不完全信息静态博弈(一)

合集下载

不完全信息静态博弈

不完全信息静态博弈

由于θi在[-ε,+ε]上是均匀分布的,因而θi ≥ 0和θi < 0的概率各为1/2。可认 为每个参与人认为对方选择抓与不抓的概率各为1/2。 当ε 0时,该纯策略贝叶斯均衡就收敛为一个完全信息博弈的混合策 略纳什均衡。
因而,海萨尼说,完全信息博弈的混合策略均衡可以解释为不完全信息 情况下纯策略均衡的极限。
策略贝叶斯均衡是一个类型依存战略组合
{ai* (i )}in,满足: 1
* ai* (i ) arg max pi (i | i )ui (ai , ai (i );i ,i ) ai
1、不完全信息古诺模型(板书)
• 在这个模型中,参与人的类型是成本函数。逆需求函数为
荷兰式拍卖:从一个非常高的初始标价逐步降低到有一个买者接受报价。 一级密封价格拍卖:出价最高的投标者获得拍卖品,并支付自己的出价 给卖者; 二级密封价格拍卖:出价最高的投标者获得拍卖品,并支付次最高出价。
1)
2)
英式拍卖:投标者按照递增的顺序宣布他们的出价,直到没有人愿意出更
高的价格,出价最高的投标者获得拍卖品; 荷兰式拍卖:从一个非常高的初始标价逐步降低到有一个买者接受报价。
看,一开始应采取“不合作”的策略。究竟是直觉正确,还是逻辑正
确? 博弈论专家Ken Binmore实验发现,不会出现一开始选择“不合作”
策略而使双方收益为1的情况。双方会主动选择“合作”策略,从而 走向合作。但逆向归纳法在某一步肯定会起作用。只要逆向归纳法在 起作用,“合作”便不能进行下去。
这个悖论在现实中的对应情况是,参与人不会在开始时确定他的策略
现在考虑同样的博弈但具有不完全信息:每个参与人有相同的支付结
构,但如果他赢了的话,他的利润为(1+θi),这里θi是每个参与人的 类型,是私人信息。但θi在[-ε,+ε]上均匀分布,这是公共知识。

博弈论与经济分析(不完全信息静态)

博弈论与经济分析(不完全信息静态)

博弈论与经济分析(不完全信息静态)第四章 不完全信息静态博弈不完全信息意味着至少有一个参与者不能确定另一个参与者的收益函数,或者说类型。

我们用一个例子来引入要讨论的问题: 例:信息不对称条件下的古诺模型 市场:P(Q)=a-Q ,Q=q1+q2 企业1:C1(q1)=cq1企业2:以θ的概率为高成本,即222()H C q c q =;以1θ-的概率为低成本,即222()L C q c q =。

当然,H L c c >。

信息不对称:企业2知道自己的成本,也知道企业1的成本;企业1知道自己的成本,但是只知道企业2成本状况的概率分布。

以上都是公共信息,即企业1知道企业2享有信息优势,企业2知道企业1知道,企业1也知道企业2知道企业1知道……如此等等。

解题:企业1会预测企业2在不同情况下的最优选择:当企业2为高成本时2122max[()]H q a q q c q *---当企业2为低成本时2122max[()]L q a q q c q *---既然企业只知道企业2成本情况的概率分布,则企业1只能根据上述预测最大化自己的期望收益:1121121max [(())](1)[(())]H L q a q q c c q a q q c c q θθ**---+----以上三个优化问题的一阶条件为:12()2H H a q c q c **--=12()2LL a q c q c **--=221[()](1)[()]2H L a q c c a q c c q θθ***--+---=联立求解:221()()36H H H L a c c q c c c θ*-+-=+-22()()36L L H L a c c q c c c θ*-+=-- 12(1)3H L a c c c q θθ*-++-=比较该结果与“完全信息条件”条件下结果的不同。

作业:说明企业2在两种成本下是否因为“信息优势”得到了好处?是应该巩固该优势还是向企业1公开信息?一、 静态贝叶斯博弈的标准表述完全信息静态:G={S1,…Sn;u1,…,un}在静态博弈条件下,策略S 就是一个行动A (当然,动态博弈则不同),于是我们可以写作G={A1,…An;u1,…,un}。

不完全信息博弈

不完全信息博弈

• 这个博弈的一个纯策略ai(ci) 是从﹝c’, c’’﹞到﹛0,1﹜的一个函数,其中0表示不 提供,1表示提供。参与人的支付函数为: • Ui(ai,a j, ci)=max(a1, a2)-aici • 如果j提供,i不提供, Ui(0,1, ci)=max(0, 1)-0ci=1;如果i提供, j不提供, Ui(1,0, ci)=max(1, 0)-1ci=1-ci • 贝叶斯均衡是一个策略组合,便得对于每 个i和每个可能的ci,策略ai﹡ (ci) 最大化参 与人i的期望效用。
因为z j≡Prob﹙ c’ ≤c j ≤c j ﹡﹚= P﹙ c j ﹡﹚ ,均衡分割点ci﹡必须满足ci﹡=1P﹙ c j ﹡﹚。因此ci﹡ 和c j ﹡都必须满足 方程c﹡=1- P(1-P﹙ c ﹡﹚)。假定存在 唯一的一个c﹡,解这个方程,那么下列条 件一定成立: ci﹡ = c﹡= 1- P﹙ c ﹡﹚。 比如说,如果P(· )是定义在﹝0,2﹞上 均匀分布( P(c)≡c/2 ),那么c﹡是唯 一的,等于2/3。为了检查c﹡=2/3确实是个 均衡点,如果参与人i不提供,他的期望支 付是P(c﹡)=1/3;如果成本为c﹡时提供, 他的期望支付为1- c﹡,提供是最优的。
• 那么q2L =1/2(5/4-q1); q2H =1/2(3/4-q1) • 企业1不知道企业2的真实成本从而不知道企 业2的最优反应是q2L还是q2H ,因此企业1选 择q1最大化下列期望利润函数: • E u1 =1/2 q1 (1- q1- q2L )+ 1/2 q1 (1- q1q2H ) 解一阶条件可得企业1的反应函数: • q1﹡= 1/2 (1- q1H- q2L )=1/2(1-Eq2) • 解反应函数可得贝叶斯均衡为: • q1﹡=1/3; q2L﹡=11/24; q2H﹡=5/24

博弈

博弈

1.两个人(甲、乙)通过一快递公司运送同样一件易碎品,结果途中都损坏,要求快递公司赔偿,快递公司只能对商品做一个粗略的估价(商品价格不超过500),于是让甲、乙分别在500元内写下货物价格,如果两个人写的价格一样,快递公司则按所写数额赔偿;如果两个人价格不一致,则按照低价进行赔偿,并且对报价低的人奖励50,对报价高的人罚款50。

甲、乙双方进行博弈,最后快递公司将获利。

不完全信息静态博弈2.7个人分一笔奖金,分配方式为:第一个人提出方案,如果同意这种方案的人数达到3人,提议通过,否则此人无权分享奖金,由剩余的人进行同样的过程。

并且提议顺序是既定的。

完全信息动态博弈3.定义物品的基本价值(公允价值),当物品的实际交易价格大于次基本价值,卖方获利,买房亏损,且两者数值相等,反之,买房获利,卖方亏损。

零和博弈4.两个人比武,双方都不知道对方实力。

比赛项目是徒手击碎转头,甲先一掌击碎3块,乙同样击碎3块。

于是,甲又拿来5块,一掌击碎,乙心中没底,放弃。

不完全信息动态博弈5.一名篮球前锋和队友在蓝下面对着对方的一个后卫时,形成了二打一的局面,该前锋可以选择直接投篮,也可以选择传球给队友,但根据经验,传球过人的成功率更大,最终前锋选择传球。

完全信息静态博弈6.甲到菜场去买菜,摊主众多,一摊主为了能与甲建立持久的销售关系,保持其信誉,不会对甲进行出售次品或者高价出售的行为,最后甲与摊主进行持久交易。

重复博弈7.一个收藏家,去农村淘宝,在一个农户家发现主人用珍贵的碟子做猫食碗,于是假装要买猫,主人不卖,收藏家表示愿意以高于猫本身价格两倍的钱购买这只猫,主人同意。

成交后,收藏家不在意地说:“这个碟子您已经没猫用不着了,就一起送我吧。

”,主人却说:“我用这个碟子已经卖出去10只猫了。

”不完全信息静态博弈8.两个人玩抛硬币的游戏,正面甲给以十元,背面乙给甲十元,为了公平起见,丙做裁判,每一局甲和乙都需要分别给丙一元,作为报酬,这项活动对甲、乙双方来说为负和博弈9. 各个国家通过比较优势进行贸易分工,充分利用资源,提高整体福利正和博弈10.跳蚤市场中卖方:甲;买方:乙。

博弈论——不完全信息静态博弈

博弈论——不完全信息静态博弈

3 不完全信息静态博弈3.1 简介博弈论在1970年代之后逐渐进入主流经济学体系,主要是由于它在不完全信息条件下的经济分析中表现出特别的优势。

不完全信息指经济活动中一部分经济主体的某些特征对于其他主体来说是不清楚的。

如在拍卖商品或工程招投标中。

信息不完全又称为信息不对称,即其他局中人没有特定局中人清楚特定局中人自身的特征。

不完全信息静态博弈就是假定某些局中人具有其他局中人不清楚的某些特征的静态博弈。

但对于局中人本身来说,他自身的这些不为人所知的特征对于他自己来说是清楚的,因而称这些特征为局中人自己拥有的“私人信息”(private information)。

在博弈论中,习惯地将局中人的“私人信息”集中表现为局中人的支付函数特征,也就是说,局中人的私人特征将完全通过其支付函数特征表征出来,而不完全信息就表现为一些局中人不清楚另一局中人的支付函数,当然,每个局中人是完全清楚自己的支付函数的。

3.2 理论: 静态贝叶斯博弈和贝叶斯纳什均衡在假定局中人拥有私人信息的情况下,其他局中人对特定局中人的支付函数类型并不清楚,局中人不知道他在与谁博弈,在1967年前,博弈论专家认为此时博弈的结构特征是不确定的,无法进行分析。

Harsanyi (1967、1968)提出了一种处理不完全信息博弈的方法,即引入一个虚拟的局中人——“自然N ”。

N 首先行动,决定每个局中人的特征。

每个局中人知道自己的特征,但不知道其他局中人特征。

这种方法将不完全信息静态博弈变成一个两阶段动态博弈,第一个阶段是自然N 的行动选择,第二阶段是除N 外的局中人的静态博弈。

这种转换被称为“Harsanyi 转换”,它将不完全信息博弈转换为完全但不完美信息博弈。

局中人拥有的私人信息为他的“类型”,由其支付函数决定,故常将支付函数等同于类型。

用i θ表示局中人i 的一个特定类型,i H 表示局中人i 所有可能类型的集合,即i i H ∈θ,称i H 为局中人i 的类型空间,n i ,,1 =。

经济博弈论第六章不完全信息静态博弈共39页

经济博弈论第六章不完全信息静态博弈共39页

11
27.04.2020
6.1.3 海萨尼转换
基本思路:将静态博弈转化为动态博弈 (1)假设有一个名为“自然”的博弈方0,该博弈
方的作用是先为其他每个博弈方抽取他们的类型, 抽取的这些类型构成类型向量
t=(t1,…,tn),其中t i T i ,i=1,…,n。
(2)“自然”让每个博弈方知道到自己的类型, 但却不让其他博弈方知道。
10
27.04.2020
6.1.2 静态贝叶斯博弈的一般表示
静态贝叶斯博弈的一般表达式为: G={A1,…,An ;T1,…,Tn;u1,…,un}
其中Ai为博弈方i的行为空间(策略空间), Ti是博弈方i的类型空间,博弈方i的得益 ui=ui(a1,…,an,ti)为策略组合(a1,…,an ) 和类型ti的函数。
q1*a2C1C3 H(1)CL)
6
27.04.2020
6.1.1 不完全信息的古诺模型
与完全信息古诺模型比较 完全信息古诺模型中的的产量
q1*
a2C1 3
C2
q2*
a2C2 3
C1
CH C2 q2*(CH)q2*
CL C2 q2*(CL)q2*
ቤተ መጻሕፍቲ ባይዱ
7
27.04.2020
6.1.2 静态贝叶斯博弈的一般表示
厂商1只知道有两种可能性,一种是C2= C2(q2) = CH q2概率为θ另一种是C2= C2(q2)= C Lq2, 概率为1-θ,而CH>CL,也即边际成本有高、低两 种可能。
3
27.04.2020
6.1.1 不完全信息的古诺模型
厂商2在边际成本是较高的CH时会选择较低的产 量,而在边际成本为较低的CL时会选择较高的产 量。

第九讲不完全信息静态博弈o

第九讲不完全信息静态博弈o

Example 2:
Players: The pair of people
States: The set of states is yy, yn, ny, nn Actions: The set of actions of each player is B, S
Signals: Player 1 receive one of two signals, y1 and n1; her
Conclusion: (B, (B, S)), where the component is the action of player 1 and the other component is the pair of actions of the two types of player 2, is a Nash equilibrium.
2. The action of each type of player 2 is optimal, given the action of player 1.
That is, we treat the two types of player 2 as sepatate players and analyze the situation as a three-player strategic game.
1/2
BS 2/3 B 2,1 0,0
S 0,0 1,2
State y y
2:y2
B
1/3
S
1/2
BS 0,1 2,0 1,0 0,2
1:y1
2/3 B S
1/2
BS 2,0 0,2 0,1 1,0
State y n
1:n1
2:n2
B

博弈论_不完全信息静态博弈

博弈论_不完全信息静态博弈

贝叶斯纳什均衡的存在性
贝叶斯纳什均衡的存在性定理 定理3.1.2,见书上第62页,不讲定理的证明 它与第24页的定理2.2.3的比较。定理3.1.2所
要用到的前提条件更强,其原因在于: 在贝叶斯博弈中,局中人i的收益是纯策略下
的期望收益。或,局中人i的收益函数ui(s-i, si, ti)可以随着类型的变化而变化;当ui是si的凹函 数时,其凸组合“∑pi(t-i|ti)×ui(s-i(t-i), si, ti), t-i∈T-I”也是si的凹函数;若拟凹则不成立
义3.1.2做比较 此定义是对纯策略下贝叶斯纳什均衡定义的一
个直接扩展,其中E(ui)是局中人i在混合策略 组合下,对其收益函数ui的数学期望 定理3.1.3:混合策略组合是贝叶斯纳什均衡 的充分必要条件 定理3.1.4:贝叶斯纳什均衡的存在性定理
求解行业博弈的贝叶斯纳什均衡
条件概率 标记混合策略的符号 标记期望收益的符号 计算不同类型下的期望收益 书上的方法:由混合策略下贝叶斯纳什均衡的
对局中人2的计算
局中人 1建厂 高成本
进入
不进入
局中人 1建厂 低成本
进入
不进入
建厂 , -4/3 , 0 建厂 , -4/3 , 0
不建厂 , 1 , 0 不建厂 , 1 , 0
合成后的支付矩阵
局中人 1建厂 高成本
进入
不进入
局中人 1建厂 低成本
进入
不进入
建厂 0, -4/3 2, 0 建厂 1.5, -4/3 3.5, 0
混合策略
在贝叶斯博弈G=[N, {Ti}, P, {Si(ti)}, {ui}]中,局中人i 在类型ti∈Ti下,为每一个纯策略以概率进行选择,则 xi(ti) =(x1(i)(ti), x2(i)(ti), ···, xm_i(i)(ti))称为局中人i在类型 ti下的一个混合策略。有时简写为xi。

不完全信息静态博弈的现实例子

不完全信息静态博弈的现实例子

不完全信息静态博弈在现实生活中有许多例子。

以下是其中几个:
房地产市场:在房地产市场中,买家和卖家可能对房屋的实际价值有不同的了解。

由于信息不完全,买家和卖家可能会在价格上产生分歧,导致交易的困难。

就业市场:在就业市场中,雇主和应聘者之间可能存在信息不完全的情况。

雇主可能不了解应聘者的全部技能和经验,而应聘者可能不了解雇主的具体需求和工作要求。

这可能导致雇主开出过高的薪资或对应聘者产生误判,影响双方的利益。

保险市场:在保险市场中,保险公司和投保人之间可能存在信息不完全的情况。

投保人可能不了解保险产品的全部条款和细节,而保险公司可能不了解投保人的真实风险状况。

这可能导致保险产品的定价不合理或投保人得不到足够的保障,影响双方的利益。

商业谈判:在商业谈判中,双方可能对对方的底牌和利益诉求不完全了解。

这可能导致谈判陷入僵局或达成不公平的协议,影响双方的利益。

不完全信息静态博弈Harsanyi(1967-68)提出了一个不完全信息博弈的

不完全信息静态博弈Harsanyi(1967-68)提出了一个不完全信息博弈的
以上方程是在给定价值 x 下, 最优标价 b 需满足的条 件。 如投标函数 β · 构成贝叶斯纳什均衡, 那么它从 x 出发的映射就应是最优的 b, 即满足以上必要条件的 b 应等于 βx。在这个均衡条件之下,以上方程可以变形 为:
β (x)F (x) + (N − 1)β(x) = (N − 1)x
– Typeset by FoilTEX –
4
我们以下定义均以纯策略为例:
不完全信息博弈 要求:虽然每个博弈者并不知道对手 的类型,但是所有类型出现的联合概率分布 F : Θ → [0, 1] 需为共同认识, 其中 Θ = Θ1 × Θ2... × ΘN。 博弈者 i 观察到私人类型 θi 后的效用可以表示为 Ui[s1(θ1), ..., sN(θN)|θi], Ui(·|θi) 是 在给定 θi 下的 von Neumann-Morgenstern 期望效用函 数, 因为其自变量均为随机变量。于是,
– Typeset by FoilTEX –
7
拍卖理论
现代拍卖理论是从 Vickery(1961) 开始的,80 年代以来 快速衍生出大量文献,其中以静态博弈为分析框架 的 拍卖问题主要是围绕收入相等法则(Revenue Equivalence Principle)和联系法则 (Linkage Principle) 两个基本原理展开。
方案 3? A 省在修路的情况下, 其支付额应在 50 万元 的修路费基础上,减去它给 B 省的外部性 30 万元,
– Typeset by FoilTEX –
20
方案 3 为: 如果 A 省上报值与 B 省收益和大于 100 万元,修路,但 A 省只支付 20 万元,B 省支付 50 万 元。
– Typeset by FoilTEX –

静态博弈名词解释

静态博弈名词解释

静态博弈名词解释所谓静态博弈,是指博弈各方同时选择并实施自己最优策略,使得他们的收益和支付的均衡概率都相等。

在这个定义中,对于每一个参与者而言,都只能看到自己的战略选择及其收益,看不到其他参与者的选择和战略,即:在这里,对于参与者双方而言,都是单阶段博弈;与动态博弈相比较,这个定义只考虑了收益,没有考虑风险,因此是一种简化了的静态博弈模型。

动态博弈一般情况下考虑了风险,但如果是在某些情况下仅仅考虑风险,则称为静态博弈,静态博弈就是一种特殊形式的动态博弈。

这是一种基于完全信息和不完全信息的定义,完全信息是指参与者能够准确地知道其他参与者的选择和策略。

它也就是说,参与者完全可以确定其他参与者的选择,即:在完全信息的条件下,在给定策略空间的情况下,参与者无论选择什么策略,其结果总是自己最优策略,并且这个自己最优策略是唯一的,而且该最优策略正是双方共同选择的结果。

在这里,“自己”应理解为参与者本身,因此这是一个特殊的完全信息博弈。

在实际中,只要允许存在未知参数的不确定性,就可以建立这样的博弈模型,其策略的期望值(或支付)的分布是未知的,而且这种未知参数的存在是普遍的。

20世纪70年代以来,研究者们开始关注非合作博弈问题,特别是大量非合作博弈的例子被证明可以用来分析竞争市场。

许多经济学家认为博弈论在现实中将更多地发挥作用,因为,这里几乎涉及一切事物:政府的行为、产品的设计、组织的决策、社会制度的安排等等。

同时,研究者们又提出了新的博弈模型,这些模型描述了完全信息的、非合作博弈的情况。

对于一般的非合作博弈,博弈的参与者有可能利用博弈规则做出损人利己的行为,称之为策略性行为。

在具有策略性行为的博弈中,有一种较有意义的模型叫战略互动模型。

所谓战略互动,是指在相互依赖的系统中,参与者采取行动相互影响的过程。

定义中,策略性行为是博弈参与者之间的互动关系,即博弈参与者之间的相互作用。

动态博弈包含着策略性行为。

战略互动模型,把博弈参与者间的行为关系作为战略互动模型的核心内容,显示了博弈参与者间的相互依赖关系。

博弈论讲义3-不完美信息静态博弈

博弈论讲义3-不完美信息静态博弈
随机变量ti在Ti的概率分布假定是已知的。
不完全信息博弈中,至少有一个参与者i有多个可能的 类型,其他参与者虽然知道ti∈Ti,但都无法确知ti在 Ti中的具体取值。
如果只有虚拟参与人具有多个类型,则是不完全信息
如果有虚拟参与人以外的某些参与人有多个类型,则属于信息 不对称。
版权所有余向华源自12信息问题与市场的建立
“柠檬”市场现象(Akerlof):
由于信息问题引发逆向选择(劣币驱逐良币),
导致有效的市场可能建立不起来,或发展慢。
普遍存在于产品市场、劳动力市场(包括教师市场的问
题)、保险市场、信贷市场等上
“碟猫”市场现象:
本能不存在的市场,由于信息的不完全反给创
造出来了。比如赌石市场、彩票市场
第3篇 不完全信息静态博弈
3.1 不完全信息静态博弈和贝叶斯纳什均衡
不完全信息博弈 海萨尼转换 不完全信息静态博弈的策略式表述和贝叶斯纳什均衡
3.2 贝叶斯纳什均衡与混合策略均衡的纯化 3.3 贝叶斯纳什均衡应用举例 3.4 非对称信息下的机制设计问题
版权所有
余向华
1
信息问题与现实生活
爱心困惑:面对一个个乞丐向你行乞,你会如何决定呢? 佛心者:宁可被骗一千次,绝不放过一次帮助需要帮助者。 人心者:宁可错过千次帮助需要帮助的人,绝不愿被骗一次?
不帮、或者收集信息再决定?
婚恋困惑:知人知面与知心问题 食品安全中的信息问题 信息与法律举证问题 …
版权所有
余向华
2
信息问题与市场运行
在信息不完美的情况下,博弈参与者的收益为期望收益: 被求者
接受 不接受
求爱博弈:
求爱 100,100
品德优良者求爱 求爱者 不求爱 0,0

第五章 不完全信息静态博弈及应用 《博弈论与经济》 PPT课件

第五章  不完全信息静态博弈及应用  《博弈论与经济》 PPT课件

p(t-iti ) p(ti )
p(t-i ti )
p(t-i ti
)
pi
t-i
▪ 它描写了参与人i依据自己的类型 ti 对其余局中人类型 t-i 的推断或信
念。
▪ 以下用
G T1, T2,, Tn; A1, A2,, An; u1, u2,, un; P1, P2,, Pn
弈模型。
表示贝叶斯博
因而局中i人的策略是定义在局中人的信息集 上,Ti 取值于行动集合
的映射A:i
si : Ti Ai


si (ti ) ai , ti Ti , ai Ai
▪ 局中人的条件期望 支付函数
▪ 由于局中人i的支付函数 ui ui (a1, a2 ,, an ; t1, t2 ,, tn ) 是随机的,因而需 用期望支付作为决策的依据。对给定的其余局中人的策略组合
参与人2关于参与人1的最优反应策略为 s2(t) (C, D)
▪ 2. 求参与人1关于参与人2的最优反应策略。
▪ 对于固定的 s2(t),参与人1选择 s1 a1 ,最大化自己的期望支付,即
求解最大化问题

max u1(a1, s2 (t1),t1) (1- )u1(a1, s2(t2 ),t2) a1
己以及对手的支付值,因为支付还依赖于对手的成本是H还是L。而局 中人对于对手的这一私人信息还不了解,这样当然无法选择出对自己 有利的策略。为解决这个问题,海萨尼提出了解决的方法—海萨尼转 换。
▪ 海萨尼转换
▪ 1.海萨尼从不完全信息模型的特征入手,引入一个概念,类
型: ti Ti , i 1,2,, n 。Ti 称为局中人的类型空间或类型集合,
▪ 故 : (C, (C, D)) 是贝叶斯纳什均衡。

不完全信息静态博弈:贝叶斯纳什均衡

不完全信息静态博弈:贝叶斯纳什均衡

不完全信息静态博弈:贝叶斯纳什均衡海萨尼1、前两篇⽂章讲的博弈都包含⼀个基本假设,即所有参与⼈都知道博弈的结构、规则、⽀付函数,因⽽称为完全信息博弈。

然⽽现实中,参与者并不了解其他参与者的⼀些信息,即不完全信息博弈(games of incomplete information)。

2、当对⼿有多种情况时,⽐如市场博弈的例⼦,在位者成本函数可能有需求⾼、需求中、需求低三种情况,那么可以采取“海萨尼转换”,即引⼊⼀个虚拟的参与⼈“⾃然”,⾃然⾸先⾏动,选择参与⼈的类型,被选择的参与⼈知道⾃⼰的真实类型,其他参与⼈并不清楚这个参与⼈的真实类型,但知道各种可能类型的概率分布。

如下图所⽰:3、这种情况下,可以通过海萨尼转换(Harsanyi transformation)把不完全信息博弈转换成完全但不完美信息博弈(complete but inprefer information)。

“不完美信息”指“⾃然”作出了选择,但其他参与⼈并不知道它的具体选择是什么,仅知道各种选择的概率分布。

4、在静态不完全信息博弈中,参与⼈同时⾏动,每个参与⼈的最优战略依赖于⾃⼰的类型,他不可能准确的知道其他参与⼈实际上会做出什么选择,但他能正确的预测其他参与⼈的选择是如何依赖于各⾃的类型的。

决策的⽬标就是在给定⾃⼰的类型和别⼈的类型依从战略的情况下,最⼤化⾃⼰的期望效⽤。

海萨尼定义了“贝叶斯纳什均衡”,给定⾃⼰的类型和别⼈类型的概率分布,每个参与⼈的期望效⽤达到了最⼤化,没有⼈有积极性选择其他战略。

5、举个例⼦,某⼀市场原来被A企业所垄断,现在B企业考虑是否进⼊。

B企业知道,A企业是否允许它进⼊,取决于A企业阻挠B企业进⼊所花费的成本。

如果阻挠的成本⾼,A企业的最优战略是默许B进⼊。

如果阻挠的成本低,A企业的最优战略是阻挠。

⽀付矩阵如下表所⽰:B企业并不知道A企业的阻挠成本是⾼还是低。

这⾥,某⼀参与⼈本⼈知道、其他参与⼈不知道的信息称为私⼈信息。

不完全信息静态博弈例子

不完全信息静态博弈例子

不完全信息静态博弈例子博弈论是研究决策者在相互影响下进行决策的数学模型。

在博弈论中,不完全信息静态博弈是一种常见的博弈形式。

在这种博弈中,每个决策者只能获得有限的信息,无法完全了解其他决策者的策略和利益。

本文将通过一个例子来说明不完全信息静态博弈的特点和解决方法。

假设有两个商人A和B,他们同时决定是否进入一个新的市场。

进入市场的成本是固定的,但市场的利润是不确定的。

商人A可以选择进入市场或不进入市场,商人B也可以做出相同的选择。

然而,商人们只能获得有限的信息,无法准确了解对方的决策和市场利润。

商人A和B的利益是相互关联的。

如果两个商人都选择进入市场,他们将面临更大的竞争和风险,但如果市场利润高,他们也有机会获得更大的回报。

如果一个商人选择进入市场而另一个商人选择不进入市场,前者将面临更大的风险,但如果市场利润高,他将独享这一利润。

在这个例子中,商人A和B都面临着不完全信息的情况。

他们无法准确了解对方的决策和市场利润,只能根据自己的信息做出决策。

这种情况下,他们需要通过分析对方的可能策略和利益来做出最优的决策。

为了解决这个问题,我们可以使用博弈论中的概念和方法。

首先,我们可以建立一个博弈矩阵来描述商人A和B的策略和利益。

矩阵的行表示商人A的策略,列表示商人B的策略,每个单元格表示两个商人在不同策略下的利益。

然后,我们可以使用博弈论中的解概念来找到最优策略。

例如,纳什均衡是指在博弈中,每个决策者都选择了最优策略,而且没有动机改变自己的策略。

通过分析博弈矩阵,我们可以找到纳什均衡点,即商人A和B都选择了最优策略。

在这个例子中,纳什均衡点可能是商人A和B都选择进入市场,或者都选择不进入市场。

这取决于市场利润的不确定性和商人们的风险偏好。

如果市场利润高,商人们可能更倾向于进入市场以获取更大的回报;如果市场利润低,商人们可能更倾向于不进入市场以避免风险。

然而,由于不完全信息的限制,商人A和B可能无法准确预测市场利润。

博弈论与信息经济学不完全信息静态博弈

博弈论与信息经济学不完全信息静态博弈
A11,..., An n ,和类型依存支付函数u1(a1,, an ;1),...,un (a1,, an ;n )
参加人i懂得自己旳类型 i i ,条件概率 pi pi (i i ) 描述 给定自己属于 i 旳情况下,参加人i有关其他参加人类型 i i旳不拟定性。我们用 G {A1,, An ;1,,n ; p1,, pn ;u1,,un} 代表这个博弈。
j
bi
aj cj
bi
aj cj
ui (vi bi ) P bi b j v j
1 2 (vi
bi ) P
bi
bj
vj
(vi
bi )
bi
aj cj
求导得:bi vi
1 2
vi
1 2
aj
由于bi vi
ci vi
ai
ci
1 2 , ai
1 2 aj
0
综上所述,bi vi
贝叶斯均衡是一组战略组合源自(a1.,a
2
.)
,使得对于每一

i
和每一种可能旳 ci
,战略
a
i
(.)最大化参加人
i
旳期望
效用函数
Ec
j
ui
(ai
,
a
j
ci
,
ci
)
。令
z
j
Pa j c j 1为均衡状
态下参加人 j 提供旳概率。最大化行为意味着,只有当参加
人 i 预期参加人 j 不提供时,参加人 i 才会考虑自己是否提
懂得(成本ci 是参加人 i 旳类型)。 c1和 c2 具有相同旳、独立旳定义在[c, c]
上旳分布函数,且是共同知识。

博弈的四种基本类型

博弈的四种基本类型

博弈的四种基本类型和四种关系1.完全信息静态博弈:参与者的信息完全公开,所有参与者同时做出决策。

例如,囚徒困境。

2.完全信息动态博弈:信息完全公开,但参与者的决策有先后顺序。

例如,斯坦科尔伯格寡头竞争。

3.不完全信息静态博弈:参与者的信息不完全公开,所有参与者同时做出决策。

例如,性别战博弈。

4.不完全信息动态博弈:信息不完全公开,参与者的决策有先后顺序。

例如,信号传递博弈。

每种类型的定义和特点:完全信息静态博弈:在这种类型的博弈中,所有参与者的信息和收益函数都是公开的,所有参与者同时做出决策。

例如,囚徒困境是一个典型的完全信息静态博弈,其中两个罪犯在审讯时选择坦白或不坦白。

完全信息动态博弈:在这种类型的博弈中,所有参与者的信息和收益函数都是公开的,但参与者的决策有先后顺序。

例如,斯坦科尔伯格寡头竞争模型中,企业先后决定产量,后行动的企业可以根据先行动企业的决策来调整自己的策略。

不完全信息静态博弈:在这种类型的博弈中,参与者的信息不完全公开,所有参与者同时做出决策。

例如,性别战博弈中,两个参与者不知道对方的策略,只能根据自己的猜测做出决策。

不完全信息动态博弈:在这种类型的博弈中,参与者的信息不完全公开,决策有先后顺序。

例如,信号传递博弈中,先行动的企业可以通过发送信号来影响后行动企业的决策。

博弈的四种关系一、零和博弈定义:在零和博弈中,参与各方的利益总和是固定的,一方的收益必然意味着另一方的损失,所以双方的收益和损失之和为零。

举例:在扑克游戏中,赢家赢得的钱与输家输掉的钱数量相等,这就是典型的零和博弈。

你赢了一定数量的筹码,就意味着其他玩家输了同样数量的筹码,整个游戏过程中筹码的总量并没有增加或减少。

二、正和博弈定义:正和博弈也称为合作博弈,是指参与各方的利益总和大于零,即通过合作可以实现共赢的局面。

举例:企业之间的合作研发项目,各方共同投入资源,研发成功后,每个参与企业都能获得比单独行动时更多的收益。

信息经济学部分习题解答

信息经济学部分习题解答
信息经济学部分习题解答
解:分企业1第一阶段未引进和引进投资两种情
况,每种情况都用逆推归纳法进行分析。
假设企业1第一阶段未投资引进新技术。此
时两个企业的边际成本都为2,利润函数为:
1 1 q 4 1 q 2 q 1 2 q 1
2 1 q 4 1 q 2 q 2 2 q 2
一阶最优条件为
一阶最优条件为
1
q1
142q1q210
求 故解当可1得9q 6 1 q 221 3144 q2 q11 3 2q1 25122 时10,99 引6 f进新技术
(-3,-2.5)(-5,-5)
信息经济学部分习题解答
战略式表述:(麻烦,自己写)
下雨
丈夫
带伞 不带伞
妻子
带伞
不带伞
-2,-2 -2.5,-3
-3,-2.5 -5,-5
不下雨
丈夫
带伞 不带伞
妻子
带伞 不带伞
-1,-1 -1,0
0,-1
1,1
信息经济学部分习题解答
3.下面的两人博弈可以解释为两个寡头企业的价格竞
u1(A)=u2(B)=u3(C)=2 u1(B)=u2(C)=u3(A)=1 u1(C)=u2(A)=u3(B)=0 找出这个博弈的所有的纳什均衡。
信息经济学部分习题解答
解:所有战略组合的支付函数如下
参与人3选择A
A
参与人 1
B
C
A 2,0,1 2,0,1 2,0,1
参与人2 B
2,0,1 1,2,0 2,0,1
2 p 1 ,p 2 a p 2 p 1 p 2
求各自价格的一阶偏导数,令其等于0,得:
1
p1
ap22p10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




N

P

1-P

进入者 进

进入者 进
不进

不进

在位者 (0,400) 打击
● ●

在位者 打击

(0,300)

(40,50)

(-10,0) (30,80) (-10,100)
海萨尼转换后的市场进入博弈
四、贝叶斯纳什均衡

贝叶斯纳什均衡的基本思想与纳什均衡一样:各博弈方的策 略必须是对其他博弈方策略的最佳反应。

二、对“类型”的阐释

在不完全信息博弈中,某些博弈方虽然不能确定其他博弈
方在一定策略组合下的得益,但至少知道其他博弈方的得
益有哪几种可能的结果,而哪种可能的结果会出现则取决 于其他博弈方属于哪种类型。

类型是博弈方自己清楚而他人无法完全清楚的私人内部信 息、有关情况或数据等,包括策略空间、信息集、得益函



这个博弈的关键问题是,中标博弈方的得益除了取决于标价 以外,还取决于他对拍卖标的物的带有很大主观性的估价。 由于人们在认识、立场和判断能力方面必然有差距,因此对 标的物的估价也往往有差距,而且每个人的估价通常都是自 己的私人信息。因此,在此博弈中,各个博弈方对其他博弈 方拍得标的物的实际得益无法确知,此博弈是不完全信息博 弈。 拍卖问题是博弈论的一个热门研究领域。现代博弈论对拍卖 问题的研究,并不仅仅局限于严格意义上的拍卖,而是包括 各种有不完全信息特征的交易活动的广义的拍卖。
四、贝叶斯纳什均衡 五、应用
一、不完全信息博弈的例子
市场进入博弈

我们曾多次提到一个简单的市场进入博弈。给定在 位者和进入者各种策略组合下的得益,假设进入者 先行动,最后均衡结果是进入者进入,在位者默许。 在这个博弈中,双方的得益是共同知识,即信息是 完全的。 但现实中的企业进入和遏制是没有这么简单的,往 往满足不了完全信息的要求。考虑如下市场进入博 弈:

关键的不同在于这里的策略不再只是一种简单的行为选择,
而是由类型决定行为选择。

求解思路:首先对其他参与人各种可能的类型作概率大小的 判断,然后根据该判断计算己方各种策略在其他参与人这种 类型的分布下能给自己带来的期望得益,找出其中最大期望
得益对应的策略就是己方的最优策略。

在市场进入博弈中: 高成本情况 默许 打击
数等。比如拍卖问题中的估价、市场进入博弈中的在位者
成本。
三、海萨尼转换

1967年,海萨尼提出了“海萨尼转换”来处理不完全信息 的博弈。 基本思路是:引入一个虚拟的参与人——“自然”,“自然” 首先行动选定参与人的某种类型,各参与人知道自己的类型, 但其他参与人不知道。不过,“自然”以怎样的概率来选择 各参与人的类型,此概率分布却是共同知识。 以对参与人类型的概率的分析代替对参与人确切行动的分析, 这样的转换就是“海萨尼转换”。 通过海萨尼转换,博弈开始时,所有参与人有关“自然”的 行动有一致的信念,即都知道所有人类型的概率分布,此即 “海萨尼公理”。

在位者
高成本情况 默许 进入者 进入 不进入

40,50 0,300
低成本情况 默许
30,80 0,400
打击
-10400
此例中,进入者有关在位者的成本信息是 不完全的,但在位者知道进入者的有关成 本信息,即信息是不对称的。

如果在位者是高成本的,则均衡是进入者进入,在 位者默许;如果在位者是低成本的,均衡是进入者 不进入,在位者打击。 因此,如果在完全信息情况下,知道在位者是高成 本,则进入者进入;知道在位者是低成本,则进入 者不进入。 但现在进入者并不知道在位者究竟是高成本还是低 成本,因此很难进行选择。


暗标拍卖

拍卖和招投标是经济活动中普遍采用的重要交易工具,有许 多不同的方式。暗标拍卖是典型的不完全信息静态博弈。 暗标拍卖的基本特征:密封递交标书;统一时间公证开标; 标价最高者以所报标价中标。 这种博弈的博弈方就是所有投标人;各个博弈方的策略就是 他们各自提出的标价;中标博弈方的得益是其对拍卖标的的 估价与成交价格之差,未中标博弈方的得益为0.由于各博弈 方的标书是密封递交和同时开标的,各博弈方在选择自己的 策略之前都无法知道其他博弈方的策略,而且这是一个一次 性选择问题,所以是静态博弈问题。
不完全信息静态博弈
不完全信息博弈也称为“贝叶斯博弈”, 其中“不完全信息”指博弈中至少有一个博 弈方不完全清楚其他某些博弈方的得益或者 得益函数。不完全信息不是完全没有信息, 否则博弈方的决策选择就会完全失去依据,
博弈分析也就没有意义了。
本章内容
一、不完全信息博弈的例子 二、对“类型”的阐释
三、海萨尼转换
R
0,0 2,2

博弈方1的策略是私人信息类型的函数:当“自然”选择得 益矩阵1时选择T,当“自然”选择得益矩阵2时选择B。

博弈方2的策略根据期望利益最大化决定。选择L的期望得 益是0.5×1+0.5×0=0.5,选择R的期望得益是 0.5×0+0.5×2=1,因此博弈方2选择R.

所以该博弈的贝叶斯纳什均衡为:博弈方1在“自然”选
在位者 低成本情况 默许
30,80
打击
-10,100
进入者

进入
不进入
40,50
-10,0
0,300
0,300
0,400
0,400

假定进入者认为在位者是高成本的概率是P,低成本的概 率是(1-P)。则进入者选择进入的期望利润是P(40)+ (1-P)(-10),选择不进入的期望利润是0.当P≥1/5时, P(40)+(1-P)(-10)≥ 0 ,选择进入, P<1/5时选择 不进入。 贝叶斯纳什均衡:高成本的在位者选择默许,低成本的在 位者选择打击;当且仅当P≥1/5时,进入者选择进入。
择得益矩阵1时选择T,在“自然”选择得益矩阵2时选择B;
博弈方2选择R。
练习

(1)若“自然”以均等的概率决定得益是下述得益矩阵1的 情况还是得益矩阵2的情况,并让博弈方1知道而不让博弈方 2知道;(2)博弈方1在T和B中选择,同时博弈方2在L和R 中进行选择。找出贝叶斯纳什均衡。 L T B 1,1 0,0 矩阵1 R 0,0 0,0
L T
B 0,0 0,0 矩阵2
相关文档
最新文档