三角函数经典例题
三角函数公式典型例题大全
高中三角函数公式大全以及典型例题2009年07月12日星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -[cos(a+b)-cos(a-b)] cosacosb =[cos(a+b)+cos(a-b)]sinacosb =[sin(a+b)+sin(a-b)] cosasinb =[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa.sin(-a) = cosa cos(-a) = sinasin(+a) = cosa cos(+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c) [其中tanc=]a?sin(a)-b?cos(a) =×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosαtan(2kπ+α)= tanα cot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosαtan(π+α)= tanα cot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosαtan(-α)= -tanα cot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosαtan(π-α)= -tanα cot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosαtan(2π-α)= -tanα cot(2π-α)= -cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanαsin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanαsin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotαcot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinαtan(-α)= cotα cot(-α)= tanα(以上k∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角的内角的对边分别为,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【解析】:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ).2 .在中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.(Ⅰ)求角B的大小;20070316(Ⅱ)设且的最大值是5,求k的值.【解析】:(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcos C.即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA.∵0<A<π,∴sinA≠0.∴cosB=.∵0<B<π,∴B=.(II)=4ksinA+cos2A.=-2sin2A+4ksinA+1,A∈(0,)设sinA=t,则t∈.则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.3 .在中,角所对的边分别为,.I.试判断△的形状;II.若△的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 .在中,a、b、c分别是角A. B.C的对边,C=2A,,(1)求的值;(2)若,求边AC的长?【解析】:(1)(2)①又②由①②解得a=4,c=6,即AC边的长为5.5 .已知在中,,且与是方程的两个根.(Ⅰ)求的值;(Ⅱ)若AB,求BC的长.【解析】:(Ⅰ)由所给条件,方程的两根.∴(Ⅱ)∵,∴.由(Ⅰ)知,,∵为三角形的内角,∴∵,为三角形的内角,∴,由正弦定理得:∴.6 .在中,已知内角A. B.C所对的边分别为a、b、c,向量,,且?(I)求锐角B的大小;(II)如果,求的面积的最大值?【解析】:(1)2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-∵0<2B<π,∴2B=,∴锐角B=(2)由tan2B=-B=或①当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC的面积S△ABC=acsinB=ac≤∴△ABC的面积最大值为②当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac≥2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)∴ac≤4(2-)∵△ABC的面积S△ABC=acsinB=ac≤ 2-∴△ABC的面积最大值为2-7 .在中,角A. B.C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.【解析】:(1) 由余弦定理:cosB=+cos2B=(2)由∵b=2,+=ac+4≥2ac,得ac≤, S△ABC=acsinB≤(a=c时取等号)故S△ABC的最大值为8 .已知,求的值?【解析】;。
高中三角函数经典例题精选全文完整版
可编辑修改精选全文完整版一、选择题1.如果角θ的终边经过点(3,-4),那么θsin 的值是( ) A53 B 53- C 54 D 54- 2.)314sin(π-的值等于( ) A21 B 21- C 23 D 23-3.若0835-=α,则角α的终边在( )A 第一象限B 第二象限C 第三象限D 第四象限4.已知21sin -=θ,则)sin(θπ+等于A21 B 21- C 23 D 23-5.已知θ是第一象限角,那么2θ是( ) A 第一或第三象限角 B 第二或第三象限角 C 第三或第四象限角 D 第一或第四象限角 6.已知θ是三角形的一个内角,且22sin =θ,则角θ等于( ) A4π B 43π C 4π,43π D 3π7.已知0tan sin <⋅θθ,那么角θ是( )A 第一或第三象限角B 第二或第三象限角C 第三或第四象限角D 第一或第四象限角8.)421sin(2π+=x y 的周期、振幅、初相分别是( )A4,2,4ππB 4,2,4ππ-- C 4,2,4ππ D 4,2,2ππ9. sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在10.(08·全国Ⅰ文)y =(sin x -cos x )2-1是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数11. 函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π的简图是( )12.为了得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =sin2x 的图象( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位13.函数y =|sin x |的一个单调增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭⎪⎫π4,3π4 C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 14.下列函数中,图象的一部分符合下图的是( )A .y =sin(x +π6)B .y =sin(2x -π6) C .y =cos(4x -π3) D .y =cos(2x -π6)二、填空题15.与34π终边相同的角的集合 16.已知45cos sin -=-θθ,则=⋅θθcos sin17.已知θ是第四象限角,125tan -=θ,则=θcos 18.已知=-=+-θθθθθtan ,35cos 2sin 3cos sin 2则19.函数y =16-x 2+sin x 的定义域为________.20..若a =sin(sin2009°),b =sin(cos2009°),c =cos(sin2009°),d =cos(cos2009°),则a 、b 、c 、d 从小到大的顺序是________.三、解答题21.)660cos()330sin(750cos 420sin 0000-•-+•:计算22.求使)42sin(3π+=x y 取到最大值、最小值的自变量的集合,并分别写出最大值、最小值,及这个函数在[]π2,0的单调递增区间。
第五章 三角函数典型易错题集(解析版)
第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
三角函数经典例题
第1讲 任意角、弧度制及任意角的三角函数【例1】►已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 答:sin α=-35,cos α=45,tan α=-34或sin α=35,cos α=-45,tan α=-34. 【训练1】 已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24 m ,试判断角θ所在的象限,并求cos θ和tan θ的值.答:cos θ=-64,tan θ=-153或cos θ=-64,tan θ=153. 【例2】►(1)已知cos θ·sin θ<0,那么角θ是( ). A .第一或第二象限角 B .第二或第三象限角 C .第二或第四象限角 D .第一或第四象限角(2)已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限. 答案 (1)C (2)二【训练2】 已知sin 2θ<0,且|cos θ|=-cos θ,问点P (tan θ,cos θ)在第几象限?答:P (tan θ,cos θ)在第三象限.【例3】►已知扇形的圆心角是α(α>0),半径为R . (1)若α=60°,R =10 cm ,求扇形的弧长l .(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?答:(1)l =|α|R =π3×10=103π(cm).(2)当R =5 cm ,即α=105=2(rad)时,这个扇形的面积最大. 【训练3】 已知扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l . 答:l =|α|·R =2π3×43=833π(cm).【真题探究】► (2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP→的坐标为________.[答案] (2-sin 2,1-cos 2)【试一试】 (2012·北京东城模拟)已知OP →=(1,0),点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则OQ →=( ). A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12答案 A 习题1.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( ).A .1B .2C .3D .42.(2012·南阳模拟)已知锐角α的终边上一点P (sin 40°,1+cos 40°),则锐角α=( ).A .80°B .70°C .20°D .10°3.函数y =2cos x -1的定义域为________.4.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角. 5.(13分)如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB为正三角形.(1)求sin ∠COA ;(2)求cos ∠COB .答案:1.A 2.B 3. ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 4. 四5. (1) sin ∠COA =45.(2)cos ∠COB =cos(∠COA +60°)=3-4310.第2讲 同角三角函数的基本关系与诱导公式【例1】►已知α是三角形的内角,且sin α+cos α=15. (1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.解 (1) tan α=-43. (2)1cos 2α-sin 2α=-257. 【训练1】 已知-π2<x <0,sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)sin x -cos x =-75. (2) sin 2x +2sin 2x 1-tan x=-24175.【例2】►(1)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________;(2)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.答案 (1)12 (2)-33【训练2】 (1)已知sin ⎝ ⎛⎭⎪⎫7π12+α=23,则cos ⎝ ⎛⎭⎪⎫α-11π12=________;(2)若tan(π+α)=-12,则tan(3π-α)=________.答案 (1)-23 (2)12【例3】►设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫-23π6=________. 答案3【训练3】 (1)化简:tan (π+α)cos (2π+α)sin ⎝ ⎛⎭⎪⎫α-3π2cos (-α-3π)sin (-3π-α)=________.(2)已知f (x )=sin (π-x )cos (2π-x )tan (-x +π)cos ⎝ ⎛⎭⎪⎫-π2+x ,则f ⎝ ⎛⎭⎪⎫-31π3=________. 答案 (1)-1 (2)32【真题探究】► (2012·辽宁)已知sin α-cos α=2,α∈(0,π),则tan α=( ). A .-1 B .-22 C.22 D .1 [答案] A【试一试】 (2012·江西)若tan θ+1tan θ=4,则sin 2θ的值为( ). A.15 B.14 C.13 D.12 答案 D习题1.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( ).A .-43B.54C .-34D.452.若sin α是5x 2-7x -6=0的根,则 sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=( ).A.35B.53 C.45 D.543.(2012·上海)若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( ).A .16B .72C .86D .1004.(2012·揭阳模拟)已知sin αcos α=18,且π4<α<π2,则cos α-sin α的值是________.5.(2011·重庆)已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.6.(2013·青岛模拟)f (x )=a sin(πx +α)+b cos(πx +β)+4(a ,b ,α,β均为非零实数),若f (2 012)=6,则f (2 013)=________.7.(12分)是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.8.(13分)(2011·天津)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小.答案:1.D 2.B 3.C 4. -325. -1426. 27. 存在α=π4,β=π6满足条件 8.(1) f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z ,f (x )的最小正周期为π2. (2)α=π12.。
高二常考的三角函数的试题整理
高二常考的三角函数的试题整理经典数学题【例一】1.(2009·江苏常州一模)已知角α是第三象限角,则角-α的终边在第________象限. 2.(2010·连云港模拟)与610°角终边相同的角表示为______________.1sin 2θ3.(2010·浙江潮州月考)已知2<1,则θ所在象限为第________象限.π3π4.(2010·南通模拟)已知角θ的终边经过点P(-4cos α,3cos α)(<α<,则sin θ+cos θ=________.22ππ-且sin θ+cos θ=a,其中a∈(0,1),则关于tan θ的值,以下四个答案中,可能正5.(2010·福州调研)已知θ∈22111确的是________(填序号).①-3 ②3或③- ④-3或-3336.(2009·江西九江模拟)若角α的终边与直线y=3x重合且sin α<0,又P(m,n)是角α终边上一点,且|OP|10,则m-n=________.|sin α||cos α|7.(2010·山东济南月考)已知角α的终边落在直线y=-3x (x<0)上,则=________.sin αcos α8.(2010·南京模拟)某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].π49.(2010·泰州模拟)若0”,“<”或“=”填空).2π210.(2010·镇江模拟)已知角θ的终边上一点P(3,m),且sin θm,求cos θ与tan θ的值.411.(2010·江苏南京模拟)在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:31(1)sin α;(2)cos α.2212.(2010·佳木斯模拟)角α终边上的点P与A(a,2a)关于x轴对称(a≠0),角β终边上的点Q与A关于直线y=x对称,求sin α·cos α+sinβ·cosβ+tan α·tan β的值.同角三角函数的基本关系及诱导公式1.(2010·南通模拟)cos(-174-sin(-174π)的值为___________________________.2.(2010·江苏镇江一模)设tan(5π+α)=m,则sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)的值为__________.3.(2009·辽宁沈阳四校联考)已知sin α+cos αsin α-cos α=2,则sin αcos α=________.4.(2008·浙江理,8)若cos α+2sin α=-,则tan α=__________.5.(2008·四川理,5)设0≤α<2π,若sin α3cos α,则α的取值范围是____________.6.(2010·吉林长春调研)若sin α+cos α=tan α0<α<π2,则α的取值范围是__________. 7.(2009·苏州二模)sin21°+sin22°+sin23°+…+sin289°=________.8.(2010·浙江嘉兴月考)已知f(x)= 1-xπ1+xα∈(2,π),则f(cos α)+f(-cos α)=________.9.(2009·北京)若sin θ=-45tan θ>0,则cos θ=____________________________________.10.(2010·泰州模拟)化简:(1)1-cos4α-sin4α1-cosα-sinα2sin(π4x)+6cos(π; 4-x).11.(2010·盐城模拟)已知sin22α+sin 2αcos α-cos 2α=1,α∈(0,π2),求sin α、tan α的值.12.(2009·福建宁德模拟)已知0<α<π52sin αcos α-cos α+12cos α-sin α=-5,试求1-tan α和差倍角的三角函数1.(2010·山东青岛模拟)cos 43°cos 77°+sin 43°·cos 167°的值为________. 2.(2010·南京模拟)已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________.3.(2009·湖北四校联考)在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则∠C的大小为________.4.(2009·湖南长沙调研)在锐角△ABC中,设x=sin A·sin B,y=cos A·cos B,则x,y的大小关系是________.5.(2009·广东韶关模拟)已知tan α=2,则sin 2α-cos 2α1+cosα________.6.(2010·无锡模拟)1+tan x1-tan x2 010,则1cos 2x+tan 2x的值为________.7.(2010·苏州调研)若锐角α、β满足(1+3tan α)·(13tan β)=4,则α+β=________. 8.(2009·江苏南通二模)已知sin αcos β=12,则cos αsin β的取值范围是____________.9.(2010·苏、锡、常、镇四市调研)若tan(α+β)=2π1π5,tan(β-4)=4,则tan(α+4=________.10.(2008·广东)已知函数f(x)=Asin(x+φ) (A>0,0<φ<π) (x∈R)的最大值是1,其图象经过点Mπ13,2. (1)求f(x)的解析式;(2)已知α、β∈0,π2,且f(α)=3125,f(β)=13,求f(α-β)的值.11.(2010·宿迁模拟)已知向量a=(cos α,sin α),b=(cos β,sin β),|a-b|=41313(1)求cos(α-β)的值;(2)若0<α<π2,-π42β<0,且sin β=-5,求sin α的值.三角函数的图象与性质1.(2009·大连一模)y=sin(2x+π6)的最小正周期是_____________________________.2.(2010·扬州模拟)y=2-cos__________,此时x=________.3π3.(2010·盐城模拟)函数y=tan(x)的定义域是________________.4.(2009·牡丹江调研)已知函数y=2cos x(0≤x≤1 000π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是________5.(2010·江苏盐城月考)已知函数y=tan ωx在(-,内是减函数,则ω的取值范围是________________.7.(2009·浙江宁波检测)定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周8.(2010·连云港模拟)sin 2,cos 1,tan 2的大小顺序是________________.9.(2008·全国Ⅱ理)若动直线x=a与函数f(x)=sin x和g(x)=cos x的图象分别交于M、N两点,则|MN|的最大值为_______.11.(2008·陕西)已知函数f(x)=2sincos+3cos.12.(2010·山东济宁第一次月考)设a=sin2b. ,cos x+sin x,b=(4sin x,cos x-sin x),f(x)=a·4(1)求函数f(x)的解析式(3)设集合A=x6x≤3,B={x||f(x)-m|<2},若A⊆B,求实数m的取值范围.三角函数的`最值及应用1.(2010·连云港模拟)函数y3sin(2x)-cos 2x的最小值为________.2.(2010·泰州模拟)若函数y=2cos ωx在区间[0,上递减,且有最小值1,则ω的值可以是________.3.(2010·湖北黄石调研)设函数f(x)=2sin(+.若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为____.4.(09·湖南株州模拟)函数y=sin 2x按向量a平移后,所得函数的解析式是y=cos 2x+1,则模最小的一个向量a=__.5.(2009·广东惠州二模)函数y=Asin(ωx+φ)(ω>0,|φ|<在同一单调区间内的x=x29291小值-________________________.2a+b,ab≤0,6.(2010·广西南宁检测)定义运算a*b=a则函数f(x)=(sin x)*(cos x)的最小值为________., ab>0,b7.(2010·苏州调研)一半径为10的水轮,水轮的圆心距水面7,已知水轮每分钟旋转4圈,水轮上点P到水面距离y与时间x(s)满足函数关系y=Asin(ω+φ)+7(A>0,ω>0),则A=________,ω=________. 8.(2009·徐州二模)函数y=(sin x-a)2+1,当sin x=a时有最小值,当sin x=1时有最大值,则a的取值范围是_______. 9.(2009·江苏)函数y=Asin(ωx+φ)(A、ω、φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=10.(2010·镇江模拟)已知函数f(x)=cos(2ωx+2φ) (A>0,ω>0,0<φ<),且y=f(x)的最大值为2,其图象上相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2 008).11.( 10·辽宁瓦房店月考)如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.12.(2010·吉林延吉模拟)如图,在一个奥运场馆建设现场,现准备把一个半径为3 m的球形工件吊起平放到6 m高的平台上,工地上有一个吊臂长DF=12 m的吊车,吊车底座FG高1.5 m.当物件与吊臂接触后,钢索CD的长可通过顶点D处的滑轮自动调节并保持物件始终与吊臂接触.求物件能被吊车吊起的最大高度,并判断能否将该球形工件吊到平台上?解三角形1.(2010·江苏靖江调研)在△ABC中,若(a+b+c)(b+c-a)=3bc,则A=________.2.(2010·宿迁模拟)在△ABC中,已知acos A=bcos B,则△ABC的形状为____________. 3.(2010·江苏淮阴模拟)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为____________. 4.(2010·浙江绍兴模拟)△ABC中,a,b,c分别为∠A,∠B,∠C的对边,如果a,b,c成等差数列,∠B=30°,△ABC的面积为,那么b=__________.25b,A=2B,则cos B=________. 26.(2010·南通模拟)一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.7.(2009·福建泉州二模)如图所示,我炮兵阵地位于地面A处,两观察所分别位于地面C处和D处,已知CD=6 000 m,∠ACD=45°,∠ADC=75°,目标出现于地面B处时测得∠BCD=30°,∠BDC=15°,则炮兵阵地到目标的距离是________________(结果保留根号).8.(2009·江西宜泰模拟)线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小. 9.(2009·广东改编)已知△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若a=c=6+2,且∠A=75°,则b=________.10.(2009·安徽)在△ABC中,C-A=sin B=23(1)求sin A的值;(2)设AC=6,求△ABC的面积.11.(2009·山东泰安第二次月考)在海岸A处,发现北偏东45°方向,距A处3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A处2海里的C处的缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东30°的方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.5.(2008·四川,7)△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=三角函数的综合应用1.(2009·济宁期末)已知a=(cos 2α,sin α),b=(1,2sin α-1),α∈π),若a·b=,则25πtan(α+的值为________.2.(2008·江苏)若AB=2,AC2BC,则S△ABC的最大值是________.3.(2009·肇庆期末)定义运算a*b=a2-ab-b2,则sin=________.4.(2009·广州第二次联考)已知a,b,x,y∈R,a2+b2=4,ax+by=6,则x2+y2的最小值为________.5.(2010·宿州模拟)若函数f(x)=sin(x+α)-2cos(x-α)是偶函数,则cos2α=________.6.(2010·泰州调研)函数f(x)=(sin2x+(cos2x+)的最小值是________. 2 009sinx2 009cosx7.(2009·福建文)已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为________.8.(2010·苏南四市模拟)俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形2π波浪实验水池的中心已有两个振动源,在t秒内,它们引发的水面波动可分别由函数y1=sin t和y2=sin(t+来描3述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式______________. 9.(2010·南通模拟)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于____________.经典数学题【例二】知识考点:本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sina、cosa、tana、cota准确表示出直角三角形中两边的比(a为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。
高中三角函数总结例题
高中三角函数总结例题三角函数是高中数学中的重要知识点,它是用来描述角度和边长之间的关系的数学工具。
在高中数学的学习中,三角函数有着广泛的应用,涉及到平面几何、解析几何、数学分析等方面。
下面是一些经典的三角函数例题,我们通过这些例题的总结来理解和掌握三角函数的相关知识。
例题1:已知∠ABC是锐角,AB=3,BC=4,求三角形ABC的角A的正弦、余弦和正割。
解:首先,我们可以利用勾股定理求得三角形ABC的第三条边AC的长度。
由勾股定理可知,AC^2=AB^2+BC^2=3^2+4^2=9+16=25,故AC=√25=5。
然后,我们可以利用正弦定理求得角A的正弦。
正弦定理:sinA=a/2R,其中a为∠A的对边长度,R为三角形ABC的外接圆半径。
根据正弦定理可得 sinA=BC/AC=4/5。
再然后,我们可以利用余弦定理求得角A的余弦。
余弦定理:cosA=(b^2+c^2-a^2)/2bc,其中a、b、c分别为∠A的对边、临边、对边长度。
根据余弦定理可得 cosA=[(3^2+5^2-4^2)/2×3×5]=14/30=7/15。
最后,我们可以求出角A的正割。
正割定义:secA=1/cosA。
根据定义可得 secA=1/(7/15)=15/7。
综上所述,角A的正弦为4/5,余弦为7/15,正割为15/7。
例题2:已知tanA=2,且A为锐角,求sinA、cosA和cotA的值。
解:首先,我们可以利用正切的定义求得角A的正弦和余弦。
正切的定义:tanA=sinA/cosA。
根据定义可得 sinA/cosA=2,即sinA=2cosA。
然后,我们可以利用三角恒等式sin^2A+cos^2A=1,将sinA的表达式带入其中。
得到(2cosA)^2+cos^2A=1,即4cos^2A+cos^2A=1,即5cos^2A=1,解得cosA=±√(1/5)。
注意到A为锐角,sinA和cosA均为正数,故cosA=√(1/5)。
高中三角函数经典例题
高中数学三角函数经典例题(解析在后面)一、单选题(共20题;共40分)1.已知函数f(x)=cosx ,下列结论不正确的是( ) A. 函数y=f(x)的最小正周期为2π B. 函数y=f(x)在区间(0,π)内单调递减 C. 函数y=f(x)的图象关于y 轴对称D. 把函数y=f(x)的图象向左平移 π2 个单位长度可得到y=sinx 的图象2.如图,A 、B 两点为山脚下两处水平地面上的观测点,在A 、B 两处观察点观察山顶点P 的仰角分别为 α ,β。
若tanα = 13 ,β=45°,且观察点A 、B 之间的距离比山的高度多100米。
则山的高度为( )A. 100米B. 110米C. 120米D. 130米 3.已知 sinα=√55,则 cos2α= ( )A. −35B. 35 C. −3√55 D. 3√554.将函数 f(x)=sin2x 的图象向右平移 π6 个单位长度得到 g(x) 图象,则函数的解析式是( )A. g(x)=sin (2x +π3) B. g(x)=sin (2x +π6) C. g(x)=sin (2x −π3) D. g(x)=sin (2x −π6)5.若 α,β 均为第二象限角,满足 sinα=35 , cosβ=−513,则 cos(α+β)= ( )A. −3365B. −1665C. 6365D. 33656.已知 tanα=1 ,则1+2cos 2αsin2α= ( )A. 2B. -2C. 3D. -3 7.要得到 y =sin x2 的图象,只要将函数 y =sin(12x +π4) 的图象( )A. 向左平移 π4 单位B. 向右平移 π4 单位 C. 向左平移 π2 单位 D. 向右平移 π2 单位8.要得到函数 y =2sin(2x +π6) 的图像,只需将函数 y =2sin2x 的图像( ) A. 向左平移 π6 个单位 B. 向右平移 π6 个单位 C. 向左平移 π12 个单位 D. 向右平移 π12 个单位9.函数 f(x)=Asin(ωx+φ) (ω>0,|φ|<π2) 的部分图象如图所示,则 f(π)= ( )A. 4B. 2√3C. 2D. √3 10.已知角 α 的顶点与坐标原点重合,始边与 x 轴的非法半轴重合,终边经过点 P(1,−2) ,则 sin 2α= ( )A. −2√55B. −4√55C. 45 D. −4511.数 f(x)=sin(4x +ϕ)(0<ϕ<π2) ,若将 f(x) 的图象向左平移 π12 个单位后所得函数的图象关于 y 轴对称,则 φ= ( )A. π12 B. π6 C. π4 D. π3 12.sin140°cos10°+cos40°sin350°= ( ) A. 12 B. −12 C. √32D. −√3213.已知 α,β∈(0,π2) , cosα=17 , cos(α+β)=−1114 ,则 β= ( ) A. π6 B. 5π12C. π4 D. π314.要得到函数 y =2√3cos 2x +sin2x −√3 的图象,只需将函数 y =2sin2x 的图象( )A. 向左平移 π3 个单位 B. 向右平移 π3 个单位 C. 向左平移 π6 个单位 D. 向右平移 π6 个单位 15.若 sin(π6−α)=13,则 cos(2π3+2α)= ( )A. 13B. −13C. 79D. −7916.函数 y =sin(2x +φ)(0<φ<π2) 图象的一条对称轴在 (π6,π3) 内,则满足此条件的一个 φ 值为( )A. π12 B. π6 C. π3 D. 5π617.关于 x 的三角方程 sinx =13 在 [0,2π) 的解集为( ) A. {arcsin 13} B. {π−arcsin 13}C. {arcsin 13,π−arcsin 13} D. {arcsin 13,−arcsin 13}18.已知 α 满足 tan(α+π4)=13 ,则 tanα= ( ) A. −12B. 12C. 2D. −219.已知 α、β 均为锐角,满足 sinα=√55 , cosβ=3√1010,则 α+β= ( )A. π6B. π4C. π3D. 3π420.计算 sin95°cos50°−cos95°sin50° 的结果为( ) A. −√22B. 12C. √22D. √32二、填空题(共20题;共21分)21.函数f(x)=Asin( ωx+ φ)的部分图象如图,其中A>0,ω>0,0< φ< π2.则ω=________ ; tan φ= ________ .22.若角α满足sinα+2cosα=0,则tan2α=________;23.计算sin47°cos17°−cos47°sin17°的结果为________.24.角α的终边经过点P(−3,4),则cos(π2−α)=________.25.函数y=sin(x+φ),φ∈[0,π]为偶函数,则φ=________.26.若扇形圆心角为120∘,扇形面积为43π,则扇形半径为________.27.已知f(x)=2sin(ωx−π6)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,则x∈[0,π]时,方程f(x)=1的解是________.28.已知sin(π−α)=35,α∈(π2,π),则sin2α=________.29.已知函数y=sinx的定义域是[a,b],值域是[−1,12],则b−a的最大值是________30.如果tanα=2,则tan(α+π4)=________31.若函数f(x)=sin(x+φ),φ∈(0,π)是偶函数,则φ等于________32.函数f(x)=2−sinxcosx的值域是________33.函数y=arccos(x−1)的定义域是________34.求f(x)=sinx−cos2x+2,x∈[−π6,2π3]的值域________.35.已知函数y=2sin(2x+φ)(0<φ<π2)的一条对称轴为x=π6,则φ的值为________.36.在ΔABC中,tanA+tanB+√3=√3tanA⋅tanB,则C等于________.37.方程cosx=sinπ6的解为x=________.38.弧长等于直径的圆弧所对的圆心角的大小为________弧度.(只写正值)39.若sinα−cosα=12,则sin2α=________.40.若tanθ=−3,则cos2θ=________.三、解答题(共10题;共85分)41.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP= π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b)(1)当θ= π6时,求ab的值(2)设θ∈[ π4,π2],求b-a的取值范围42.在ΔABC中,内角A,B,C所对的边分别为a,b,c,且b2=a2+c2−ac. (1)求角B的大小;(2)求sinA+sinC的取值范围.43.已知函数f(x)=√3sin2x+cos2x.(1)求y=f(x)的单调递增区间;(2)当x∈[−π6,π3]时,求f(x)的最大值和最小值.44.已知f(x)=acos2x+√3asin2x+2a−5(a∈R,a>0).]上的最大值为3时,求a的值;(1)当函数f(x)在[0,π2(2)在(1)的条件下,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=−1有且仅有两个不同的交点,试确定b的值.并求函数y=f(x)在(0,b]上的单调递减区间.) ,b⃗⃗=(√3 sinx , cos2x) ,x∈R,设函数f(x)=a⃗⋅b⃗⃗.45.向量a⃗=(cosx ,−12(Ⅰ)求f(x)的表达式并化简;(Ⅱ)写出f(x)的最小正周期并在右边直角坐标中画出函数f(x)在区间[0,π]内的草图;(Ⅲ)若方程f(x)−m=0在[0,π]上有两个根α、β,求m的取值范围及α+β的值.46.已知在ΔABC中,内角A,B,C的对边分别为a,b,c,A为锐角,且满足3b=5asinB.的值;(1)求sin2A+cos2B+C2,求b,c.(2)若a=√2, ΔABC的面积为3247.如图所示,在平面直角坐标系中,角α与β( 0<β<α<π)的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边分别与单位圆交于P、Q两点,点P的横坐标为−4.5(I )求sin2α+cos2α1+cos 2α;(Ⅱ)若 OP ⃗⃗⃗⃗⃗⃗⋅OQ⃗⃗⃗⃗⃗⃗⃗=√33,求 sinβ . 48.已知函数 f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2) 的部分图象如图所示:(I )求 f(x) 的解析式及对称中心坐标;(Ⅱ)将 f(x) 的图象向右平移 π6 个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数 g(x) 的图象,求函数 y =g(x) 在 x ∈[0,7π6]上的单调区间及最值. 49.(1)请直接运用任意角的三角比定义证明: cos(α−π)=−cosα ; (2)求证: 2cos 2(π4−α)=1+sin2α . 50.设函数 f(x)=1sinx .(1)请指出函数 y =f(x) 的定义域、周期性和奇偶性;(不必证明)(2)请以正弦函数 y =sinx 的性质为依据,并运用函数的单调性定义证明: y =f(x))上单调递减.在区间(0,π2答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:∵函数f (x )=cosx 其最小正周期为2π,故选项A 正确;函数f (x )=cosx 在(0,π)上为减函数,故选项B 正确;函数f (x )=cosx 为偶函数,关于y 轴对称,故选项C 正确;把函数f (x )=cosx 的图象向左平移 π2个单位长度可得cos (x +π2)=−sinx , 故选项D 不正确。
(完整版)高考三角函数经典解答题及答案
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
三角函数例题精讲
三角函数习题(一)1.已知tanx=2,求sinx,cosx的值.2.求的值.3.若,求sinxcosx的值.4.求证:tan2x·sin2x=tan2x-sin2x.5.求函数在区间[0,2π?]上的值域.6.求下列函数的值域.(1)y=sin2x-cosx+2; (2)y=2sinxcosx-(sinx+cosx).7.若函数y=Asin(ωx+φ)(ω>0,φ>0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式.8.已知函数f(x)=cos4x-2sinxcosx-sin4x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若求f(x)的最大值、最小值.求的值域.9、已知,求(1);(2)的值.10、求函数的值域。
三角函数习题集讲解(一)1.已知tanx=2,求sinx,cosx的值.解:因为,又sin2x+cos2x=1,联立得解这个方程组得2.求的值.解:原式3.若,求sinxcosx的值.解:法一:因为所以sinx-cosx=2(sinx+cosx),得到sinx=-3cosx,又sin2x+cos2x=1,联立方程组,解得所以法二:因为所以sinx-cosx=2(sinx+cosx),所以(sinx-cosx)2=4(sinx+cosx)2,所以1-2sinxcosx=4+8sinxcosx,所以有4.求证:tan2x·sin2x=tan2x-sin2x.证明:法一:右边=tan2x-sin2x=tan2x-(tan2x·cos2x)=tan2x(1-cos2x)=tan2x·sin2x,问题得证.法二:左边=tan2x·sin2x=tan2x(1-cos2x)=tan2x-tan2x·cos2x=tan2x-sin2x,问题得证.5.求函数在区间[0,2π?]上的值域.解:因为0≤x≤2π,所以由正弦函数的图象,得到所以y∈[-1,2].6.求下列函数的值域.(1)y=sin2x-cosx+2; (2)y=2sinxcosx-(sinx+cosx).解:(1)y=sin2x-cosx+2=1-cos2x-cosx+2=-(cos2x+cosx)+3,令t=cosx,则利用二次函数的图象得到(2)y=2sinxcosx-(sinx+cosx)=(sinx+cosx)2-1-(sinx+cosx),令t=sinx+cosx,,则则,利用二次函数的图象得到7.若函数y=Asin(ωx+φ)(ω>0,φ>0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式.解:由最高点为,得到,最高点和最低点间隔是半个周期,从而与x轴交点的间隔是个周期,这样求得,T=16,所以又由,得到可以取8.已知函数f(x)=cos4x-2sinxcosx-sin4x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若求f(x)的最大值、最小值.数的值域.解:(Ⅰ)因为f(x)=cos4x-2sinxcosx-sin4x=(cos2x-sin2x)(cos2x+sin2x)-sin2x所以最小正周期为π.(Ⅱ)若,则,所以当x=0时,f(x)取最大值为当时,f(x)取最小值为9、已知,求(1);(2)的值.解:(1);(2).说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
初中三角函数的应用例题
初中三角函数的应用例题1.一座山峰高度为1800米,从山脚测得与山顶的夹角为30°,求山脚到山顶的实际水平距离。
解:设山脚到山顶的水平距离为x,则根据三角函数的定义,有tan30°=1800/x。
将30°转化为弧度制,即tan(π/6)=1800/x,解得x=1800/(tan(π/6)) ≈ 3600米。
所以山脚到山顶的实际水平距离约为3600米。
2.一条船从港口出发,先顺时针航行90°,然后逆时针航行120°,最后顺时针航行150°,求船的最终航向与出发港口到最终位置的直线之间的夹角。
解:根据题意,船的最终航向与出发港口到最终位置的直线之间的夹角等于船的顺时针航行角度减去船的逆时针航行角度,即90°-120°+150°=120°。
所以船的最终航向与出发港口到最终位置的直线之间的夹角为120°。
3.一个轮半径为40厘米的车轮以每秒10米的速度匀速滚动,求车轮的角速度。
解:车轮每滚动一周,车轮上的任意一点都绕轮心旋转360°,所以车轮的角速度是360°/一周所需要的时间。
滚动一周的时间可以通过速度和距离的关系求得,即一周所需时间为2πr/v,其中r为半径,v为速度。
所以车轮的角速度为360°/(2πr/v)=(360°v)/(2πr)。
代入半径r=40厘米和速度v=10米/秒,计算可得车轮的角速度约为(360°×10米/秒)/(2π×40厘米)≈0.90弧度/秒。
4.一架飞机从A地飞往B地,两地相距1200公里。
飞机的地速为400千米/小时,假设直飞过程中风速与飞机速度方向相反,风速为120公里/小时,求飞机的实际航速和方向。
解:设飞机的实际航速为v,飞机速度与风速的夹角为θ。
根据三角函数的定义,有cosθ=(400-120)/v。
三角函数计算题100道
三角函数计算题100道为了达到1200字以上的要求,我们列出了100道三角函数的计算题,并进行了详细解答。
希望对你的学习有所帮助。
1. 计算sin(30°)。
sin(30°) = 1/22. 计算cos(45°)。
cos(45°) = 1/√23. 计算tan(60°)。
tan(60°) = √34. 计算cot(45°)。
cot(45°) = 15. 计算cosec(60°)。
csc(60°) = 2/√36. 计算sec(30°)。
sec(30°) = 27. 计算sin(0°)。
sin(0°) = 08. 计算cos(90°)。
cos(90°) = 09. 计算tan(180°)。
tan(180°) = 010. 计算cot(270°)。
cot(270°) = 011. 计算cosec(360°)。
csc(360°) = 012. 计算sec(0°)。
sec(0°) = 113. 计算sin^2(30°)。
sin^2(30°) = (1/2)^2 = 1/4 14. 计算cos^2(45°)。
cos^2(45°) = (1/√2)^2 = 1/2 15. 计算tan^2(60°)。
tan^2(60°) = (√3)^2 = 3 16. 计算cot^2(45°)。
cot^2(45°) = (1)^2 = 117. 计算cosec^2(60°)。
csc^2(60°) = (2/√3)^2 = 4/3 18. 计算sec^2(30°)。
sec^2(30°) = (2)^2 = 419. 计算sin(45° + 30°)。
高中数学三角函数典型例题
(Ⅱ)
cos
A
+
sin
C
=
cos
A
+
sin
−
−
A
=
cos
A
+
sin
6
+
A
= cos A + 1 cos A + 3 sin A
2
2
=
3
sin
A
+
3
.
2 .在 ABC 中,角 A. B.C 的对边分别为 a、b、c,且满足(2a-c)cosB=bcos C.
(Ⅰ)求角 B 的大小;
(Ⅱ)设 m = (sin A,cos 2A) ,n = (4k,1)(k 1) ,且 m n 的最大值是 5,求 k 的值.
8
8
4
4
cos B = − cos(A + C) = sin Asin C − cos Acos C = 7 3 7 − 3 1 = 9
4 8 4 8 16
(2) BA BC = 27 ,ac cos B = 27 ,ac = 24 ①
2
2
又 a = c ,C = 2A,c = 2a cos A = 3 a ②
2
∵0<B<π,∴B= . 3
(II) m n =4ksinA+cos2A.
=-2sin2A+4ksinA+1,A∈(0, 2 ) 3
设 sinA=t,则 t∈ (0,1] .
则 m n =-2t2+4kt+1=-2(t-k)2+1+2k2,t∈ (0,1] .
∵k>1,∴t=1 时, m n 取最大值.
全国通用2023高中数学必修一第五章三角函数经典大题例题
全国通用2023高中数学必修一第五章三角函数经典大题例题单选题1、如图,为一半径为3m的水轮,水轮圆心O距离水面2m,已知水轮自点A开始1min旋转4圈,水轮上的点P 到水面距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2,则有()A.ω=2π15,A=3B.ω=152π,A=3C.ω=2π15,A=5D.ω=152π,A=5答案:A分析:根据最大值及半径求出A,根据周期求出ω.由题目可知最大值为5,∴ 5=A×1+2⇒A=3.T=604=15,则ω=2πT=2π15.故选:A2、f(x)=−sinx−xcosx+x2在[−π,π]的图象大致为()A.B.C.D.答案:C分析:先由函数为奇函数可排除A,再通过特殊值排除B、D即可.由f(−x)=−sin(−x)+xcosx+x2=−−sinx−xcosx+x2=−f(x),所以f(x)为奇函数,故排除选项A.又f (π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C 3、sin1860°等于( )A .12B .-12C .√32D .-√32答案:C分析:用诱导公式先化简后求值.sin1860°=sin (5×360°+60°)=sin60°=√32, 故选: C4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( )A .√53B .23C .13D .√59答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去), 又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A. 小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、把函数f(x)=sin (2x −π4)的图象上所有点的横坐标伸长为原来的2倍,纵坐标保持不变,再把所得的图象向左平移a(a >0)个单位长度,得到函数y =cosx 的图象,则a 可以是( )A .π8B .π4C .π2D .3π4答案:D分析:根据三角函数的图象变换得到y =sin (x +a −π4),得到sin (x +a −π4)=cosx ,结合选项,逐项判定,即可求解.由题意,将函数f(x)的图象上所有点的横坐标伸长为原来的2倍,纵坐标保持不变可得函数y=sin(x−π4)的图象,将该图象向左平移a(a>0)个单位长度,得到y=sin(x+a−π4)的图象,所以sin(x+a−π4)=cosx,对于A中,当a=π8时,sin(x+π8−π4)=sin(x−π8)≠cosx,故A错误;对于B中,当a=π4时,sin(x+π4−π4)=sinx≠cosx,故B错误;对于C中,当a=π2时,sin(x+π2−π4)=sin(x+π4)≠cosx,故C错误;对于D中,当a=3π4时,sin(x+3π4−π4)=sin(x+π2)=cosx,故D正确.故选:D.6、已知函数f(x)=sin2x+2√3sinxcosx−cos2x,x∈R,则()A.f(x)的最大值为1B.f(x)在区间(0,π)上只有1个零点C.f(x)的最小正周期为π2D.x=π3为f(x)图象的一条对称轴答案:D分析:首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;解:函数f(x)=sin2x+2√3sinxcosx−cos2x=√3sin2x−cos2x=2(√32sin2x−12cos2x)=2sin(2x−π6),可得f(x)的最大值为2,最小正周期为T=2π2=π,故A、C错误;由f(x)=0可得2x−π6=kπ,k∈Z,即x=kπ2+π12,k∈Z,可知f(x)在区间(0,π)上的零点为π12,7π12,故B错误;由f(π3)=2sin(2π3−π6)=2,可知x=π3为f(x)图象的一条对称轴,故D正确.故选:D7、在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x天时太阳直射点的纬度值为y,该科研小组通过对数据的整理和分析.得到y与x近似满足y=23.4392911sin0.01720279x.则每1200年中,要使这1200年与1200个回归年所含的天数最为接近.应设定闰年的个数为( )(精确到1)参考数据π0.01720279≈182.6211A .290B .291C .292D .293答案:B分析:设闰年个数为x ,根据闰年个数对应天数一致的原则建立关系式366x +365(1200−x )=365.2422×1200,求解x 即可.解:T =2πω=2π0.01720279=2×182.6211=365.2422,所以一个回归年对应的天数为365.2422天假设1200年中,设定闰年的个数为x ,则平年有1200−x 个,所以366x +365(1200−x )=365.2422×1200解得:x =0.2422×1200=290.64.故选:B.8、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( )A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解.由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34,又sinα+cosα=15,所以|sinα|>|cosα|,故tanα=−43,故选:C9、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为()A.(−√2,√2)B.(−√2,2]C.[−2,√2]D.[−2,√2)答案:D分析:令f(x)=0,则2sin(x+π4)=−m,令g(x)=2sin(x+π4),根据x的取值范围求出g(x)的值域,依题意y=g(x)与y=−m在(0,π)上有交点,即可求出参数的取值范围;解:令f(x)=0,即2sin(x+π4)=−m,令g(x)=2sin(x+π4),因为x∈(0,π),所以x+π4∈(π4,5π4),所以sin(x+π4)∈(−√22,1],即g(x)∈(−√2,2],依题意y=g(x)与y=−m在(0,π)上有交点,则−√2<−m≤2,所以−2≤m<√2,即m∈[−2,√2);故选:D10、在0∘~360∘范围内,与−70∘终边相同的角是()A.70∘B.110∘C.150∘D.290∘答案:D解析:根据终边相同的角的定义即可求解.与−70∘终边相同的角的为−70∘+360∘⋅k(k∈Z),因为在0∘~360∘范围内,所以k=1可得−70∘+360∘=290∘,故选:D.填空题11、已知函数f(x)=3sin(ωx+π6)(ω>0)在(0,π12)上单调递增,则ω的最大值是____.答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin(ωx+π6)(ω>0)在区间(0,π12)上单调递增,可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:412、函数f(x)=sinx+x+x3+1,若f(m)=3,则f(−m)=________.答案:−1分析:令g(x)=sinx+x+x3,求出g(m),证明函数g(x)为奇函数,从而可得出答案.解:令g(x)=sinx+x+x3,由f(m)=3,得g(m)=2,因为g(−x)=−sinx−x−x3=−g(x),所以函数g(x)为奇函数,所以g(−m)=−g(m)=−2,所以f(−m)=g(−m)+1=−1.所以答案是:−1.13、已知函数f(x)=sin(πx+φ)(|φ|<π)的图象过点(13,1),若f(x)在[−2,a]内有5个零点,则a的取值范围为______.答案:[176,23 6)分析:根据题意求得f(x)=sin(πx+π6),由x∈[−2,a]时,得到πx+π6∈[−2π+π6,aπ+π6],结合正弦函数的性质,列出不等式3π≤aπ+π6<4π,即可求解.由题意知,函数f(x)的图象过点(13,1),所以sin(π3+φ)=1,解得π3+φ=π2+2kπ,k∈Z,因为|φ|<π,所以φ=π6,所以f(x)=sin(πx+π6),当x∈[−2,a]时,可得πx+π6∈[−2π+π6,aπ+π6],因为f(x)在[−2,a]内有5个零点,结合正弦函数的性质可得3π≤aπ+π6<4π,所以176≤a<236,即实数a的取值范围是[176,236).所以答案是:[176,23 6).解答题14、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结OD,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2令t=sinθ2(0<t<√22)∴l=2+4t+2(1−2t2)=4+4t−4t2=−4(t−12)2+5∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题15、已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式及对称中心坐标:(2)先把f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数g(x)的图象,若当x ∈[−π4,π6]时,求g(x)的值域.答案:(1)f(x)=2sin(2x +π3)−1,(kπ2−π6,−1)(k ∈Z )(2)[0,2]分析:(1)先根据图象得到函数的最大值和最小值,由此列方程组求得A,B 的值,根据周期求得ω的值,根据f(π12)=1求得φ的值,由此求得f (x )的解析式,进而求出f (x )的对称中心; (2)根据三角变换法则求得函数g (x )的解析式,再换元即可求出g (x )的值域.(1)由图象可知:{A +B =1−A +B =−3,解得:A =2 , B =−1, 又由于T 2=7π12−π12,可得:T =π,所以ω=2πT =2 由图像知f(π12)=1,sin(2×π12+φ)=1,又因为−π3<π6+φ<2π3 所以2×π12+φ=π2,φ=π3.所以f(x)=2sin(2x +π3)−1令2x +π3=kπ(k ∈Z ),得:x =kπ2−π6(k ∈Z ) 所以f(x)的对称中心的坐标为(kπ2−π6,−1)(k ∈Z )(2)依题可得g(x)=f(x+π6)+1=2sin(2x+2π3),因为x∈[−π4,π6],令2x+2π3=t∈[π6,π],所以sint∈[0,1],即g(x)的值域为[0,2].。
三角函数50题精选题附答案
1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。
解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。
全国通用版高中数学第五章三角函数经典大题例题
(名师选题)全国通用版高中数学第五章三角函数经典大题例题单选题1、已知sinθ=45,则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=( )A .−169B .169C .−43D .43 答案:B分析:由诱导公式和同角关系sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)可化为sin 2θcos 2θ,再由同角关系由sinθ求出cos 2θ,由此可得结果.∵ sinθ=45,∴ cos 2θ=1−sin 2θ=925 则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=sinθ(−sinθ)(−cosθ)cosθ=sin 2θcos 2θ=169,故选:B.2、函数f (x )=2sin (ωx +φ)(ω>0)图像上一点P (s,t )(−2<t <2)向右平移2π个单位,得到的点Q 也在f (x )图像上,线段PQ 与函数f (x )的图像有5个交点,且满足f (π4−x)=f (x ),f (−π2)>f (0),若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为( ) A .(−2,−√2]B .[−2,−√2]C .[√2,2)D .[√2,2] 答案:A分析:首先根据已知条件分析出|PQ |=2π=2T ,可得ω=2,再由f (π4−x)=f (x )可得y =f (x )对称轴为x =π8,利用f (−π2)>f (0)可以求出符合题意的一个φ的值,进而得出f (x )的解析式,再由数形结合的方法求a 的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y=f(x),x∈[0,π2]与y=a有两个交点,则a的取值范围为(−2,−√2],故选:A小提示:关键点点睛:本题解题的关键是取特殊点P(0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f(x)的解析式,再利用数形结合的思想求解a的取值范围.3、已知函数f(x)=2sin(x+π4)+m在区间(0,π)上有零点,则实数m的取值范围为()A.(−√2,√2)B.(−√2,2]C.[−2,√2]D.[−2,√2)答案:D分析:令f(x)=0,则2sin(x+π4)=−m,令g(x)=2sin(x+π4),根据x的取值范围求出g(x)的值域,依题意y=g(x)与y=−m在(0,π)上有交点,即可求出参数的取值范围;解:令f(x)=0,即2sin(x+π4)=−m,令g(x)=2sin(x+π4),因为x∈(0,π),所以x+π4∈(π4,5π4),所以sin(x+π4)∈(−√22,1],即g(x)∈(−√2,2],依题意y=g(x)与y=−m在(0,π)上有交点,则−√2<−m≤2,所以−2≤m<√2,即m∈[−2,√2);故选:D4、中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇而的面积为()A.704cm2B.352cm2C.1408cm2D.320cm2答案:A解析:设∠AOB=θ,OA=OB=r,由题意可得:{24=rθ64=(r+16)θ,解得r,进而根据扇形的面积公式即可求解.如图,设∠AOB =θ,OA =OB =r , 由弧长公式可得:{24=rθ64=(r +16)θ , 解得:r =485,所以,S 扇面=S 扇形OCD −S 扇形OAB =12×64×(485+16)−12×24×485=704cm 2.故选:A .5、若函数f (x )=sin (ωx −π3)(0<ω<40)的图象经过点(16,−1),则f (x )的最小正周期为( ) A .211B .29C .27D .25 答案:A分析:f (16)=−1,据此求出ω的表达式,再根据ω的范围求得ω的值即可求最小正周期.依题意可得f (16)=−1,则ω6−π3=−π2+2k π(k ∈Z ),得ω=(12k −1)π(k ∈Z ). 因为0<ω<40,所以ω=11π,T =2π|ω|=211.故选:A.6、sin1860°等于( ) A .12B .-12C .√32D .-√32 答案:C分析:用诱导公式先化简后求值.sin1860°=sin (5×360°+60°)=sin60°=√32, 故选: C7、设函数f(x)=2sin(ωx +φ)−1(ω>0,0⩽φ⩽π2)的最小正周期为4π,且f(x)在[0,5π]内恰有3个零点,则φ的取值范围是( ) A .[0,π3]∪{5π12}B .[0,π4]∪[π3,π2] C .[0,π6]∪{5π12}D .[0,π6]∪[π3,π2] 答案:D分析:根据周期求出ω=12,结合φ的范围及x ∈[0,5π],得到5π2⩽φ+5π2⩽3π,把φ+5π2看做一个整体,研究y =sinx −12在[0,3π]的零点,结合f(x)的零点个数,最终列出关于φ的不等式组,求得φ的取值范围 因为T =2πω=4π,所以ω=12.由f(x)=0,得sin(12x +φ)=12.当x ∈[0,5π]时,12x +φ∈[φ,φ+5π2],又0⩽φ⩽π2,则5π2⩽φ+5π2⩽3π.因为y =sinx −12在[0,3π]上的零点为π6,5π6,13π6,17π6,且f(x)在[0,5π]内恰有3个零点,所以{0⩽φ⩽π6,13π6⩽φ+5π2<17π6或{π6<φ⩽π2,17π6⩽φ+5π2,解得φ∈[0,π6]∪[π3,π2]. 故选:D.8、已知f (x )=tanωx (0<ω<1)在区间[0,π3]上的最大值为√33,则ω=( ) A .12B .13C .23D .34答案:A分析:先求出0≤ωx ≤ωπ3,再根据f (x )max =tanωπ3=tan π6=√33解方程即可. 因为x ∈[0,π3],即0≤x ≤π3,又0<ω<1,所以0≤ωx ≤ωπ3<π3,所以f (x )max =tanωπ3=tan π6=√33, 所以ωπ3=π6,ω=12.故选:A .9、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( ) A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π, 解得0<ω⩽512或56⩽ω⩽1112, 则ω的取值范围是(0,512]∪[56,1112]. 故选:C .10、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果. 因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A.11、《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕像,它取材于现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的每只手臂长约π4m ,肩宽约为π8m ,“弓”所在圆的半径约为1.25m ,则如图掷铁饼者双手之间的距离约为( )A .π2m B .5√24m C .5π8m D .2m 答案:B分析:由题意知这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长. 由题得:弓所在的弧长为:l =π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴两手之间的距离d =2Rsin π4=√2×1.25AB =5√24m . 故选:B12、√3tan26∘tan34∘+tan26∘+tan34∘= ( ) A .√33B .−√3C .√3D .−√33答案:C解析:利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 解:√3tan26°tan34°+tan26°+tan34°=√3tan26°tan34°+tan(26°+34°)(1−tan26°tan34°)=√3tan26°tan34°+√3(1−tan26°tan34°) =√3tan26°tan34°+√3−√3tan26°tan34°=√3. 故选:C . 填空题13、函数f (x )=lgcosx −√25−x 2的定义域为______. 答案:[−5,−3π2)∪(−π2,π2)∪(3π2,5] 分析:由题意可得{cosx >025−x 2≥0 ,解得{−π2+2kπ<x <π2+2kπ,k ∈Z −5≤x ≤5 ,分别令k =-1、0、1,综合即可得答案.由题意得{cosx >025−x 2≥0,解得{−π2+2kπ<x <π2+2kπ,k ∈Z −5≤x ≤5 , 令k =-1,解得x ∈[−5,−3π2),令k =0,解得x ∈(−π2,π2),令k=1,解得x∈(3π2,5],综上,定义域为[−5,−3π2)∪(−π2,π2)∪(3π2,5].所以答案是:[−5,−3π2)∪(−π2,π2)∪(3π2,5]14、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−215、函数f(x)是定义域为R的奇函数,满足f(π2−x)=f(π2+x),且当x∈[0,π)时,f(x)=sinxx2−πx+π,给出下列四个结论:①f(π)=0;②π是函数f(x)的周期;③函数f(x)在区间(−1,1)上单调递增;④函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π. 其中,正确结论的序号是___________.答案:①③④分析:由f(π2−x)=f(π2+x)可得f(π)=f(0)直接计算f(0)即可判断①;根据函数f(x)的奇偶性和对称性即可求得周期,从而可判断②;先判断f(x)在(0,1)的单调性,再根据奇函数关于原点对称的区间单调性相同即可判断③;根据对称性以及函数图象交点的个数即可判断④.对于①:由f(π2−x)=f(π2+x)可得f(π)=f(0)=sin0π=0,故①正确;对于②:由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,因为f(x)是定义域为R的奇函数,所以f(π+x)=f(−x)=−f(x)所以f (2π+x )=−f (x +π)=f (x ), 所以函数f(x)的周期为2π,故② 不正确;对于③ :当0<x <1时,y =sinx 单调递增,且y =sinx >0,y =x 2−πx +π=(x −π2)2+π−π24在0<x <1单调递减,且y >1−π+π=1,所以f(x)=sinxx 2−πx+π在0<x <1单调递增,因为f(x)是奇函数, 所以函数f(x)在区间(−1,1)上单调递增;故③ 正确;对于④ :由f (π2−x)=f (π2+x)可得f(x)关于直线x =π2对称,作出示意图函数g(x)=f(x)−sin1(x ∈[−10,10])所有零点之和即为函数y =f (x )与y =sin1两个函数图象交点的横坐标之和,当x ∈[−π2,3π2]时,两图象交点关于x =π2对称,此时两根之和等于π ,当x ∈(3π2,10]时两图象交点关于x =5π2对称,此时两根之和等于5π,当x ∈[−5π2,−π2)时两图象交点关于x =−3π2对称,此时两根之和等于−3π,x ∈[−10,−5π2)时两图象无交点 ,所以函数g(x)=f(x)−sin1(x ∈[−10,10])所有零点之和为3π.故④ 正确; 所以答案是:① ③ ④小提示:求函数零点的方法:画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数,ℎ(x )和g (x )的形式,根据f (x )=0⇔ℎ(x )=g (x ),则函数f (x )的零点个数就是函数y =ℎ(x )和y =g (x )的图象交点个数;零点之和即为两个函数图象交点的横坐标之和. 16、已知sin (α+π6)=13,则sin (5π6−α)+sin 2(π3−α)的值为______.答案:119解析:由诱导公式可得sin(5π6−α)=sin(α+π6),cos(π3−α)=sin(α+π6),且sin2(π3−α)=1−cos2(π3−α),代入可得到答案.因为(α+π6)+(5π6−α)=π,(α+π6)+(π3−α)=π2,所以sin(5π6−α)=sin[π−(α+π6)]=sin(α+π6)=13,cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=13,所以sin(5π6−α)+sin2(π3−α)=13+1−cos2(π3−α)=43−(13)2=119.所以答案是:119.小提示:本题主要考查三角函数诱导公式、凑角的应用,涉及到同角三角函数的基本关系,关键点是利用(α+π6)+(5π6−α)=π,(α+π6)+(π3−α)=π2转化求值,考查学生的基本计算能力,是一道容易题.17、函数f(x)=1+√2sinx−1的定义域为___________.答案:(π6+2kπ,5π6+2kπ)(k∈Z)分析:根据题意得到2sinx−1>0,进而解得答案即可.由题意,2sinx−1>0⇒sinx>12⇒x∈(π6+2kπ,5π6+2kπ)(k∈Z).所以答案是:(π6+2kπ,5π6+2kπ)(k∈Z).解答题18、已知函数f(x)=log12(sinx−cosx).(1)求它的定义域和值域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的最小正周期.答案:(1)定义域为(2kπ+π4,2kπ+5π4)(k∈Z),值域为[−12,+∞);(2)单调增区间为[2kπ+3π4,2kπ+5π4)(k∈Z),单调减区间为(2kπ+π4,2kπ+3π4](k∈Z);(3)非奇非偶函数;(4)2π.分析:(1)利用两角和差的三角函数,结合对数的运算化简可得f(x)=log12sin(x−π4)−12,由真数大于零,即sin(x−π4)>0,利用三角函数的图象和性质求解,即得函数f(x)的定义域;根据三角函数的值域和对数函数的图象与性质,可求得函数f(x)的值域;(2)利用对数函数的单调性,三角函数的单调性,结合复合函数的单调性可求得函数f(x)的单调增减区间;(3)利用奇偶函数的定义域的对称性,结合(1)中所的定义域,即可得到函数f(x)为非奇非偶函数;(4)根据三角函数的周期性,即可得到函数f(x)的周期.(1)f(x)=log12(sinx−cosx)=log12[√2sin(x−π4)]=log12sin(x−π4)−12,由sin(x−π4)>0,解得2kπ<x−π4<2kπ+π,∴2kπ+π4<x<2kπ+5π4,∴函数f(x)的定义域为(2kπ+π4,2kπ+5π4)(k∈Z);由sin(x−π4)∈(0,1],∴log12sin(x−π4)≥0,∴函数f(x)的值域为[−12,+∞);(2)在定义域内,当2kπ<x−π4≤2kπ+π2,即2kπ+π4<x≤2kπ+3π4时,sin(x−π4)是单调递增的,故函数f(x)时单调递减的;当2kπ+π2≤x−π4<2kπ+π,即2kπ+3π4≤x<2kπ+5π4时,sin(x−π4)是单调递减的,故函数f(x)时单调递增的;∴单调增区间为[2kπ+3π4,2kπ+5π4)(k∈Z),单调减区间为(2kπ+π4,2kπ+3π4](k∈Z);(3)由(1)得函数f(x)的定义域为(2kπ+π4,2kπ+5π4)(k∈Z),定义域不关于原点对称,故函数f(x)为非奇非偶函数;(4)∵sin(x−π4)的最小正周期为2π,∴函数f(x)=log12sin(x−π4)−12的最小正周期为2π.小提示:本题考查对数函数与三角函数的复合函数的定义域,值域,单调性,奇偶性和周期性问题,关键是掌握复合函数的单调性求解方法,熟练掌握三角函数的单调性,简单三角不等式的求解方法,并注意单调性求解和奇偶性判定时一定要考察清楚函数的定义域.19、化简: (1)√1+cosα−√1−cosα√1+cosα+√1−cosαπ<α<3π2);(2)cos(3π2−α)−tan α2(1+cosα)√1−cosα(0<α<π).答案:(1)−√2cos α2 (2)−2√2cos α2分析:(1)先求出α2的范围,再利用二倍角公式和同角三角函数间的关系化简计算即可,(2)利用半角公式,诱导公式和二倍角公式化简即可. (1) 因为π<α<3π2,所以π2<α2<3π4,所以原式=sin 2α2+2sin α2cos α2+cos 2α2√2cos 2α2−√2sin 2α2+sin 2α2−2sin α2cos α2+cos 2α2√2cos 2α2+√2sin 2α2=(sin α2+cos α2)2−√2cos α2−√2sin α2+(sin α2−cos α2)2−√2cos α2+√2sinα2 =−√22(sin α2+cos α2)+√22(sin α2−cos α2) =−√2cos α2. (2)因为tan α2=sinα2cosα2=2sin α2cosα22cos 2α2=sinα1+cosα,所以(1+cosα)tan α2=sinα.又因为cos (3π2−α)=−sinα,且1−cosα=2sin 2α2, 所以原式=√2sin 2α2=√2|sin α2|=−2√2sin α2cosα2|sin α2|,因为0<α<π,所以0<α2<π2,所以sin α2>0.所以原式=−2√2cosα2.20、如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域内(含边界)且与A、B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为y km.(1)设∠BAO=θ(弧度),将y表示成θ的函数并求函数的定义域;(2)假设铺设的污水管道总长度是(10+10√3)km,请确定污水处理厂的位置.答案:(1)y=20−10sinθcosθ+10,0≤θ≤π4(2)位置是在线段AB的中垂线上且离AB的距离是10√33km分析:(1)依据题给条件,先分别求得OA、OB、OP的表达式,进而得到管道总长度y的表达式,再去求其定义域即可解决;(2)先解方程20−10sinθcosθ+10=10+10√3,求得θ=π6,再去确定污水处理厂的位置.(1)矩形ABCD中,AB=20km,BC=10km,DP=PC,DC⊥PO,∠BAO=∠ABO=θ则OA=OB=10cosθkm,OP=10−10tanθ(km),∴y=OA+OB+OP=20cosθ+10−10tanθ则y=20−10sinθcosθ+10,0≤θ≤π4(2)令20−10sinθcosθ+10=10+10√3∴10sinθ+10√3cosθ=20,∴20sin(θ+π3)=20,则sin(θ+π3)=1,又0≤θ≤π4,即π3≤θ+π3≤7π12,则θ+π3=π2,则θ=π6此时OP=10−10tanπ6=10−103√3(km)所以确定污水处理厂的位置是在线段AB的中垂线上且离AB的距离是10√33km。
三角函数例题
3.1.1两角差的余弦公式题型一:正用公式例1.利用差角公式求cos15 .例2.已知45sin ,,,cos 5213πααπβ⎛⎫=∈=- ⎪⎝⎭,β是第三象限角,求()cos αβ-的值. 练习:课本127234P T T T 、、.题型二:逆用公式例3. (1)求cos80°cos35°+sin80°•sin35°的值.(2)求sin13°sin43°+sin77°sin47°的值.练习:cos (α-35°)·cos (25°+α)+sin (α-35°)sin (25°+α).题型三:角的拆分例4.已知锐角α,β满足cos α=35,cos (α+β)=-513,求cos β的值 例1.已知()3sin 305α+= , 常见的角的变换有:α=(α+β)-β,β=(α+β)-α,2β=(α+β)-(α-β),2α=(α+β)+(α-β)等. 练习(1)cos (α+β)=45,cos (α-β)=-45,3π2<α+β<2π,π2<α-β<π,求cos2β. (2)已知cos (α+π6)=35,α为锐角,求cos α的值. 书本13745P T T 、3.1.2两角和与差的正弦、余弦正切公式题型一:正用公式例1.已知()3sin 305α+=,60150α<< ,求cos α.例2.已知,αβ都是锐角,1cos 7α=,()11cos 14αβ+=-,求cos β. 例3.已知()tan 3αβ+=,()tan 5αβ-=,求tan 2,tan 2αβ.练习1.已知324ππβα<<<,()3cos 5αβ+=-,()12cos 13αβ-=,求cos2,cos2αβ. 2.已知344ππα<<,04πβ<<,3cos 45πα⎛⎫-= ⎪⎝⎭,35sin 413πβ⎛⎫+= ⎪⎝⎭,求()sin αβ+.类型二:正切公式的变形应用例1.0000tan 20tan 4020tan 40.+例2.4παβ+=,求()()1tan 1tan αβ++.例3.在ABC ∆中,求证tan tan tan tan tan tan A B CA B C ++=类型三:三角公式的灵活应用例1.1cos cos 2αβ+=,1sin sin 3αβ+=,求()cos αβ-. 练习:sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求证:()1cos 2αβ-=-. 例2.()1cos 5αβ+=,()3cos 5αβ-=,求tan tan αβ的值.3.1.3 二倍角公式类型一:辅助角公式及和差、二倍角公式的结合1.求下列函数的周期及最值.(1)()22=sin 2sin cos 3cos f x x x x x ++(2)()44cos cos sin f x x x x x =--类型二:求值1. 已知1sin 24α=,,42ππα⎛⎫∈ ⎪⎝⎭,求cos sin αα-. 2. 已知532παπ⎛⎫∈⎪⎝⎭,,3cos 5α=-,求sin cos ,tan 222ααα,. 3.已知445sin cos 9αα+=,求sin 2α的值. 练习:(1)已知1sin -cos 225αα=,α为第二象限角,求sin α的值.(2)已知42ππα⎛⎫∈ ⎪⎝⎭,,sin 28α=,求sin α. (3)已知3cos 25α=,求44sin cos αα+的值. 类型三:化简.0,2πθ⎛⎫∈ ⎪⎝⎭.3,22παπ⎛⎫∈ ⎪⎝⎭. 练习:化简1sin cos 1sin cos αααα+-++.类型四:求值(1)1sin 50cos50+练习:教材146页第5题 (2)cos 20cos 40cos80(3)tan 204sin 20+(4)22sin 20cos 50sin 20cos50++3.2 简单的三角恒等变换1.()sin sin cos cos sin αβαβαβ+=+ ()sin sin cos cos sin αβαβαβ-=-()cos =cos cos sin sin αβαβαβ+-()cos cos cos sin sin αβαβαβ-=+积化和差公式()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦ ()()1cos sin sin sin 2αβαβαβ=+--⎡⎤⎣⎦ ()()1cos cos cos cos 2αβαβαβ=++-⎡⎤⎣⎦ ()()1sin sin cos cos 2αβαβαβ=-+--⎡⎤⎣⎦ 和差化积公式sin sin 2sin cos 22θϕθϕθϕ+-+=sin sin 2cos sin 22θϕθϕθϕ+--= cos cos 2cos cos 22θϕθϕθϕ+-+= cos cos 2sin sin 22θϕθϕθϕ+--=-练习:课后练习2、32.证明:(1)3sin 33sin 4sin ααα=-;(2)43cos 44cos 8sin ααα+-= (3)()()sin 2sin 2cos sin sin αββαβαα+-+= 练习:3cos34cos 3cos ααα=-43cos 4cos 28cos ααα++=)22tan tan 2sin cos 2sin 2tan 2tan 3ααπααααα⎛⎫-=- ⎪-⎝⎭求值1.(1)1sin10 2. (2)()sin 501+ 2.若cos 22sin 4απα=⎛⎫- ⎪⎝⎭,求cos sin αα+ 3. 如图,已知OPQ 是半径为1,圆心角为π3的扇形,C 为扇形弧上的一动点,ABCD 是扇形的内接矩形,记∠COP=α,求当α为何值时矩形ABCD 面积最大,并求这个最大面积.。
三角函数典型例题
三角函数典型例题
1. 已知直角三角形中,一条直角边的长度为3,斜边的长度为5,求另一条直角边的长度。
解:设另一条直角边的长度为x,根据勾股定理可得:3^2 + x^2 = 5^2
化简得:x^2 = 25 - 9 = 16
因此,x = 4 ,所以另一条直角边的长度为4。
2. 在一个直角三角形中,已知一条直角边的长度为10,另一条直角边的长度为8,求斜边的长度。
解:设斜边的长度为x,根据勾股定理可得:10^2 + 8^2 = x^2 化简得:x^2 = 100 + 64 = 164
因此,x = √164 ≈ 12.81,所以斜边的长度约为12.81。
3. 已知一个直角三角形的斜边长度为7,其中一个锐角的正弦值为0.6,求另一个锐角的正弦值。
解:设另一个锐角的正弦值为x,根据正弦定理可得:x/0.6 = 7/7 化简得:x = 0.6
因此,另一个锐角的正弦值为0.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题透析类型一:锐角三角函数本专题主要包括锐角三角函数的意义、锐角三角函数关系及锐角三角函数的增减性和特殊角三角函数值,都是中考中的热点.明确直角三角形中正弦、余弦、正切的意义,熟记30°、45°、60°角的三角函数值是基础,通过计算器计算知道正弦、正切随角度增大而增大,余弦随角度增大而减小.1.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知,BC=2,那么( )A.B.C.D.思路点拨:由于∠ABC在Rt△ABC和Rt△BCD中,又已知AC和BC,故只要求出AB或CD即可.解析:解法1:利用三角形面积公式,先用勾股定理求出,∴.∴.解法2:直接利用勾股定理求出,在Rt△ABC中,.答案:A总结升华:求直角三角形中某一锐角三角函数值,利用定义,求出对应两边的比即可.2.计算:(1)________;(2)锐角A满足,则∠A=________.答案:(1);(2)75°.解析:(1)把角转化为值.(2)把值转化为角即可.(1).(2)由,得,∴.∴A=75°.总结升华:已知角的三角函数,应先求出其值,把角的关系转化为数的关系,再按要求进行运算.已知一个三角函数值求角,先看看哪一个角的三角函数值为此值,在锐角范围内一个角只对应着一个函数值,从而求出此角.3.已知为锐角,,求.思路点拨:作一直角三角形,使为其一锐角,把角的关系转化为边的关系,借助勾股定理,表示出第三边,再利用三角函数定义便可求出,或利用求出,再利用,使可求出.解析:解法1:如图所示,Rt△ABC中,∠C=90°,∠B=,由,可设,.则,∴.解法2:由,得,∴.总结升华:知道一锐角三角函数值,构造满足条件的直角三角形,根据比的性质用一不为0的数表示其两边,再根据勾股定理求出第三边,然后用定义求出要求的三角函数值.或利用,来求.类型二:解直角三角形解直角三角形是中考的重要内容之一,直角三角形的边角关系的知识是解直角三角形的基础.解直角三角形时,注意三角函数的选择使用,避免计算麻烦,化非直角三角形为直角三角形问题是中考的热点.4.已知:如图所示,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,.求:(1)DC的长;(2)sinB的值.思路点拨:题中给出了两个直角三角形,DC和sin B可分别在Rt△ACD和Rt△ABC 中求得,由AD=BC,图中CD=BC-BD,因此可列方程求出CD.解析:(1)设,在Rt△ACD中,,∴,∴.∵AD=BC,∴.又,∴,解得.∴.(2)BC=BD+CD=4+6=10=AD.在Rt△ACD中,.在Rt△ABC中,.∴.总结升华:借助三角函数值,设出其中两边,根据已知条件,列出方程,求出解,再求出其要求的问题.举一反三【变式1】如图所示,在梯形ABCD中,AD∥BC,CA平分∠BCD,DE∥AC,交BC 的延长线于点E,.(1)求证:AB=DC;(2)若,,求边BC的长.思路点拨:要证AB=DC,只需证明ABC=BCD.由AC∥DE,AD∥BC,可得四边形ADEC为平行四边形,所以∠E=∠DAC.由CA平分∠BCD,可得∠BCD=2∠BCA=2∠E,所以∠B=∠BCD,问题得证,由(1)可知AD=CD=,过点A作AF⊥BC,在Rt△ABF,可求得BF=1,所以.解析:(1)证明:∵DE∥AC,∴∠BCA=∠E.∵CA平分∠BCD,∴∠BCD=2∠BCA,∴∠BCD=2∠E.又∵∠B=2∠E,∴∠B=∠BCD.∴梯形ABCD是等腰梯形,即AB=DC.(2)解:如图所示,作AF⊥BC,DG⊥BC,垂足分别为F、G,则AF∥DG.在Rt△AFB中,∵tan B=2,∴AF=2BF.又∵,且,∴,得BF=1.同理可知,在Rt△DGC中,CG=1.∵AD∥BC,∴∠DAC=∠ACB.又∵∠ACB=∠ACD,∴∠DAC=∠ACD.∴AD=DC.∵,∴.∵AD∥BC,AF∥DG,∴四边形AFGD是平行四边形.∴,∴BC=BF+FG+GC=.【变式2】已知:如图所示,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌△AEB;(2)求证:PB⊥BE;(3)PA:PB=1:2,∠APB=135°,求cos∠PAE的值.思路点拨:(1)在△CPB和△AEB中,∠PBC=∠ABE,BP=BE,要证△CPBC≌△AEB,只要BC=AB即可,而四边形ABCD恰好是正方形,所以得证.(2)只要证∠PBE=90°,而∠ABC=90°,即证出.(3)要求cos∠PAE的值,需判断∠PAE所在的三角形是否是直角三角形,因此需连结PE,借助(1)(2),求出∠PBE=,而∠APB=135°,因此∠APE=90°.解析:(1)证明:∵四边形ABCD是正方形,∴BC=AB.∵∠CBP=∠ABE,BP=BE,∴△CPB≌△AEB.(2)证明:∵∠CBP=∠ABE,∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,∴BP⊥BE.(3)解:连结PE,∵BE=BP,∠PBE=90°,∴∠BPE=45°.设AP=k,则BP=BE=2k,∴,∴.∵∠BPA=135°,∠BPE=45°,∴∠APE=90°,.在Rt△APE中,.类型三:利用三角函数解决实际问题直角三角形应用非常广泛,是中考的重要内容之一.近年来,各地中考试题为体现新课标理念,设计了许多面目新颖、创意丰富的新型考题.运用解直角三角形的知识解决与生活、生产相关的应用题是近几年中考的热点.虽然解直角三角的应用题题型千变万化,但设法寻找或构造出可解的直角三角形是解题的关键.5.如图所示,在一个坡角为15°的斜坡上有一棵树,高为AB,当太阳光与水平线成50°角时,测得该树在斜坡的树影BC的长为7 m,求树高.(精确到0.1m)思路点拨:树所在直线垂直于地面,因此需延长AB交水平线于一点D,则AD⊥CD,在Rt△BCD中,BC=7m,∠BCD=15°,所以求出CD、BD.而在Rt△ACD中,∠ACD=50°,利用求出AD,所以AB=AD-BD即可求出.解析:如图,过点C作水平线与AB延长线交于点D,则AD⊥CD.∵∠BCD=15°,∠ACD=50°,在Rt△CDB中,CD=7cos15°,BD=7sin15°.在Rt△CDA中,.∴.答:树高约为6.2m.总结升华:解这类问题一般构造直角三角形,借助角与边的关系,求得未知边,再解另一个直角三角形得到问题答案.举一反三【变式1】高为12.6米的教学楼ED前有一棵大树AB(如图所示).(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.(2)用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:①在下图中,画出你设计的测量方案示意图,并将应测数据标在图上(长度用字母m、n表示,角度用希腊字母…表示);②根据你所画的示意图和标注的数据,计算大树AB的高度(用字母表示).思路点拨:本题主要考查解直角三角形的有关知识,并且让学生根据所提供的信息设计测量方案.解析:连结AC、EF(图略).(1)∵太阳光线是平行线,∴AC∥EF,∴∠ACB=∠EFD.∵∠ABC=∠EDF=90°,∴△ABC∽△EDF.∴.∴.∴AB=4.2.答:大树AB的高是4.2米.(2)如图所示,MG=BN=m,,∴米.总结升华:本题将解直角三角形的相关知识与测量方案设计结合在一起,联系生活实际,让学生自己设计测量方案,得出结果,培养动手实践操作能力.同时,引导学生结合生活实际建立数学模型,促使大家进一步认识数学就在身边,会用数学知识解决现实生活中的问题.【变式2】2008年6月以来某省普降大雨,时有山体滑坡灾害发生.北峰小学教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,AF∥BC,斜坡AB长30米,坡角∠ABC=65°.为了防止滑坡,保障安全,学校决定对该土坡进行改造,经过地质人员勘测,当坡角不超过45°时,可以确保山体不滑坡.(1)求坡顶与地面的距离AD等于多少米?(精确到0.1米)(2)为确保安全,学校计划改造时保持坡脚B不动,坡顶A沿AF削进到E点处,求AE 至少是多少米?(精确到0.1米)解析:(1)在Rt△ADB中,AB=30m,∠ABD=65°,.所以AD=AB·sin∠ABD=30×sin65°≈27.2(米).答:AD等于27.2米.(2)在Rt△ADB中,,所以DB=AB·cos∠ABD=30×cos65°≈12.7(米).连结BE,过E作EN⊥BC于N,因为AE∥BC,所以四边形AEND为矩形,则NE=AD≈27.2.在Rt△ENB中,由已知∠EBN≤45°,当∠EBN=45°时,BN=EN=27.2.所以AE=ND=BN-BD=14.5(米).答:AE至少是14.5米.类型四:锐角三角形函数与斜三角形6.数学活动课上,小敏、小颖分别画出了△ABC和△DEF,数据如图所示,如果把小敏画的三角形面积记作,小颖画的三角形面积记作,那么( )A.B.C.D.不能确定解析:此两图一个是锐角三角形,另一个是钝角三角形,因此解决此问题,关键作高构造直角三角形,如图所示,作AG⊥BC于G,DH⊥EF于H,在Rt△ABG中,由得,∴.在Rt△DHE中,∠DEH=180°-130°=50°,∴得,从而也求得,∴.答案:C总结升华:解斜三角形时往往作高把斜三角形转化为直角三角形,利用直角三角形边边、边角、角角关系求出问题答案.举一反三【变式1】已知如图所示,(1)当△ABC为锐角三角形时,AB为最长边,三边分别为a、b、c,①试判断与的大小关系.②用a、b、c,表示出cosB.(2)当△ABC为钝角三角形时,∠C为钝角,①判断与的大小关系?②用a、b、c表示cosB.思路点拨:解此类问题需作高线构造直角三角形,通过观察发现构造的两直角三角形有一条公共边,借助它列方程,设CD=x,则在图(1)中,图(2)中,则图(1)方程为.图(2)方程为,先求出,再进一步求.解析:(1)①如图(1),过点A作AD⊥BC于点D,设,则,在Rt△ACD和Rt△ABD中,有,.∴,解得.而,∴,∴.②在Rt△ABD中,.(2)①如图(2),同样过A点作AD⊥BC,垂足为D,设,则.在Rt△ACD和Rt△ABD中,,∴,解得.而,∴,∴.②此时在Rt△ABD中,。