市第一次购进甲、乙两种暖手宝各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种暖手宝,其中乙品牌的件数不变;甲品牌按原价销售,乙品牌打九折销售.第二次两种暖手袋都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次购进甲品牌多少件?(3)该超市第三次进货时,厂家给出了如下优惠方案:甲品牌优惠方案一次性购买数量不超过100件的部分超过100件的部分折扣数九折八折乙品牌优惠方案购买总金额不超过3000元超过3000元但不超过5000元超过5000元返现金金额0元直接返现金200元先返购买总金额的5%,再返现金200元已知超市购进甲品牌共支付了3740元,购进乙品牌共支付了4930元.将第三次购进的甲、乙两种暖手宝全部卖完一共可获得多少利润?28.如图1,点D、O、A共线且∠COD=20°,∠BOC=80°,射线OM,ON分别平分∠AOB和∠BOD.如图2,将射线OD以每秒6°的速度绕点O顺时针旋转一周,同时将∠BOC以每秒4°的速度绕点O顺时针旋转,当射线OC与射线OA重合时,∠BOC停止运动.设射线OD的运动时间为t.(1)运动开始前,如图1,∠AOM=°,∠DON=°;(2)旋转过程中,当t为何值时,射线OB平分∠AON?(3)旋转过程中,是否存在某一时刻使得∠MON=35°?若存在,请求出t的值;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.﹣2的相反数是()A.﹣B.C.﹣2D.2【分析】依据相反数的定义求解即可.解:﹣2的相反数是2.故选:D.2.如图,由5个完全一样的小正方体组成的几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看,底层是一个小正方形,上层左边是一个小正方形,故选:B.3.2021年成都市常住人口约20900000人,这个数据用科学记数法表示为()A.2.09×106B.20.9×106C.2.09×107D.2.09×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:20900000=2.09×107.故选:C.4.如图,点B为线段AC上一点,则图中线段的条数为()A.1条B.2条C.3条D.4条【分析】根据线段的定义解答即可.解:图中有线段AB、AC、BC共3条,故选:C.5.下列各组代数式中,不是同类项的是()A.3x与﹣3x2B.2和﹣8C.4x3y2与2y2x3D.2ab与【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.解:A.所含字母相同,但相同字母的指数不相同,不是同类项,故此选项符合题意;B.2和﹣8是同类项,故此选项不符合题意;C.所含字母相同且相同字母的指数也相同的项,是同类项,故此选项不符合题意;D.所含字母相同且相同字母的指数也相同的项,是同类项,故此选项不符合题意;故选:A.6.为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是()A.此次调查的总体是600名学生B.此次调查属于全面调查C.此次调查的个体是被抽取的学生D.样本容量是50【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.解:A.此次调查的总体是600名学生的身高情况,故本选项不合题意;B.此次调查属于抽样调查,故本选项不合题意;C.此次调查的个体是被抽取的学生的身高情况,故本选项不合题意;D.样本容量是50,说法正确,故本选项符合题意.故选:D.7.已知x=2是关于x的一元一次方程mx﹣2=m+3的解,则m的值是()A.2B.3C.4D.5【分析】把x=2代入原方程进行计算即可.解:把x=2代入方程mx﹣2=m+3中得:2m﹣2=m+3,∴2m﹣m=3+2,∴m=5,故选:D.8.下列说法正确的是()A.直线AB=2cmB.射线AB=3cmC.直线AB与直线BA是同一条直线D.射线AB与射线BA是同一条射线【分析】根据直线、线段、射线的区别判断即可.解:A、直线无限长,选项说法错误,不符合题意;B、射线无限长,选项说法错误,不符合题意;C、直线AB与直线BC是同一条直线,选项说法正确,符合题意;D、射线AB与射线BA不是同一条射线,选项说法错误,不符合题意;故选:C.9.如果多项式A减去﹣2x+1后得3x2+7x﹣2,则A为()A.3x2+5x﹣1B.3x2﹣9x﹣3C.3x2﹣5x﹣1D.3x2+9x+3【分析】根据题意可得到A=﹣2x+1+(3x2+7x﹣2),利用整式的加减运算的法则进行求解即可.解:由题意得:A=﹣2x+1+(3x2+7x﹣2)=﹣2x+1+3x2+7x﹣2=3x2+5x﹣1.故选:A.10.如图,用菱形纸片按照如下规律拼成下列图案,若第n个图案中有2021张纸片,则n 的值为()A.503B.504C.505D.506【分析】根据图形归纳出第n个图形中有(4n+1)个菱形纸片,然后列方程求解即可.解:由图知,第一个图案中有5张菱形纸片,以后每个图案都比前一个多4张菱形纸片,故第n个图形中有(4n+1)张菱形纸片,由图知4n+1=2021,解得n=505,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.单项式x2y3的系数为﹣,次数为5.【分析】根据单项式的系数和次数概念分别进行解答即可.解:单项式x2y3的系数是﹣,次数是5次;故答案为:﹣,5.12.已知数轴上A、B两点间的距离为3,点A表示的数为1,则点B表示的数为﹣2或4.【分析】分点B在A的左侧和右侧两种情况讨论即可.解:若点B在A的左侧,则1﹣3=﹣2,即点B表示的数为﹣2,若点B在A的右侧,则1+3=4,即点B表示的数为4,故答案为:﹣2或4.13.如图,OC平分∠AOB,若∠BOC=22°,则∠AOB=44°.【分析】根据角平分线的定义计算即可.解:∵OC平分∠AOB,∴∠AOB=2∠BOC,∵∠BOC=22°,∴∠AOB=44°,故答案为:44°.14.若关于x的方程x|m|﹣1+3=0是一元一次方程,则m=±2.【分析】根据一元一次方程的定义,列出关于m的方程|m|﹣1=1,然后解方程即可.解:∵关于x的方程x|m|﹣1+3=0是一元一次方程,∴|m|﹣1=1,解得m=±2.故答案为:±2.三.解答题(共6小题,满分54分)15.计算:(1)15﹣(﹣4)+2﹣52;(2).解方程:(1)2(x+1)=﹣3+3x;(2).【分析】计算:(1)先算乘方,再算加减.(2)先算乘方和绝对值,再算乘法,最后算加减.解方程:(1)去括号,移项,合并同类项,系数化1.(2)先去分母,再解方程.解:计算:(1)原式=15+4+2﹣25=21﹣25=﹣4.(2)原式=﹣1+3﹣(4+9﹣10)=2﹣3=﹣1.解方程:(1)原方程化为:2x+2=﹣3+3x∴2x﹣3x=﹣3﹣2.∴x=5.(2)去分母得:2(2x﹣1)+6=3(3﹣x).∴4x﹣2+6=9﹣3x.∴4x+3x=9+2﹣6.∴7x=5.∴x=.16.先化简,后求值:2ab﹣(a2﹣b+ab)+3(ab﹣2b)+2a2,其中a=1,b=﹣1.【分析】去括号,合并同类项,把a=1,b=﹣1,代入化简后的多项式计算即可.解:原式=2ab﹣a2+b﹣ab+3ab﹣6b+2a2=(2ab﹣ab+3ab)+(2a2﹣a2)+(b﹣6b)=4ab﹣5b+a2,把a=1,b=﹣1代入,原式=4×1×(﹣1)﹣5×(﹣1)+12=﹣4+5+1=2.17.如图:已知线段AB=16cm,点N在线段AB上,NB=3cm,M是AB的中点.(1)求线段MN的长度;(2)若在线段AB上有一点C,满足BC=10cm,求线段MC的长度.【分析】(1)根据线段中点的性质求出MB,然后用MB减去NB即可解答;(2)根据题目的已知画出图形,用BC减去BM即可解答.解:(1)∵M是AB的中点,AB=16cm,∴MB=AB=8cm,∵NB=3cm,∴MN=MB﹣NB=8﹣3=5cm;(2)如图:∵BC=10cm,MB=8cm,∴CM=BC﹣MB=10﹣8=2cm.18.第31届世界大学生夏季运动会定于2022年6月26日至7月7日举办,为了了解成都市锦江区中学生对大运会的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,调查组绘制了如图两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)填空:这次被调查的同学共有400人,其中“不太了解”的有100人;(2)根据图中数据,求扇形统计图中类别为“不太了解”的学生数所对应的扇形圆心角度数;(3)我区七年级大约有20000名学生,请估计“理解”的学生有多少名?【分析】(1)根据统计图中的数据可以求得本次抽取的学生数,进而得出“不太了解”的人数为100人;(2)“不太了解”所占扇形的圆心角为×360°=108°;(3)由20000×即可.解:(1)本次调查共抽取学生为:=400(人),∴不太了解的学生为:400﹣120﹣160﹣20=100(人);故答案为:400;100;(2)扇形统计图中类别为“不太了解”的学生数所对应的扇形圆心角度数为:×360°=90°;(3)“理解”的学生有:20000×=6000(人).19.已知一个长方体合金底面长为80,宽为40,高为60.(1)现要锻压成新的长方体,其底面是边长为40的正方形,则新长方体的高为多少?(2)若将长方体合金锻压成圆柱体,其底面是直径为80的圆,则新圆柱体合金的高为多少?(π取3)【分析】(1)设新长方体的高为x,利用长方体合金的体积不变列方程40×40•x=80×40×60,然后解一元一次方程即可;(2)设新圆柱体合金的高为y,由题意可得等量关系:长方体的体积=圆柱体的体积,根据等量关系列出方程,然后解一元一次方程即可.解:(1)设新长方体的高为x.根据题意得,40×40•x=80×40×60,解得,x=120.答:新长方体的高为120;(2)设新圆柱体合金的高为y.根据题意得,π×()2•y=80×40×60,即3×402•y=80×40×60,解得,y=40.答:新圆柱体合金的高为40.20.2021年12月22日国家发展改革委印发了《成渝地区双城经济圈多层次轨道交通规划》,目标实现重庆、成都“双核”间1小时通达.在一条双轨铁路上迎面驶来一快一慢两列火车,快车长AB=40,慢车长CD=30.正在行驶途中的某一时刻,以两车之间的某点为原点,取水平向右为正方向画数轴,如图,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c.若快车AB以22个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以18个单位长度/秒的速度向左匀速继续行驶,且|a+60|与(c﹣70)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少个单位长度?(2)从此时刻开始算起,再行驶多少秒钟两列火车恰好满足AD=2BC?(3)此时在行驶过程中,快车的车尾B上有一位学生P,慢车的车尾D上也有一位学生Q.两位学生同时起身以1个单位长度/秒的速度向各自车头跑去,请问几秒之后两位学生的距离为4个单位长度?【分析】(1)根据非负数的性质求出a=﹣60,c=70,再根据两点间的距离公式即可求解;(2)分别表达出运动后点A,B,C,D所对应的点,再根据两点间的距离公式表达出AD和BC长,根据等量关系列等式,求解即可;(3)由题意可得出学生P和另外一个学生Q的速度分别在车的速度上加1,表达出两位学生所对应的数,再根据两点间距离公式列式,求解即可.解:(1)∵|a+60|与(c﹣70)2互为相反数,∴|a+60|+(c﹣70)2=0,∴a+60=0,c﹣70=0,解得a=﹣60,c=70.∴此时刻快车头A与慢车头C之间相距70﹣(﹣60)=130(单位长度);答:此时快车头A与慢车头C之间相距130单位长度;(2)由(1)可知,点B所对应的数为﹣60﹣40=﹣100,点D所对应的数为70+30=100,由两辆汽车的运动可知,点A所对应的数为:﹣60+22t,点B所对应的数为:﹣100+22t,点C所对应的数为:70﹣18t,点D所对应的数为:100﹣18t,由数轴上两点间的距离可知,AD=|160﹣40t|,BC=|170﹣40t|,∵AD=2BC,∴|160﹣40t|=2×|170﹣40t|,解得t=或t=,即再行驶秒或秒后,两列火车恰好满足AD=2BC;(3)根据题意可知,由于火车的运动,学生P所对应的数为﹣100+23t,学生Q所对应的数为100﹣19t,∴PQ=|100﹣19t﹣(﹣100+23t)|=|200﹣42t|,∵PQ=4,∴|200﹣42t|=4,解得t=或t=.即秒或秒之后两位学生的距离为4个单位长度.一.填空题(共5小题,满分20分,每小题4分)21.a、b所表示的有理数如图所示,则|2a﹣b|+2(1+a)=b+2.【分析】先根据数轴上各点的位置判断出a,b的符号及2a﹣b的正负,再化简绝对值和去括号进行计算即可求解.解:依题意有:a<0<b<1,∴2a﹣b<0,∴|2a﹣b|+2(1+a)=﹣2a+b+2+2a=b+2.故答案为:b+2.22.把100分为两个数的和,使第一个数减1,与第二个数乘2的结果相等,则第一个数的值为67.【分析】设第一个数为x,则第二个数为100﹣x,根据题意列出方程,求出方程的解即可得到所求.解:设第一个数为x,则第二个数为100﹣x,根据题意得:x﹣1=2(100﹣x),去括号得:x﹣1=200﹣2x,移项合并得:3x=201,解得:x=67,则第一个数的值为67.故答案为:67.23.若a2+2ab=1,b2﹣2ab=2,则﹣a2﹣6ab+2b2=3.【分析】将原式进行变形,然后利用整体思想代入求值.解:原式=﹣a2﹣2ab﹣4ab+2b2=﹣(a2+2ab)+2(b2﹣2ab),∵a2+2ab=1,b2﹣2ab=2,∴原式=﹣1+2×2=﹣1+4=3,故答案为:3.24.一艘旅游船从A点出发沿北偏东55°方向航行,到达B景点后,进行了90°的转弯,然后沿着BC方向航行,则BC为西偏北55°或东偏南55°方向.【分析】由平行线的性质可得∠FBG=∠EAB=55°,再根据余角的定义及对顶角的性质可求解.解:如图,由AE∥BF,可得∠FBG=∠EAB=55°,又∵∠D'BC'=∠CBG=∠DBF=90°,∴∠D'BC'=∠DBC=∠FBG=55°,即BC为西偏北55°或东偏南55°的方向上.故答案为:西偏北55°或东偏南55°.25.斐波那契数列,是由一串有数学美感的数字排列而成,因以兔子繁殖为例作引入,故又称为“兔子数列”.仿照“兔子数列”有如下问题:一般而言,兔子在出生两个月后,就有繁殖能力,假设一对兔子每个月能生出2对小兔子来,且兔子不会死亡.育才校园养了1对小兔子:一个月后,小兔子没有繁殖能力,所以还是1对;两个月后,兔子生下两对小兔子,所以是3对;三个月后,小兔子没有繁殖能力,老兔子生下2对小兔子,所以一共是5对;以此类推,八个月后,一共有171对兔子.【分析】根据题意可知,每个月的兔子数是前两个月的兔子数之和.解:四个月后,3对小兔子生下6对,共有6+5=11对;五个月后,5对小兔子生下10对,共10+11=21对;六个月后,21+2×11=43对;七个月后,43+21×2=85对;八个月后,85+2×43=171对;故答案为:171.五、解答题(共3小题,满分0分)26.已知关于x的方程(a﹣2)x|a|﹣1+4b=0为一元一次方程,且该方程的解与关于x的方程的解相同.(1)求a、b的值;(2)在(1)的条件下,若关于y的方程|m﹣1|y+n=a+1+2by有无数解,求m,n的值.【分析】(1)由题意可知|a|﹣1=1,a﹣2≠0,则可求a的值,然后再求方程的解为x =b,由同解方程可得方程的解为x=1,则可得b=1;(2)方程化为(|m﹣1|﹣2)y=﹣n﹣1,再由方程有无数解,可得﹣n﹣1=0,|m﹣1|=2,即可求n、m的值.解:(1)∵方程(a﹣2)x|a|﹣1+4b=0为一元一次方程,∴|a|﹣1=1,∴a=±2,∵a﹣2≠0,∴a≠2,∴a=﹣2,∴方程为﹣4x+4b=0,解得x=b,∵方程的解与方程的解相同,∴=1,∴x=1,∴b=1;(2)由题可知方程为|m﹣1|y+n=﹣2+1+2y,∴(|m﹣1|﹣2)y=﹣n﹣1,∵方程有无数解,∴﹣n﹣1=0,|m﹣1|=2,∴n=﹣1,m=3或m=﹣1.27.今年成都的天气比往年要寒冷许多,进入12月份以后人们对暖手宝热水袋的需求开始增加,某超市第一次共购进300件甲、乙两种品牌的暖手宝热水袋,全部出售后赚得2700元.已知甲品牌暖手宝的进价为22元/件,售价为29元/件,乙品牌暖手宝的进价为30元/件,售价为40元/件.(1)该超市第一次购进甲、乙两种暖手宝各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种暖手宝,其中乙品牌的件数不变;甲品牌按原价销售,乙品牌打九折销售.第二次两种暖手袋都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次购进甲品牌多少件?(3)该超市第三次进货时,厂家给出了如下优惠方案:甲品牌优惠方案一次性购买数量不超过100件的部分超过100件的部分折扣数九折八折乙品牌优惠方案购买总金额不超过3000元超过3000元但不超过5000元超过5000元返现金金额0元直接返现金200元先返购买总金额的5%,再返现金200元已知超市购进甲品牌共支付了3740元,购进乙品牌共支付了4930元.将第三次购进的甲、乙两种暖手宝全部卖完一共可获得多少利润?【分析】(1)设超市第一次购进甲种暖手宝x件,则乙种暖手宝(300﹣x)件,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论;(2)设第二次购进甲品牌y件,根据利润=总售价﹣进货成本,即可得出关于y的一元一次方程,解之即可得出结论;(3)设甲种暖手宝购买了m件,乙种暖手宝购买了n件,根据超市购进甲品牌共支付了3740元,购进乙品牌共支付了4930元即可得出关于m(或n)的一元一次方程,解之即可得出m(或n)的值,进而可得利润.解:(1)设超市第一次购进甲种暖手宝x件,则乙种暖手宝(300﹣x)件,依题意得:(29﹣22)x+(40﹣30)(300﹣x)=2700,解得x=100,∴300﹣x=200(件).答:超市第一次购进甲种暖手宝100件,乙种暖手宝200件;(2)设第二次购进甲品牌y件,依题意得:7y+(40×0.9﹣30)×200=2700+600,解得:y=300,答:第二次购进甲品牌300件;(3)设甲种暖手宝购买了m件,乙种暖手宝购买了n件,∵22×0.9×100=1980(元),1980<3740,∴1980+22×0.8×(m﹣100)=3740,解得m=200.当购买乙种暖手宝总金额超过3000元不超过5000元时,30n﹣200=4930,解得:n=171;当购买乙种暖手宝总金额超过5000元时,30n(1﹣5%)﹣200=4930,解得:n=180;当m=200,n=171时,获得利润为7×200+10×171=3110(元);当m=200,n=180时,获得利润为7×200+10×180=3200(元);答:一共可获得利润为3110元或3200元.28.如图1,点D、O、A共线且∠COD=20°,∠BOC=80°,射线OM,ON分别平分∠AOB和∠BOD.如图2,将射线OD以每秒6°的速度绕点O顺时针旋转一周,同时将∠BOC以每秒4°的速度绕点O顺时针旋转,当射线OC与射线OA重合时,∠BOC停止运动.设射线OD 的运动时间为t.(1)运动开始前,如图1,∠AOM=40°,∠DON=50°;(2)旋转过程中,当t为何值时,射线OB平分∠AON?(3)旋转过程中,是否存在某一时刻使得∠MON=35°?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)根据角平分线的定义直接计算即可;(2)根据∠AOB=∠NOB列方程求解即可;(3)分情况根据∠MON=35°列方程求解即可.解:(1)∵∠COD=20°,∠BOC=80°,∴∠BOD=20°+80°=100°,∠AOB=180°﹣∠BOD=180°﹣100°=80°,∵射线OM,ON分别平分∠AOB和∠BOD,∴∠AOM=∠AOB=40°,∠DON=∠BOD=50°,故答案为:40°,50°;(2)∵射线OD以每秒6°的速度绕点O顺时针旋转,∠BOC以每秒4°的速度绕点O 顺时针旋转,∴∠BOD=100°+4°t﹣6°t=100°﹣2°t,∵∠AOB=180°﹣80°﹣20°﹣4°t=80°﹣4°t,∴×(100°﹣2°t)=80°﹣4°t,解得:t=10,∴当t为10时,射线OB平分∠AON;(3)存在某一时刻使得∠MON=35°,分以下两种情况:①OM在OA上方,此时∠NOB+∠BOM=35°,即×(100°﹣2°t)+×(80°﹣4°t)=35°,解得t=,②OM在OA下方,即×(100°﹣2°t)+(4°t﹣80°)=35°,解得t=25,综上,符合条件的t的值为或25.。
成都市七中育才学校七年级上学期期末数学试题及答案
成都市七中育才学校七年级上学期期末数学试题及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 3.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒4.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+5.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5926.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠7.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =18.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣79.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 10.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y 11.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)12.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .313.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102514.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.把53°24′用度表示为_____. 19.﹣30×(1223-+45)=_____. 20.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.21.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.22.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 23.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克. 24.15030'的补角是______. 25.52.42°=_____°___′___″. 26.若∠1=35°21′,则∠1的余角是__.27.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 28.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______. 30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.34.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.35.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数36.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.37.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.3.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.5.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.6.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.7.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.8.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.9.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.10.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.11.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 12.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.13.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.14.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,解析:83n【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.19.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223+45)=﹣30×12+(﹣30)×(23)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 20.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.21.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键22.【解析】 【分析】 先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键.解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可. 【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.23.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式24.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.25.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.26.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.27.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.28.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.29.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 30.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题. 解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】把1x=代入方程,得141m⨯-=∴5m=故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.34.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值;。
2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷(解析版)
2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×1053.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz24.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.116.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<0 10.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是,绝对值是.12.若x=1是方程a(x﹣2)=a+2x的解,则a=.13.单项式﹣πx2y的系数为,次数为.14.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是.三、解答题(共54分)15.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=16.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.17.由7个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的主视图和左视图;(2)求该几何体的表面积.18.列方程解应用问题:一个车间加工轴杆和轴承,平均每人每天可以加工轴杆12根或轴承15个.该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套(1根轴杆与1个轴承为一套)?19.某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.如图①,已知线段CD在线段AB上运动,线段AB=10cm,CD=2cm,点E、F分别是AC、BD的中点.(1)若AC=3cm,求EF的长.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=.22.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b﹣c|﹣2|b﹣a|+|2c|=.23.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为.24.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=.25.长方形ABCD中,AB=DC=6cm,AD=BC=12cm.有一动点P从A出发以3cm/s的速度沿A﹣B﹣C运动到C时停止,动点Q从C点出发以2cm/s的速度在线段CB上沿C ﹣B方向向B运动.P,Q同时出发,当一点停止时另一个点同时停止运动,设运动的时间是t(s).当t=时,能使|PQ﹣CQ|=2cm.二、解答题(8+10+12,共30分)26.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.27.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?28.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,不论怎么切不可能是三角形.故选:B.2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×105【解答】解:2 180 000=2.18×106,故选:B.3.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.4.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得【解答】解:A、两边都加5,故A正确;B、两边都除以同一个不为零的数,故B正确;C、两边都加m,故C正确;D、当m=0时,两边都除以m无意义,故D错误;故选:D.5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.11【解答】解:由题意得:n﹣3=8,解得n=11,故选:D.6.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量【解答】解:A、调查日照电视台节目《社会零距离》的收视率适合抽样调查;B、调查日照市民对京剧的喜爱程度适合抽样调查;C、调查全国七年级学生的身高适合抽样调查;D、调查我国首艘宇宙飞船“天舟一号”的零部件质量适合全面调查;故选:D.7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元【解答】解:由题意可得,每件还能盈利为:100×(1+20%)×0.9﹣100=8(元),故选:A.9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<0【解答】解:∵a<﹣1<0<b,∴a﹣b<0,|a|>|b|,ab<0,a+b<0.故选:A.10.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两点之间线段最短,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误.故选:A.二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是﹣,绝对值是.【解答】解:﹣的相反数是,倒数是﹣,绝对值是,故答案为:,﹣,.12.若x=1是方程a(x﹣2)=a+2x的解,则a=﹣1.【解答】解:x=1是方程a(x﹣2)=a+2x的解,将x=1代入该方程,得:a(1﹣2)=a+2,是一个关于a为未知数的一元一次方程,去括号得:﹣a=a+2,移项得:﹣a﹣a=2,合并同类项得:﹣2a=2,两边同除以﹣2得:a=﹣1,∴a=﹣1.故填:﹣1.13.单项式﹣πx2y的系数为﹣π,次数为3.【解答】解:单项式﹣πx2y的系数为﹣π,次数为2+1=3.故答案为:﹣π,3.14.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是北偏西60°.【解答】解:如图所示:∵OA是北偏东30°方向的一条射线,∠AOB=90°,∴∠1=90°﹣30°=60°,∴OB的方向角是北偏西60°.故答案为:北偏西60°.三、解答题(共54分)15.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=【解答】解:(1)﹣12+16÷(﹣2)3×|﹣3﹣1|=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9;(2)去括号,得7x﹣9x﹣6=6移项,得7x﹣9x=6+6合并同类项,得﹣2x=12,系数化为1,得x=﹣6;(3)去分母,得x﹣6﹣4x=2(x+5)去括号,得x﹣6﹣4x=2x+10移项,得x﹣4x﹣2x=10+6,合并同类项,得﹣5x=16系数化为1,得x=﹣.16.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.【解答】解:原式=2ab+6a2﹣5a2+3ab﹣b2=5ab+a2﹣b2,当a=,b=1时,原式=5××1+()2﹣1=+﹣1=.17.由7个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的主视图和左视图;(2)求该几何体的表面积.【解答】解:(1)该几何体的左视图,主视图如图所示.(2)每个小正方体的每个表面积为1,共计28个,故表面积为28.18.列方程解应用问题:一个车间加工轴杆和轴承,平均每人每天可以加工轴杆12根或轴承15个.该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套(1根轴杆与1个轴承为一套)?【解答】解:设安排x人生产轴杆,则(90﹣x)人生产轴承,根据题意得:12x=15(90﹣x),解得:x=50,∴90﹣x=40.答:安排50人生产轴杆、40人生产轴承,才能使每天生产的轴杆和轴承正好配套.19.某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是50,请补全条形图;(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中B等级所对应的圆心角为144°.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.【解答】解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.如图①,已知线段CD在线段AB上运动,线段AB=10cm,CD=2cm,点E、F分别是AC、BD的中点.(1)若AC=3cm,求EF的长.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出∠EOF=(∠AOB+∠COD).【解答】解:(1)∵AB=10cm,CD=2cm,AC=3cm,∴DB=5cm,∵E、F分别是AC、BD的中点,∴CE=AC=1.5cm,DF=DB=2.5cm,∴EF=1.5+2+2.5=6cm;(2)EF的长度不变.∵E、F分别是AC、BD的中点∴EC=AC,DF═DB,∴EF=EC+CD+DF═AC+CD+DB=+CD═(AB﹣CD)+CD=,∵AB=10cm,CD=2cm,∴EF=6cm;(3)∠EOF=(∠AOB+∠COD)..理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案∠EOF=(∠AOB+∠COD).一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=4.【解答】解:∵2(x﹣1)2+3|y+3|=0,∴x=1,y=﹣3,则x﹣y=1﹣(﹣3)=4,故答案为:4.22.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b﹣c|﹣2|b﹣a|+|2c|=3b﹣a﹣3c.【解答】解:由数轴可知,c<b<0<a,∴b﹣c>0,a+b﹣c>0,b﹣a<0,2c<0,∴|a+b﹣c|﹣2|b﹣a|+|2c|=a+b﹣c﹣2(﹣b+a)+(﹣2c)=a+b﹣c+2b﹣2a﹣2c=﹣a+3b﹣3c.故答案为﹣a+3b﹣3c.23.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为1.【解答】解:第1次跳后落在3上;第2次跳后落在5上;第3次跳后落在2上;第4次跳后落在1上;第5次跳后落在3上;…4次跳后一个循环,依次在3,5,2,1这4个数上循环,∵2016÷4=504,∴应落在1上.故答案为:1.24.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=.【解答】解:∵5x﹣m+1=0,∴5x=m﹣1,解得:x=,∵关于x的一元一次方程5x﹣m+1=0是差解方程,∴m﹣1﹣5=,解得:m=,故答案为.25.长方形ABCD中,AB=DC=6cm,AD=BC=12cm.有一动点P从A出发以3cm/s的速度沿A﹣B﹣C运动到C时停止,动点Q从C点出发以2cm/s的速度在线段CB上沿C ﹣B方向向B运动.P,Q同时出发,当一点停止时另一个点同时停止运动,设运动的时间是t(s).当t=或或时,能使|PQ﹣CQ|=2cm.【解答】解:当点P在AB上时,即0≤t≤2,∴CQ≤4cm,BQ≥8cm,∵PQ>BQ,∴PQ﹣CQ>2cm,∴当点P在AB上时,不存在|PQ﹣CQ|=2cm.当点P在BC上时,即2<t≤6,∴CQ=2t,BQ=3t﹣6,当P,Q相遇前,PQ=12﹣(3t﹣6)﹣2t=18﹣5t,∵|PQ﹣CQ|=2cm.∴|18﹣5t﹣2t|=2∴t=或,当P,Q相遇后,PQ=3t﹣6+2t﹣12=5t﹣18,∵|PQ﹣CQ|=2cm.∴|5t﹣18﹣2t|=2∴t=或(不合题意舍去)故答案为:或或.二、解答题(8+10+12,共30分)26.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为(b ﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2.;(2)由图可知,(b﹣a)2=2,4×ab=10﹣2=8,∴2ab=8,∴(a+b)2=(b﹣a)2+4ab=2+2×8=18.27.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?【解答】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,解得:.答:年降水量为200万m3,每人年平均用水量为50m3.(2)设该镇居民人均每年用水量为zm3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34,50﹣34=16m3.答:该镇居民人均每年需节约16m3水才能实现目标.(3)该企业n年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×300n﹣400000n≥10000000,解得:n≥8.答:至少9年后企业能收回成本.28.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
2024届四川省成都市七中七年级数学第一学期期末综合测试模拟试题含解析
2024届四川省成都市七中七年级数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列语句中正确的是( )A .-9的平方根是-3B .9的平方根是3C .9的立方根是3±D .9的算术平方根是32.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 3.下列各数:-5,1.1010010001…,3.14,227,20%,3π,有理数的个数有( ) A .3个 B .4个 C .5个 D .6个4.甲商品进价为1000元,按标价1200元的9折出售,乙商品的进价为400元,按标价600的7.5折出售,则甲、乙两商品的利润率( )A .甲高B .乙高C .一样高D .无法比较5.关于x 的一元一次方程224m x n -+=的解为x =1,则m +n 的值为( )A .9B .8C .6D .56.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x7.若方程(a ﹣3)x |a|﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( )A .±2B .3C .±3D .﹣38.把数3120000用科学记教法表示为( )A .53.1210⨯B .63.1210⨯C .531.210⨯D .7 0.31210⨯9.下列说法中正确的是 ( )A .平方是本身的数是1B .任何有理数的绝对值都是正数C .若两个数互为相反数,则它们的绝对值相等D .多项式2x 2+xy +3是四次三项式10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD为( )A .50°B .70°C .75°D .80°二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,点C 、D 在线段AB 上.4CD cm =,12AB cm =,则图中所有线段的和是__________cm .12.已知∠A =20°18′,∠B =20.4°.请你比较它们的大小:∠A_____∠B(填“> 或 < 或 =”).13.如果a ,b 为定值,关于x 的一次方程23kx a +﹣6x bk -=2,无论k 为何值时,它的解总是1,则a +2b =_____. 14.地球与月球的平均距离大约384000km ,用科学记数法表示这个距离为__km . 15.对于实数a ,b ,c ,d ,规定一种数的运算:=ad ﹣bc ,那么当=10时,x =____________. 16.如图,将一张长方形纸片的角A ,角E 分别沿BC 、BD 折叠,点A 落在A '处,点E 落在边BA '上的E '处,则CBD ∠的度数是__________.三、解下列各题(本大题共8小题,共72分)17.(8分)一个几何体由若干个大小相同的小立方块搭成,从上面看这个几何体的形状如图所示.其中小正方形中的数字表示在该位置小立方块的个数,请你画出从正面和从左面看到的这个几何体的形状图.18.(8分)如图,点A 、O 、B 在一条直线上,AOC 80∠=,COE 50∠=,OD 是AOC ∠的平分线.()1求AOE ∠和DOE ∠的度数.()2OE 是COB ∠的平分线吗?为什么?()3请直接写出COD ∠的余角为______,补角为______.19.(8分)(1)观察下列多面体,并把下表补充完整. 名称 三棱柱 四棱柱 五棱柱 六棱柱图形顶点数a6 10 12 棱数b9 12 15 面数c 5 6 8(2)观察上表中的结果,你能发现a 、b 、c 之间有什么关系吗?请写出关系式.20.(8分)如图1,在表盘上12:00时,时针、分针都指向数字12,我们将这一位置称为“标准位置”(图中OA ).小文同学为研究12点t 分(060t <<)时,时针与分针的指针位置,将时针记为OB ,分针记为OC .如:12:30时,时针、分针的位置如图2所示,试解决下列问题:(1)分针OC 每分钟转动 °;时针OB 每分钟转动 °; (2)当OC 与OB 在同一直线上时,求t 的值;(3)当OA 、OB 、OC 两两所夹的三个角AOC ∠、AOB ∠、BOC ∠中有两个角相等时,试求出所有符合条件的t 的值.(本小题中所有角的度数均不超过180°)21.(8分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.22.(10分)如图,AB CD 、为数轴上两条线段,其中A 与原点重合,10AB =,且32CD AB =+.(1)当B 为AC 中点时,求线段AD 的长;(2)线段AB 和CD 以(1)中图形为初始位置,同时开展向右运动,线段AB 的运动速度为每秒5个单位长度,线段CD 运动速度为每秒3个单位长度,设运动时间为t 秒,请结合运动过程解决以下问题:①当16AC =时,求t 的值;②当38AC BD +=时,请直接写出t 的值.23.(10分)如图所示,AOB ∠是平角,40AOC ∠=︒,80BOD ∠=︒,OM 、ON 分别是AOC ∠、BOD ∠的平分线,求MON ∠的度数.24.(12分)一辆城市出租车在一条南北方向的公路上来回拉客.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-18.5,-9.5,+7.5,-14,-6.5,+13,-6.5,8.5(1)问B 地在A 地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据平方根、立方根、算术平方根的定义逐一进行判断即可.【题目详解】A. 负数没有平方根,故A 选项错误;B. 9的平方根是±3,故B 选项错误;C. 9C选项错误;D. 9的算术平方根是3,正确,故选D.【题目点拨】本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.2、A【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【题目详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【题目点拨】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.3、B【分析】根据有理数的定义即可得.【题目详解】根据有理数的定义可得:所给数中是有理数的有-5,3.14,227,20%这4个,需要注意的是223.1428571428577=,小数点后142857是循环的,所以它是有理数. 故答案为:B.【题目点拨】本题考查了有理数的定义.有理数为整数和分数的统称,有理数的小数部分是有限或是无限循环的数.本题的难点在22 7的判断上,遇到分数,需化为小数(为便于发现规律,小数点后多算几位),看小数部分是有限的或是无限循环的.4、B【分析】根据利润率=-售价进价进价,分别计算出甲乙两商品的利润率,再比较即可.【题目详解】解:甲商品的利润率:120090%1000100%8%1000⨯-⨯= 乙商品的利润率:6000.75400100%12.5%400⨯-⨯= ∵12.5%>8%,∴乙高.故选:B .【题目点拨】 此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.5、D【分析】根据一元一次方程的定义可知21m -=,进而得到m 的值,然后将1x =代入方程解出n 的值,即可得出答案.【题目详解】∵224m x n -+=是关于x 的一元一次方程∴21m -=,解得3m =则方程变形为24+=x n ,将方程的解x =1代入方程得:24+=n解得2n =∴32=5+=+m n故选:D .【题目点拨】本题考查了一元一次方程的定义和方程的解,熟练掌握一元一次方程未知数的系数等于1是解题的关键. 6、C【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【题目详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.7、D【分析】依据一元一次方程的含义即可求解.【题目详解】解:∵方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程, ∴3021a a -≠⎧⎨-=⎩,解得a =-3, 故本题选择D.【题目点拨】熟练掌握一元一次方程的定义是解本题的关键.8、B【分析】根据科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数进行分析求得.【题目详解】解:3120000用科学记教法表示为63.1210 .故选:B.【题目点拨】本题考查科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9、C【分析】根据平方根的定义、绝对值的定义和性质以及多项式的意义逐项分析即可.【题目详解】A. 平方是本身的数是0和1,故该选项错误;B. 0的绝对值是0不是正数,故该选项错误;C. 若两个数互为相反数,则它们的绝对值相等,正确;D. 多项式2x 2+xy +3是二次三项式,故该选项错误.故选C.【题目点拨】本题考查了平方根、绝对值的性质和多项式的性质,属于基础性题目,比较简单.10、B【解题分析】分析:根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC ,计算即可.详解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°, ∵∠B=60°,∠C=25°, ∴∠BAC=95°, ∴∠BAD=∠BAC-∠DAC=70°, 故选B .点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】先根据4CD cm =,12AB cm =再找出图中以A 、B 、C 、D 这4个点为端点的所有线段,求出所有线段的和即可.【题目详解】解:∵4CD cm =,12AB cm =,∴以A 、B 、C 、D 这4个点为端点的所有线段的和=AC+AD+AB+CD+CB+DB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=12+12+4+12=1故答案为1.【题目点拨】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.12、<【解题分析】先把∠B 用度、分、秒表示,再比较即可.【题目详解】解:∵∠B=20.4°=20°24′,∠A=20°18′,∴∠A<∠B ,故答案为<.【题目点拨】本题考查了度、分、秒之间的换算,角的大小比较的应用,能理解度、分、秒之间的关系是解此题的关键. 13、32- 【解题分析】根据一元一次方程的解的定义即可求出答案. 【题目详解】将x =1代入方程2kx bk 236a x +--=, ∴21236k a bk +--=, ∴4k+2a ﹣1+bk =12,∴4k+bk =13﹣2a ,∴k (4+b )=13﹣2a ,由题意可知:b+4=0,13﹣2a =0,∴a =132,b =﹣4, ∴a+2b =133822-=-. 故答案为32- 【题目点拨】本题考查一元一次方程,解题的关键是正确理解一元一次方程的解的定义,本题属于中等题型.14、3.84×105【分析】根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式.【题目详解】384000=3.84×105.故答案是:3.84×105.【题目点拨】考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤< ,n 为整数,表示时关键要正确确定a 的值以及n 的值.15、-1【分析】根据新定义运算得出关于x 的一元一次方程,求出x 的值即可.【题目详解】由题意得,2x +12=10,解得x =−1.故答案为−1.【题目点拨】本题考查新定义和解一元一次方程.16、90︒【分析】由折叠的性质得到',',ABC CBA EBD E BD ∠=∠∠=∠,然后利用平角的定义即可得出答案.【题目详解】连接'BE由折叠的性质可知',',ABC CBA EBD E BD ∠=∠∠=∠''180ABC CBA EBD E BD ∠+∠+∠+∠=︒ 1''180902CBD CBA E BD ∴∠=∠+∠=⨯︒=︒ 故答案为:90︒.【题目点拨】本题主要考查折叠的性质和平角的概念,掌握折叠的性质是解题的关键.三、解下列各题(本大题共8小题,共72分)17、见解析【分析】由已知条件可知,从正面看有1列,每列小正方数形数目分别为2,3,1,3;从左面看有3列,每列小正方形数目分别为3,3,1.据此可画出图形.【题目详解】解:如图所示:【题目点拨】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.18、(1)AOE 130∠=,DOE 90∠=;(2)OE 是COB ∠的平分线,理由见详解;(3)COE ∠和BOE ∠;BOD ∠.【分析】(1)根据AOE AOC COE ∠∠∠=+ 代入数据进行计算即可得解;根据角平分线的定义可得1COD AOC 2∠∠=,然后根据DOE COD COE ∠∠∠=+代入数据进行计算即可得解;(2)根据邻补角求出BOE ∠的度数,即可进行判断;(3)根据COD ∠的度数确定其余角和补角.【题目详解】解:()1AOC 80∠=,COE 50∠=,AOE AOC COE 8050130∠∠∠∴=+=+=; OD 是AOC ∠的平分线,11COD AOC 804022∠∠∴==⨯=, DOE COD COE 405090∠∠∠∴=+=+=;(2)OE 是COB ∠的平分线,理由如下:BOE 180AOE 18013050∠∠=-=-=,BOE COE ∠∠∴=,OE ∴是COB ∠的平分线;()3COD ∠的余角为COE ∠和BOE ∠,补角为BOD ∠.故答案为COE ∠和BOE ∠;BOD ∠.【题目点拨】本题考查余角和补角,角平分线的定义,熟记概念并准确识图,确定出图中各角度之间的关系是解题的关键.19、(1)8、7、18;(2)a +c -2=b【分析】(1)只要将各个图形的顶点数、棱数、面数数一下就可以得出答案;(2)通过观察找出每个图形中“顶点数、棱数、面数”之间隐藏的数量关系,用公式表示出来即可.【题目详解】解:(1)通过计算可得出四棱柱的顶点数为8;五棱柱的面数为7;六棱柱的棱数为18;故答案为:8、7、18;(2)通过观察找出每个图形中“顶点数、棱数、面数”之间隐藏的数量关系,可得出:a +c -2=b .【题目点拨】本题考查的知识点是欧拉公式,公式描述了简单多面体顶点数、面数、与棱数特有的规律.20、(1)6,1.5;(2)t 的值为36011;(3)t 的值为72023或72013 【分析】(1)由题意根据分针每61分钟转动一圈,时针每12小时转动一圈进行分析计算;(2)由题意OC 与OB 在同一直线上即OC 与OB 所围成的角为181°,据此进行分析计算;(3)根据题意分当AOC BOC ∠=∠时以及当AOB AOC ∠=∠时两种情况进行分析求解.【题目详解】解:(1)由题意得分针OC 每分钟转动:360606︒︒÷=;时针OB 每分钟转动:36012600.5︒︒÷÷=.故答案为:6,1.5.(2)当OC 与OB 在同一直线上时,时针OB 转了0.5t 度,即0.5AOB t ∠=︒分针OC 转了6t 度,即6AOC t ∠=︒∴60.5180t t ︒-︒=︒ 解得,36011t =∴t 的值为36011. (3)①当AOC BOC ∠=∠时,∵3606AOC t ∠=︒-︒60.5=5.5BOC t t t ∠=︒-︒︒∴3606=5.5t t -︒︒ ∴72023t =; ②当AOB AOC ∠=∠时,∵3606AOC t ∠=︒-︒0.5BOC t ∠=︒∴3606=0.5t t -︒︒ ∴72013t =; ∴综上所述,符合条件的t 的值为72023或72013. 【题目点拨】本题考查钟表角的实际应用,根据题意熟练掌握并运用方程思维进行分析是解答此题的关键.21、 (1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可. 【题目详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++ 2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【题目点拨】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.22、(1)AD =52;(2)①t 的值为2或18;②t 的值为6或1.【分析】(1)求出BC ,CD 的值即可解决问题;(2)①分点A 在点C 左侧时和点A 在点C 右侧时两种情况,分别根据16AC =列方程求解即可;②求出t 秒后,A 表示的数为5t ,B 表示的数为5t+10,C 表示的数为3t+20,D 表示的数为3t+52,根据38AC BD +=列出绝对值方程,解方程即可.【题目详解】解:(1)∵CD =3AB +2,AB =10,∴CD =30+2=32,∵B 为AC 中点,即AB =CB =10,∴AD =AB +BC +CD =10+10+32=52;(2)①当点A 在点C 左侧时,由题意得:3t +20-5t =16,解得:t =2;当点A 在点C 右侧时,由题意得:5t -3t -20=16,解得:t =18,故t 的值为2或18;②由题意可得:t 秒后,A 表示的数为5t ,B 表示的数为5t+10,C 表示的数为3t+20,D 表示的数为3t+52, ∴532051035238t t t t ,即22024238t t -+-=,当010t ≤≤时,可得20224238tt , 解得:6t =;当21t 10<时,可得22024238t t --+=,不符合题意;当t 21<时,可得22024238t t -+-=,解得:25t =,故t 的值为6或1.【题目点拨】本题考查数轴上的动点问题以及一元一次方程的应用,解题的关键是正确理解题意,熟练掌握方程思想与分类讨论思想的应用.23、120︒【分析】根据平角的定义,结合已知条件,可得COD ∠的度数,利用角平分线的性质可求出COM ∠与DON ∠的度数,然后由+C D+=O COM N M DO ON ∠∠∠∠计算即可.【题目详解】AOB ∠是平角,40AOC ∠=︒,80BOD ∠=︒,=180COD AOC BOD ∴∠︒-∠-∠1804080=︒-︒-︒60=︒,OM 、ON 分别是AOC ∠、BOD ∠的平分线,1202MOC AOC ∴∠=∠=︒, 1402DON DOB ∠=∠=︒, +COD+20604=0120COM DO O N M N ∠∠∠=︒+︒+︒=∴∠︒,故答案为:120︒.【题目点拨】考查了平角的定义,角平分线的性质,求一个角度数可以看成两个或者多个角度的和求解即可得出答案.24、(1)正南面26千米处;(2)16.8升【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【题目详解】(1)-18.5 -9.5+7.5-14-6.5+13 -6.5+8.5=-26答:在A 的正南面26千米处.(2)18.5 +9.5+7.5+14+6.5+13 +6.5 +8.5=8484×0.2=16.8(升)答: 这一天共耗油16.8升【题目点拨】本题考查了正数和负数,利用了有理数的加法运算.。
四川省成都七中育才学校七年级上学期期末测试数学试题(解析版)
四川省成都七中育才学校 2021-2021 学年七年级上学期期末测试数学试题A 卷一、选择题:(每小题 3 分,共 30 分) 1.13-的倒数是( )A. 3B. 13C. 3-D. 13- 【答案】C【解析】因为(-13)×(-3)=1, 所以-13的倒数是-3. 故答案选C点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2. 今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为既北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示126万为( )A. 412610⨯B. 31.2610⨯C. 61.2610⨯D. 71.2610⨯【答案】C【解析】试题分析:126万用科学记数法表示61.2610⨯元,故选C .考点:科学记数法—表示较大的数.【此处有视频,请去附件查看】3.以下问题,不适合普查的是( )A. 了解一批灯泡的使用寿命B. 学校招聘教师,对应聘人员的面试C. 了解全班学生每周体育锻炼时间D. 进入地铁站对旅客携带的包进行的安检【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解一批灯泡的使用寿命,适合抽样调查,故A正确;B. 学校招聘教师,对应聘人员的面试适合普查,故B错误;C. 了解全班学生每周体育锻炼时间,适合普查,故C错误;D. 进入地铁站对旅客携带的包进行的安检适合普查,故D错误;故选:A.【点睛】考查全面调查与抽样调查,掌握全面调查与抽样调查的特点是解题的关键.4.如图所示的图形经过折叠可以得到一个正方体,则与“我”字一面相对的面上的字是( )A. 七B. 中C. 育D. 才【答案】D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,与“我”字一面相对的面上的字是才.故选D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.下列说法正确的是( )A. 射线PA和射线AP是同一条射线B. 射线OA的长度是12cmC. 直线ab、cd相交于点MD. 两点确定一条直线【答案】D【解析】【分析】根据直线、射线、线段的特征逐项分析即可.【详解】A. 射线P A和射线AP端点不同,不是同一条射线,故不正确;B. 射线OA的长度是是无限的,故不正确;C. 直线用两个大写字母或一个小写字母表示,故不正确;D. 两点之间线段最短,正确;故选D.【点睛】本题考查了直线、射线、线段,正确掌握三者的概念是解题的关键.根据直线,射线,线段的定义进行判断,直线:在平面内,无端点,向两方无限延伸的线,射线:在平面内,有一个端点,向一方无限延伸,线段:在平面内,有两个端点,不延伸.6.下列各组中,是同类项是()A. ﹣x2y 与 3yx2B. m3与 3mC. a2与 b2D. x与 2【答案】A【解析】【分析】根据同类项的概念求解.【详解】解:A、﹣x2y 与3yx2所含字母相同,相同字母的指数相同,是同类项,故本选项正确;B、m3与3m所含字母的指数不同,不是同类项,故本选项错误;C、a2与b2所含字母的不同,不是同类项,故本选项错误;D、x和2所含字母不同,不是同类项,故本选项错误.故选:A.【点睛】本题考查了同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同.7.下列计算中,结果正确的是()A. a2•a3=a6B. 2a•3a=6aC. (2a2)3=2a6D. a6÷a2=a4【答案】D【解析】【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、2a•3a=6a2,故本选项错误;C、(2a2)3=8a6,故本选项错误;D、a6÷a2=a6-2=a4,故本选项正确.故选D.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.8.下列描述不正确的是()A. 单项式﹣23ab的系数是﹣13,次数是 3 次B. 用一个平面去截一个圆柱,截面的形状可能是一个长方形C. 过七边形的一个顶点有 5 条对角线D. 五棱柱有 7 个面,15 条棱【答案】C【解析】【分析】根据单项式的系数是数字因数,次数是字母指数和,可判断A,根据圆柱体的截面,可判断B,根据多边形的对角线,可判断C,根据棱柱的面、棱,可判断D.【详解】解:A、单项式-23ab的系数是-13,次数是3次,故A正确;B、用一个平面去截一个圆柱,截面的形状可能是一个长方形,故B正确;C、过七边形的一个顶点有4条对角线,故C错误;D、五棱柱有7个面,15条棱,故D正确;故选:C.【点睛】本题考查了单项式、认识立体图形、截一个几何体、多边形的对角线.熟练掌握相关知识是解题关键.9.已知线段AB=3cm,延长线段AB到C,使BC=4cm,延长线段BA到D,使A为DC的中点,则线段CD的长为()A. 14cmB. 8cmC. 7cmD. 6cm【答案】A【解析】分析:根据题意得出AC长度,然后根据线段中点的性质得出答案.详解:∵AB=3cm,BC=4cm,∴AC=3+4=7cm,∵点A为CD的中点,∴CD=2AC=14cm,故选A.点睛:本题主要考查的是线段的中点的性质,属于基础题型.明确中点的性质是解题的关键.10.有一“数值转换机”如图所示,则输出的结果为()A. x-23B.123- C.23-xD.23【答案】C【解析】【分析】根据图可以写出输出的结果,本题得以解决.【详解】解:由图可得,输出的结果为:(x-2)÷3=23x,故选:C.【点睛】本题考查列代数式,解答本题的关键是根据流程图正确列式.二、填空题:(每小题 4 分,共 16 分)11.﹣|﹣45|的相反数是_____.【答案】45.【解析】【分析】依据相反数定义求解即可.【详解】﹣|﹣45|=﹣45,故﹣|﹣45|的相反数是45.故答案为:45.【点睛】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.12.在数轴上距离原点 5 个单位长度点所表示的数是________.【答案】5或﹣5【解析】【分析】分所表示的点在原点左边与右边两种情况解答.【详解】解:①左边距离原点5个单位长度的点是-5,②右边距离原点5个单位长度的点是5,∴距离原点5个单位长度的点所表示的数是5或-5.故答案为:5或-5.【点睛】本题考查了数轴的知识,注意分所求的点在原点的左、右两边两种情况讨论.13.用一根铁丝可围成长、宽分别为5和3的长方形,如果用这根铁丝围成一个正方形,那么该正方形的边长为_____.【答案】4.【解析】【分析】设正方形边长为x,根据等量关系“正方形的周长=长方形的周长”列出方程,解方程即可求解.【详解】设正方形边长为x,由题意得:4x=(5+3)×2,解得:x=4.故答案为:4.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系“正方形的周长=长方形的周长”是解决问题的关键.14.钟面上 8 点 30 分时,时针与分针的夹角的度数是________.【答案】75°【解析】【分析】可画出草图,利用钟表表盘的特征解答.【详解】解:∵8点30分,时针在8和9正中间,分针指向6,中间相差两个半大格,而钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分时,时针与分针的夹角的度数为:30°×=75°.故答案为:75°.【点睛】本题考查钟表时针与分针的夹角,“钟表12个数字,每相邻两个数字之间的夹角为30°”是常用的基本知识.三、计算题:(共 18 分)15.(1)计算:﹣3﹣(﹣5)+(﹣6)﹣(﹣3);(2)计算:﹣23+(﹣4)×[(﹣1)2021+(﹣32)2];(3)解方程:2x﹣(2﹣x)=4(4)解方程:2﹣16x-=12x+;【答案】(1)﹣1;(2)﹣13;(3)x=2;(4)x=4.【解析】【分析】(1)先化简符号,再计算加减即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.(3)去括号,移项合并,将未知数系数化为1,即可求出解.(4)去分母,去括号,移项合并,将未知数系数化为1,即可求出解.【详解】(1)原式=﹣3+5﹣6+3,=﹣1;(2)原式=﹣8﹣4×(﹣1+ 94),=﹣8+4﹣9,=﹣13;(3)2x﹣(2﹣x)=4,2x﹣2+x=4,3x=6,x=2;(4)2﹣16x-=12x+,12﹣(1﹣x)=3(1+x),12﹣1+x=3+3x,11+x=3+3x,x﹣3x=3﹣11,﹣2x=﹣8,x=4.【点睛】此题考查了有理数的混合运算和解一元一次方程,熟练掌握运算法则是解本题的关键.16.先化简,再求值(a﹣2b)2•(2b﹣a)3÷(a﹣2b)4﹣(2a﹣b),其中 a=﹣1,b=3.【答案】12.【解析】【分析】先将原式统一变形为以(a-2b)为底的同底数幂,再利用乘除法则进行计算,最后去括号,合并同类项,代值计算即可.【详解】解:(a-2b)2•(2b-a)3÷(a-2b)4-(2a-b),=-(a-2b)5÷(a-2b)4-(2a-b),=-(a-2b)-2a+b=-3a+3b把a=-1,b=3代入得:原式=-3×(-1)+3×3=12.【点睛】此题主要考查了整式的混合运算,正确将原式变形是解题关键.四、解答题(共 36 分)17.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.【答案】(1)∠BOD =138°;(2)∠COE=21°.【解析】【分析】(1)根据平角的定义即可得到结论;(2)根据余角的性质得到∠COD=48°,根据角平分线的定义即可得到结论.【详解】(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∴∠DOE=12∠BOD=69°,∴∠COE=69°﹣48°=21°.【点睛】本题考查了余角和补角的知识,属于基础题,互余的两角之和为90°,互补的两角之和为180°是需要同学们熟练掌握的内容.18.一个几何体由几个大小相同的小立方块搭成,从正面和上面观察这个几何体,看到的形状都一样(如图所示).(1)这个几何体最少有多少个小立方块,最多有多少个小立方块;(2)当摆放的小立方块最多时,请画出从左面观察到的视图.【答案】(1)该几何体最少有 7 个小正方体,最多有9 个小正方体,(2)由(1)知,该几何体的左视图如图所示:【解析】【分析】(1)易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.(2)根据(1)中小正方体个数最多的情况的分布,由左视图的定义作图即可得.【详解】(1)该几何体中小正方体的分布情况如图所示:由图知,该几何体最少有1+1+1+2+2=7 个小正方体,最多有2+2+2+2+1=9 个小正方体,(2)由(1)知,该几何体的左视图如图所示:【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.七中育才学校排球活动月即将开始,其中有一项为垫球比赛,体育组为了了解七年级学生的训练情况,随机抽取了七年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:(1)在扇形统计图中,A级所占百分比为;(2)在这次测试中,一共抽取了名学生,并补全频数分布直方图;(3)在(2)中的基础上,在扇形统计图中,求D级对应的圆心角的度数;(4)若A,B,C,D等级的平均成绩分别为165、135、105、75个,你能估算出学校七年级同学的平均水平吗若能,请计算出来.(保留准确值)【答案】(1)25%(2)100(3)54°(4)能【解析】【分析】(1)根据A级所在扇形的圆心角为90°求得其所占的百分比即可;(2)用A级的人数除以其所占的百分比即可求得总人数;(3)用D级的人数除以总人数乘以周角的度数即可求得对应的圆心角的度数; (4)能,用样本估计整体即可算出.【详解】(1)∵A级所在扇形的圆心角的度数为90°,∴A级所占百分比为90360×100%=25%;故答案为:25%;(2)∵A级有25人,占25%,∴抽查的总人数为25÷25%=100人,∴D级有100﹣20﹣40﹣25=15人,故答案为:100;频数分布图为:(3)D类的圆心角为:15100×360°=54°;(4)能,七年级同学的平均水平为:1652513540105207515100⨯+⨯+⨯+⨯=.【点睛】本题考查了频数分布直方图及扇形统计图的知识,解题的关键是从统计图中整理出相关的信息,难度不大.20.学校在七年级推行未来课堂快一个学期了,少数同学由于各种原因屏幕受损严重或者平板笔遗失.学校决定在假期统一对屏幕损坏的平板进行屏幕更换并补齐遗失的平板笔.据统计有20台平板的屏幕需要更换和一批平板笔需要购买(平板笔个数大于200支),现从A、B两家公司了解到:更换屏幕价格都是2100元,平板笔每支70元.A公司的优惠政策为每更换一台平板屏幕赠送10支平板笔,B公司的优惠政策为所有项目都打八折.(1)若设学校需要购买平板笔x(x>200)支,用含x的代数式分别表示两家公司的总费用W A和W B;(2)若学校已经确定更换20台屏幕并购买500支平板笔:①若只能到其中一家公司去更换和购买,哪家公司更加合算②若两家公司可以自由选择,你认为至少需要花费多少,请你计算验证.【答案】(1)W A=70x+28000,W B=56x+33600;(2)①B公司更加合算;②若两家公司可以自由选择,至少需要花费58800元.【解析】【分析】(1)根据题意列出关于平板笔的代数式;(2)①计算出在A、B两家公司购买500支平板笔的费用,进行比较即可;②两家公司可以结合购买,就先到A公司买20个平板的屏幕获得赠送的200支平板笔,,再到B公司购买300支平板笔,这样花费最少.【详解】解:(1)由题意得:W A=20×2100+70(x﹣10×20)=70x+28000,W B=20×2100×80%+70x•80%=56x+33600,(2)①由(1)得:当x=500时,W A=70x+28000=70×500+28000=63000,W B=56x+33600=56×500+33600=61600,∵63000>61600,∴若只能到其中一家公司去更换和购买,B公司更加合算;②2100+10×70=2800,2100÷2800=,则在A公司买一个平板的屏幕赠送10支平板笔,相当于打折,B公司的优惠政策为所有项目都打八折,所以应该到A公司买20个平板的屏幕赠送200支平板笔,,再到B公司购买300支平板笔,20×2100+300×70×80%=58800,∴若两家公司可以自由选择,至少需要花费58800元.【点睛】本题考查一元一次方程的应用------方案问题,解题关键是通过计算比较做出选择.B 卷一、填空题(每小题 4 分,共 20 分)21.若方程(k﹣2)x|k﹣1|=3是关于x的一元一次方程,则k=_____.【答案】0【解析】【分析】利用一元一次方程的定义判断即可.【详解】解:∵方程(k-2)x|k-1|=3是关于x的一元一次方程,∴|k-1|=1且k-2≠0,解得:k=0,故答案为:0.【点睛】此题考查了一元一次方程的定义,以及绝对值,熟练掌握一元一次方程的定义是解本题的关键.22.已知线段AB=6cm,点C在直线AB上,AC=13AB,则BC=_____.【答案】4cm或8cm.【解析】【分析】画出图形,分情况讨论:①当点C在线段AB上;②当点C在线段BA的延长线上;③因为AB大于AC,所以点C不可能在AB的延长线上.【详解】如上图所示,可知:当点C在线段AB上时,BC=AB−AC=4cm;当点C在线段BA的延长线上时,BC=AB+AC=8cm.故答案为4cm或8cm.【点睛】本题考查了比较线段的长短,解题的关键是根据题意分情况讨论.23.若关于 a,b 的多项式 3(a212ab﹣b2)﹣(a2﹣mab+2b2)中不含有 ab 项,则 m=_________.【答案】3 2【解析】【分析】可以先将原多项式去括号,合并同类项,然后根据不含有ab项可以得到关于m的方程,解方程即可解答.【详解】解:3(a2-12ab-b2)-(a2-mab+2b2),=3a2-32ab-3b2-a2+mab-2b2,=2a2+(m-32)ab-5b2,∵关于a,b的多项式3(a2-12ab-b2)-(a2-mab+2b2)中不含有ab项,∴m-32=0,解得:m=32,故答案为:32.【点睛】本题考查了整式的加减,能正确合并同类项是解此题的关键.24.如图,按此规律,第________行最后一个数是 2021,则此行数之和____.【答案】(1). 673(2). 13452【解析】【分析】每一行的最后一个数字分别是1,4,7,10…,易得第n行的最后一个数字为1+3(n-1)=3n-2,由此建立方程求得最后一个数是2021在哪一行,再利用求和公式计算可得.【详解】解:∵每一行的最后一个数分别是1,4,7,10…,∴第n行的最后一个数字为1+3(n-1)=3n-2,∴3n-2=2021,解得n=673.因此第673行最后一个数是2021,此行的数之和为673+674+675+…+2021+2021=()() 6732017201767312+⨯-+= 13452故答案为:673,13452.【点睛】此题考查数字的变化规律,根据数字的排列规律,找出数字之间的联系,得出运算规律解决问题.25.如图,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 内的射线,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,当∠BOC 在∠AOD 内绕着点 O以3°/秒的速度逆时针旋转 t 秒时,当∠AOM:∠DON=3:4 时,则 t=____________.【答案】100 7【解析】【分析】由题意得∠AOM=12(10°+3t+20°),∠DON=12(150°-10°-3t),由此列出方程求解即可.【详解】解:∵射线OB从OA逆时针以3°每秒的旋转t秒,∠BOC=20°,∴∠AOC=∠AOB+∠COB=3t°+10°+20°=3t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12(3t°+30°).∵∠BOD=∠AOD-∠BOA,∠AOD=150°,∴∠BOD=140°-3t.∵射线ON平分∠BOD,∴∠DON=12∠BOD=12(140°-3t).又∵∠AOM:∠DON=3:4,∴12(3t°+30°):12(140°-3t)=3:4,解得t=1007.故答案是:1007.【点睛】此题主要考查角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化,然后根据已知条件求解.二、解答题(共 30 分)26.已知 A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2.求:(1)2A﹣3B.(2)若|2x﹣3|=1,y2=9,|x﹣y|=y﹣x,求 2A﹣3B 的值.(3)若 x=2,y=﹣4 时,代数式 ax31+2by+5=17,那么当 x=﹣4,y=﹣12时,求代数式 3ax﹣24by3+6 的值.【答案】(1)12x2+12y2-7xy;(2)当 x=2,y=3 时,2A﹣3B=114;当 x=1,y=3 时,2A﹣3B=99;(3)﹣12.【解析】【分析】(1)把A、B代入化简即可;(2)由|2x-3|=1,y2=9,|x-y|=y-x,确定x、y的值,然后代入(1)的结果中;(3)把x=2,y=-4代入ax3+12by+5=17中,得关于a、b的代数式,把x=-4,y=-12,代入代数式3ax-24by3+6中,然后把得到的关于a、b的代数式整体代入求值.【详解】解:(1)2A-3B,=2(3x2+3y2-2xy)-3(xy-2y2-2x2),=6x2+6y2-4xy-3xy+6y2+6x2,=12x2+12y2-7xy;(2)∵|2x-3|=1,y2=9,∴x1=2,x2=1,y1=3,y2=-3,又∵|x-y|=y-x,∴x1=2,x2=1,y=3.当x=2,y=3时,2A-3B,=12x2+12y2-7xy,=12×4+12×9-7×2×3,=114;当x=1,y=3时,2A-3B,=12x2+12y2-7xy,=12×1+12×9-7×1×3,=99.(3)∵x=2,y=﹣4时原式=ax31+2by+5=17 ,∴8a﹣2b=12,即4a﹣b=6.当x=﹣4,y=﹣12时,原式=3ax﹣24by3+6,=﹣12a+3b+6,=﹣3(4a﹣b)+6,∵4a﹣b=6,∴原式=﹣3×6+6,=﹣12.【点睛】本题考查了代数式的化简求值.题目(2)由条件确定x、y的值是关键,题目(3)掌握整体代入的方法是关键.27.某房地产开发商 2021 年 6 月从银行贷款 3 亿元开发某楼盘,贷款期限为两年,贷款年利率为 8%.该楼盘有 A、B 两种户型共计 500 套房,算上土地成本、建筑成本及销售成本,A 户型房平均每平方米成本为万元,B 户型房平均每平方米成本为万元,表是开发商原定的销控表:(1)该楼盘两种户型房各有多少套(2)由于限购政策的实施,2021 年以来房地产市场萎靡不振,开发商又急于在两年贷款期限到之前把房卖完,2021 年 1 月实际开盘时将 A 户型房按原定销售价打 9 折,B 户型房按原定销售价打折出售,结果 2021 年 6 月前将两种户型的房全部卖完,开发商在还完贷款及贷款利息之后,还获利多少万元实际销售额比原定销售额下降了百分之几【答案】(1)该楼盘 A 户型房有 200 套,B 户型房有 300 套.(2)开发商在还完贷款及贷款利息之后,还获利 900 万元,实际销售额比原定销售额下降了 15%.【解析】【分析】(1)设该楼盘A户型房有x套,B户型房有y套,根据该楼盘有A、B两种户型共计500套房结合总成本为3亿元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据实际销售额-贷款本息和=利润,即可求出开发商的利润,再用1减实际销售额占原定销售额的百分比,即可得出实际销售额比原定销售额下降了百分之几.【详解】解:(1)设该楼盘A户型房有x套,B户型房有y套,根据题意得:5000.6750.710030000x yx y+=⎧⎨⨯+⨯=⎩,解得:200300 xy=⎧⎨=⎩.答:该楼盘A 户型房有200 套,B 户型房有300 套.(2)75×200××+100×300×1×﹣30000(1+2×8%)=900(万元),1﹣75200080.910030010.83752000.81003001⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市七中育才学校七年级上学期期末数学试题及答案一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104C .3.84×105D .3.84×1062.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1394.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =8.估算15在下列哪两个整数之间( ) A .1,2B .2,3C .3,4D .4,59.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 10.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°11.3的倒数是( ) A .3B .3-C .13D .13-12.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =13.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .14.如图的几何体,从上向下看,看到的是( )A .B .C .D .15.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题16.已知方程22x a ax +=+的解为3x =,则a 的值为__________.17.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.18.写出一个比4大的无理数:____________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.20.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 21.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.22.若a 、b 是互为倒数,则2ab ﹣5=_____.23.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.24.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.25.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)26.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.27.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.28.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.29.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.(1)长方形的边AD 长为 单位长度;(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同。
那么当三角形BDQ ,三角形BPC 两者面积之差为12时,直接写出运动时间t 的值.33.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.34.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?35.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
已知:点C 在直线AB 上,AC a =,BC b =,且a b ,点M 是AB 的中点,请按照下面步骤探究线段MC 的长度。
(1)特值尝试若10a =,6b =,且点C 在线段AB 上,求线段MC 的长度. (2)周密思考:若10a =,6b =,则线段MC 的长度只能是(1)中的结果吗?请说明理由. (3)问题解决类比(1)、(2)的解答思路,试探究线段MC 的长度(用含a 、b 的代数式表示). 36.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?37.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.38.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.4.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.5.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.6.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.8.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.11.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 13.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.14.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意,故选:A .【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.15.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B .二、填空题16.2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.18.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.19.【解析】【分析】根据题意分别表示P,Q的数为-8+2t和10-3t,并分到A前和到A后进行分析求值.【详解】解:由题意表示P,Q的数为-8+2t()和10-3t(),-8+3(t-6)()解析:12 5【解析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.20.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.23.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.24.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.25.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.26.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.27.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.28.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3c m.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.29.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】x=代入方程,得把1m⨯-=141m=∴5故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.30.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)4;(2)-3.5或-0.5;(3)t 的值为1116、1316、138或118. 【解析】【分析】(1)先求出AB 的长,由长方形ABCD 的面积为12,即可求出AD 的长;(2)由三角形ADP 面积为3,求出AP 的长,然后分两种情况讨论:①点P 在点A 的左边;②点P 在点A 的右边.(3) 分两种情况讨论:①若Q 在B 的左边,则BQ = 3-3t .由|S △BDQ -S △BPC |=12,解方程即可;②若Q 在B 的右边,则BQ = 3t -3.由|S △BDQ -S △BPC |=12,解方程即可. 【详解】(1)AB =1-(-2)=3.∵长方形ABCD 的面积为12,∴AB ×AD =12,∴AD =12÷3=4.故答案为:4.(2)三角形ADP 面积为:12AP •AD =12AP ×4=3, 解得:AP =1.5,点P 在点A 的左边:-2-1.5=-3.5,P 点在数轴上表示-3.5;点P 在点A 的右边:-2+1.5=-0.5,P 点在数轴上表示-0.5.综上所述:P 点在数轴上表示-3.5或-0.5.(3)分两种情况讨论:①若Q 在B 的左边,则BQ =AB -AQ =3-3t . S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142t ⨯=2t , 1(66)22t t --=,680.5t -=±,解得:t =1316或1116; ②若Q 在B 的右边,则BQ =AQ -AB =3t -3.S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142t ⨯=2t , 1(66)22t t --=,460.5t -=±,解得:t =138或118.综上所述:t的值为1116、1316、138或118.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离公式.33.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.34.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.35.(1)2(2)8或2;(3)见解析.【解析】【分析】(1)根据线段之间的和差关系求解即可;(2)由于B点的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况进行分类讨论;(3)由(1)(2)可知MC=12(a+b)或12(a-b).【详解】解:解:(1)∵AC=10,BC=6,∴AB=AC+BC=16,∵点M是AB的中点,∴AM=12AB∴MC=AC-AM=10-8=2.(2)线段MC的长度不只是(1)中的结果,由于点B的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况:①当B点在线段AC上时,∵AC=10,BC=6,∴AB=AC-BC=4,∵点M是AB的中点,∴AM=12AB=2,∴MC=AC-AM=10-2=8.②当B点在线段AC的延长线上,此时MC=AC-AM=10-8=2.(3)由(1)(2)可知MC=AC-AM=AC-12AB 因为当B点在线段AC的上,AB=AC-BC,故MC=AC-12(AC-BC)=12AC+12BC=12(a+b)当B点在线段AC的延长线上,AB=AC+BC,故MC=AC-12(AC+BC)=12AC-12BC=12(a-b)【点睛】主要考察两点之间的距离,但是要注意题目中的点不确定性,需要分情况讨论. 36.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使。