黄石市九年级数学期末调研试题(含答案)

合集下载

九年级上册黄石数学期末试卷检测题(Word版 含答案)

九年级上册黄石数学期末试卷检测题(Word版 含答案)

九年级上册黄石数学期末试卷检测题(Word 版 含答案)一、选择题1.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 2.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内 3.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .194.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =- 5.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-2 6.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,10 7.sin60°的值是( )A .B .C .D .8.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 9.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6B .7C .8D .9 10.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④11.如图,点P (x ,y )(x >0)是反比例函数y=k x(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变 12.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( )A .a <2B .a >2C .a <﹣2D .a >﹣2二、填空题13.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .14.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .15.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.16.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.17.数据8,8,10,6,7的众数是__________.18.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.19.数据1、2、3、2、4的众数是______.20.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.21.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.22.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.23.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________ 三、解答题25.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.26.(1)如图,已知AB 、CD 是大圆⊙O 的弦,AB =CD ,M 是AB 的中点.连接OM ,以O 为圆心,OM 为半径作小圆⊙O .判断CD 与小圆⊙O 的位置关系,并说明理由;(2)已知⊙O ,线段MN ,P 是⊙O 外一点.求作射线PQ ,使PQ 被⊙O 截得的弦长等于MN .(不写作法,但保留作图痕迹)27.已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<5.结合图像,直接写出a的取值范围.28.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞20 1.6第2次捕捞15 2.0第3次捕捞15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x (kg)之间的函数关系,并估计自变量x的取值范围.29.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).30.解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).31.如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).32.如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据位似图形的性质,再结合点A与点A'的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】'''是以坐标原点O为位似中心的位似图形,且A为O A'的中心,解:∵△ABC与△A B C'''的相似比为:1:2;∴△ABC与△A B C∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键. 2.B解析:B【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外.【详解】解:∵以AB 为直径作⊙O ,当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质∴点C 在圆外.故选:B .【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.3.B解析:B【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例. 4.C解析:C【解析】【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.5.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.6.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D .考点:众数;中位数.7.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键. 8.D解析:D【解析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.9.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.10.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误. ②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠, GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒, PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确. ④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠, APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒, ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠, CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.11.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 二、填空题13.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 14.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,15.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.16.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键. 17.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.18.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 19.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数. 20.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围.21.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE ,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE =15(5﹣2)×180°=108°,BC =CD =DE ,得出 BC =CD =DE ,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,∴∠BAE =15(n ﹣2)×180°=15(5﹣2)×180°=108°,BC =CD =DE , ∴BC =CD =DE ,∴∠CAD =13×108°=36°; 故答案为:36°.【点睛】 本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.22.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC x,则CD=AB﹣AD﹣BC=x﹣x=1,解得:x=故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.23.30【解析】【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF =90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶5,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O 的半径为1,且圆心O 运动的路径长为18,∴DE +EF +DF =18,∵DE ∥AC ,DF ∥AB ,EF ∥BC ,∴∠DEF =∠ACB ,∠DFE =∠ABC ,∴△DEF ∽△ABC ,∴DE :EF :DF =AC :BC :AB =3:4:5,设DE =3k (k >0),则EF =4k ,DF =5k ,∵DE +EF +DF =18,∴3k +4k +5k =18,解得k =32,∴DE =3k =92,EF =4k =6,DF =5k =152, 根据切线长定理,设AG =AH =x ,BN =BM =y ,则AC =AG +GP +CP =x +92+1=x +5.5, BC =CQ +QN +BN =1+6+y =y +7,AB =AH +HM +BM =x +152+y =x +y +7.5, ∵AC :BC :AB =3:4:5, ∴(x +5.5):(y +7):(x +y +7.5)=3:4:5,解得x =2,y =3,∴AC =7.5,BC =10,AB =12.5,∴AC +BC +AB =30.所以△ABC 的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O 的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题25.(1)b =2,c =3;(2)(0,3),(1,4)(3)见解析;(4)-12<y ≤4【解析】【分析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩, 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x<2时,y的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.26.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON ∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.27.(1)a+2;2;(2)-2或642±3)8215a≤--【解析】【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<5,则顶点纵坐标大于等于5,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得: a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则111 2y⨯⨯=解得:2y=±当y=2时,242 4ac ba-=由(1)可知,b=a+2;c=2∴242(2)24a aa⨯-+=解得:a=-2当y=-2时,242 4ac ba-=-由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <5,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于5 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.28.(1)1.78kg ;(2)8900kg ;(3)y =14x ,0≤x ≤8900.【解析】【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.【详解】(1)样本中平均每条鱼的质量为20 1.615 2.015 1.8 1.78201515⨯+⨯+⨯=++(kg ). (2)∵样本中平均每条鱼的质量为1.78kg ,∴估计鱼塘中该种鱼的总质量为1.78×5000=8900(kg ).(3)∵每千克的售价为14元,∴所求函数表达式为y =14x ,∵该种鱼的总质量约为8900kg ,∴估计自变量x 的取值范围为0≤x≤8900.【点睛】 本题考查一次函数的应用、用样本估计总体,明确题意,写出相应的函数关系式,利用平均数的知识求出每条鱼的质量是解题关键.29.该段运河的河宽为.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形, 40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到33401603x x ++=, 解得:303x =,即303CH m =, 则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.30.(1)x =22;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.31.(1)见解析,(2)见解析,(3)13π【解析】【分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C2223+13A′C′A″=90°,∴点A90?·13π13,13π.【点睛】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.32.(1)见详解;(2)4 5【解析】【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE∽△BFA;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF⊥AE于点F,四边形ABCD为正方形,∴△ADE和△BFA均为直角三角形,∵DC∥AB,。

九年级上册黄石数学期末试卷检测题(Word版 含答案)

九年级上册黄石数学期末试卷检测题(Word版 含答案)

九年级上册黄石数学期末试卷检测题(Word 版 含答案)一、选择题1.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.42.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm3.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠. B .m 1=.C .m 1≥D . m 0≠.4.若x=2y ,则xy的值为( ) A .2B .1C .12D .135.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .196.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .237.方程x 2﹣3x =0的根是( ) A .x =0 B .x =3 C .10x =,23x =- D .10x =,23x = 8.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π9.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°10.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;②射线FE 是∠AFC 的角平分线; ③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个12.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×109二、填空题13.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .14.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.15.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 16.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm . 17.抛物线()2322y x =+-的顶点坐标是______.18.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.19.数据1、2、3、2、4的众数是______.20.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.21.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.22.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM =_____.23.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题: (1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品? 27.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大. 28.(1)解方程:27100x x -+= (2)计算:cos60tan 452cos 45︒⨯︒-︒29.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC . (1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).30.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,3). (1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C 有怎样的位置关系,并给出证明.31.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?32.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a2x+bx+c(a<0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.3.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.A解析:A 【解析】 【分析】将x=2y 代入xy中化简后即可得到答案.【详解】 将x=2y 代入x y得: 22x yy y ==, 故选:A. 【点睛】此题考查代数式代入求值,正确计算即可.5.B解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.6.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =23,∵∠BDC =∠CBD =45°,CF ⊥BD , ∴CF=DF=BF =12BD =3, ∴32EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+,∴()()222232622EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.7.D解析:D 【解析】 【分析】先将方程左边提公因式x ,解方程即可得答案. 【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.B解析:B【解析】【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.9.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B .点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴25=5AEAF,25=5BEEF,∴=AE BEAF EF,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,===BAE GAEB AGEAE AE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,==GE CEEF EF⎧⎨⎩,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.12.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n14.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.15.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴2222AB AC BC,6810∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.16.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90R=25180∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.17.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .18.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.19.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.20.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.21.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b 2-4ac=12-4×1×(-3)=13,∴=, ∵1x <0,∴1x =−1-2<0, ∵-4≤-3,∴322-≤≤-, ∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.22.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM. 23.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题25.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒, 3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)50;(2)8.26,8;(3)400【解析】【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分 ; 4+10+15=29<26,所以中位数为8+8=82分; (3)根据题意得2000名居民中得分为10分的约有102000=40050名, ∴社区工作人员需准备400份一等奖奖品.【点睛】 本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.27.(1)7;(2)日最低气温波动大.【解析】【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃(2)最高气温的平均数:5768465x ++++==高 最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高 同理得出, 最低气温的平均数:0x =低最低气温的方差为:2 3.6S =低∵22S S <低高∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.28.(1)∴x 1=2,x 2=5;(2)12-【解析】【分析】(1)用因式分解法解一元二次方程;(2)先将特殊角三角形函数值代入,然后进行实数的混合运算.【详解】解:(1)27100x x -+= (2)(5)0x x --=∴x 1=2,x 2=5(2)cos60tan 4545︒⨯︒-︒112=⨯ 12=-. 【点睛】本题考查解一元二次方程,特殊角三角函数值的混合运算,掌握运算法则正确计算是解题关键.29.(1)BC 与⊙O 相切,理由见解析;(2)23π. 【解析】试题分析:(1)连接OD ,推出OD BC ⊥,根据切线的判定推出即可;(2)连接,DE OE ,求出阴影部分的面积=扇形EOD 的面积,求出扇形的面积即可. 试题解析:(1)BC 与O 相切,理由:连接OD ,∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵AO =DO ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,//AC OD ∴,90ACD ∠=,∴OD ⊥BC ,∴BC 与O 相切; (2)连接OE ,ED ,60BAC OE OA ∠==,,∴△OAE 为等边三角形,60AOE ∴∠=,30ADE ,∴∠= 又1302OAD BAC ∠=∠=, ADE OAD ∴∠=∠,//ED AO ∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯==30.(1)21234y x x =-+;(2)相交,证明见解析 【解析】【分析】 (1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A , ∴3=a (0﹣4)2﹣1, a =14; ∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=6.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB 13BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =132CE =,解得813CE = 813>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.31.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%. (2)2019年该贫困户的家庭年人均纯收入能达到4200元.【解析】【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得:2250013600x +()=,解得120.220% 2.2x x :==,=﹣(舍去). 答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% .(2)3600120%4320⨯+()=(元), 43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.32.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P 的坐标为:(352-+55+35--55-313-+113+313--,113-. 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1; (2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥, ∵31b a =+, ∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2- 二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°,S △PAB =12×AB ×PH=12×32PQ ×22=32, 则PQ=P Q y y -=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为32, ∴1P Q y y -=,设点P (x ,-x 2-2x+3),则点Q (x ,x+3),即:-x 2-2x+3-x-3=±1,解得:35x -±=313x -±=;∴点P 的坐标为:(32-+,52+)或(32--,52-)或(32-+,). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

九年级上册黄石数学期末试卷检测题(Word版 含答案)

九年级上册黄石数学期末试卷检测题(Word版 含答案)

九年级上册黄石数学期末试卷检测题(Word 版 含答案)一、选择题1.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 2.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .13.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20204.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°5.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .6.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .47.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >8.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 9.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 10.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10011.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1912.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题13.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .14.抛物线y =3(x+2)2+5的顶点坐标是_____.15.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.16.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.17.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.18.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.19.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.20.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.21.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…22.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.23.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

2020-2021学年黄石市初中教研协作体九年级上学期期末数学试卷(含答案解析)

2020-2021学年黄石市初中教研协作体九年级上学期期末数学试卷(含答案解析)

2020-2021学年黄石市初中教研协作体九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分) 1.下列说法:①平方等于其本身的数有0,±1;②32xy 3是4次单项式;③将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有( )A. 1个B. 2个C. 3个D. 4个2.如图,与线段a 、b 可以构成轴对称图形的是( )A. 线段cB. 线段dC. 线段eD. 线段f3.如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )A. ∠α=∠βB. ∠α+∠β=90°C. ∠α+∠β=180°D. ∠α+∠β=360°4.下列运算正确的是( )A. 1x +1y =1x+y B. (−p 2q)3=−p 5q 3 C. √a ⋅√b =√abD. (a +b)2=a 2+b 25.若分式x 2−1x 2−x−2的值为0,则x 的值是( )A. 0B. −1C. 1D. ±16.方程组{2x −3y =5y =x +1用代入消元法得( )A. 2x−3x+1=5B. 2x−3y+1=5C. 2x−3(x+1)=5D. 2x−3x+3=57.在平面直角坐标系xOy中,A点坐标为(3,4),AB垂直于x轴,垂足为点B,将△OAB绕点B顺时针旋转90度,则点A的坐标是()A. (1,0)B. (−1,0)C. (−7,0)D. (7,0)8.如图,在梯形ABCD中,AB//CD,点E,F,G分别是BD,AC,DC的中点,已知两底差是6,两腰和是12,则△EFG的周长是()A. 8B. 9C. 6D. 49.如图,在▱ABCD中,∠A=45°,AD=4,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为()D. 2√2A. 1B. √2C. √2210.若a、b、c满足:a+b+c=0,a<b<c,则函数y=ax+c的图象可能是()A. B.C. D.二、填空题(本大题共8小题,共28.0分)11.(−3)2=______ ;(−3)0=______ ;(−3)−2=______ .12.分解因式:a3−4a=______.13.截止2021年3月19日,美国新冠疫情累计确诊人数达3035880人,请把数3035880用科学记数法表示为______ .14.重庆9月5日到10日的最高气温的折线统计图如图所示,则这六天的最高气温的中位数是______℃.15.方程3−xx−4+14−x=1的解是______ .16.如图,草坪上的自动喷水装置能旋转220°,若它的喷射半径是20m,则它能喷灌的草坪的面积为______ m2.17.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx−2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为______.18.用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,这个值可以是k=______ .三、计算题(本大题共1小题,共9.0分)19.为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?四、解答题(本大题共6小题,共53.0分) 20. 化简:(1)x(4−x)+(x +2)(x −2); (2)(1+1x 2−1)÷x 2−xx 2−2x+1.21. 如图,在▱ABCD 中,O 是对角线AC 和BD 的交点,OE ⊥AD 于E ,OF ⊥BC 于F.求证:OE =OF .22. 已知关于x 的一元二次方程x 2+(a +1)x +a =0. (1)求证:此方程总有两个实数根;(2)如果此方程有两个不相等的实数根,写出一个满足条件的a 的值,并求此时方程的根.23. 2019年某市体育中考男生的考试内容有三项:1000米跑为必测项目.另在立定跳远、50米跑(二选一)和引体向上、1分钟跳绳(二选一)中选择两项,假定每位考生对项目的选择是随机且等可能的.(1)每位考生有______种选择方案; (2)求小明与小刚选择同种方案的概率.24. 已知AB 是⊙O 的任意一条直径.(1)用图1,求证:⊙O 是以直径AB 所在直线为对称轴的轴对称图形;(2)已知⊙O 的面积为4π,直线CD 与⊙O 相切于点C ,过点B 作BD ⊥CD ,垂足为D ,如图2. 求证:①12BC 2=2BD ;②改变图2中切点C 的位置,使得线段OD ⊥BC 时,OD =2√2.25.观察下面的表格,根据表格解答下列问题:x−201ax21 ax2+bx+c−3−3(1)写出a,b,c的值;(2)在直角坐标系中画出二次函数y=ax2+bx+c的图象;并根据图象写出使不等式ax2+bx+c<−3成立时x的取值范围;(3)设该图象与x轴两个交点分别为A,B,与y轴交点为C,直接写出△ABC的外心坐标.参考答案及解析1.答案:A解析:【试题解析】解:①错误,−1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.①−1的平方是1;②32xy3是4次单项式;③中方程右应还为1.2;④只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.本题考查了数的平方,单项式的概念,方程的分母化为整数,点与直线条数的关系.2.答案:D解析:解:与线段a、b可以构成轴对称图形的是线段f,故选:D.利用轴对称图形定义进行解答即可.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.答案:A解析:解:如图示,若要管道经两次拐弯后的方向保持原来不变,则MN//BC,而MN//AD,则∠β=∠NMB,同理可得∠α=∠MBC,若MN//BC,则∠MBC=∠NMB,即∠α=∠β, 所以要保证MN//BC , 则必须有∠α=∠β. 故选A .若要管道经两次拐弯后的方向保持原来不变,则MN 与BC 必须平行,易证∠β=∠NMB ,∠α=∠MBC ,而∠NMB 与∠MBC 是内错角,要保证MN//BC ,则必须有∠NMB =∠MBC ,即∠α=∠β. 本题考查了平行线的判定,平行线的判定定理是:(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.解题时,要能够区分平行线的性质和判定定理.4.答案:C解析:解:A 、1x +1y =y+x xy,故此选项错误;B 、(−p 2q)3=−p 6q 3,故此选项错误;C 、√a ⋅√b =√ab ,正确;D 、(a +b)2=a 2+2ab +b 2,故此选项错误; 故选:C .直接利用积的乘方运算以及二次根式的乘法运算法则、完全平方公式分别计算得出答案. 此题主要考查了积的乘方运算以及二次根式的乘法运算、完全平方公式,正确掌握相关运算法则是解题关键.5.答案:C解析:解:由题意得:x 2−1=0,且x 2−x −2≠0, 解得:x =1, 故选:C .根据分式值为零的条件可得x 2−1=0,且x 2−x −2≠0,再解即可.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零. 注意:“分母不为零”这个条件不能少.6.答案:C解析:解:方程组{2x −3y =5y =x +1用代入消元法得:2x −3(x +1)=5.故选:C .把y =x +1代入2x −3y =5即可.此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.答案:D解析:解:因为A点坐标为(3,4),AB垂直于x轴垂足为点B,所以OB=3,AB=4,将△OAB绕点B顺时针旋转90度,点A落在x轴正半轴上,则点A的坐标是(7,0).故选:D.根据旋转的性质可得将△OAB绕点B顺时针旋转90度,点A落在x轴正半轴上,距离原点为7,进而可得点A的坐标.本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质.8.答案:B解析:解:连接AE,并延长交CD于K,∵AB//CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,{∠BAE=∠DKE ∠ABD=∠EDK BE=DE,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=12CK=12(DC−DK)=12(DC−AB),∵EG为△BCD的中位线,∴EG=12BC,又∵FG为△ACD的中位线,∴FG=12AD,∴EG+GF=12(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC−AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.连接AE,并延长交CD于K,根据三角形中位线定理易得EF=12(DC−AB),EG+GF=12(AD+BC),即可求出△EFG的周长.此题考查了梯形及三角形的中位线定理,解答本题的关键是正确作出辅助线,熟练运用三角形中位线的性质.9.答案:B解析:本题考查平行四边形的性质、三角形的中位线定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是确定当DM的取最小值时,EF也最小.连接DM,利用三角形中位线定理,可知EF=12DM,求出DM的最小值即可求出EF的最小值.解:如图,连接DM,∵E、F分别为DN、MN的中点,∴EF=12DM,∴当DM的取最小值时,EF也最小,当DM⊥AB时,DM最小,在Rt△ADM中,∠A=45°,AD=4,此时△ADM为等腰直角三角形,∴DM=√22AD=2√2,∴EF=12DM=√2,∴EF的最小值是√2.故选B.10.答案:C解析:解:∵a+b+c=0,且a<b<c,∴a <0,c >0,(b 的正负情况不能确定), a <0,则函数y =ax +c 图象经过第二、四象限, c >0,则函数y =ax +c 的图象与y 轴正半轴相交, 纵观各选项,只有C 选项符合. 故选:C .先判断出a 是负数,c 是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y 轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a 、c 的正负情况是解题的关键,也是本题的难点.11.答案:9;1;19解析:解:(−3)2=9; (−3)0=1;(−3)−2=(−13)2=19, 故答案为:9;1;19.根据有理数乘方的意义可得(−3)2表示两个−3相乘;根据零指数幂:a 0=1(a ≠0)和负整数指数幂:a −p =1a p(a ≠0,p 为正整数)计算出答案即可.本题主要考查了零指数幂,负指数幂、乘方的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.12.答案:a(a +2)(a −2)解析:解:原式=a(a 2−4) =a(a +2)(a −2). 故答案为:a(a +2)(a −2)原式提取a ,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.答案:3.03588×106解析:解:3035880=3.03588×106. 故答案为:3.03588×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.答案:29解析:解:这六天的气温从低到高为:25,28,28,30,31,32,处在第3、4位的两个数的平均数为(28+30)÷2=29℃,因此中位数是29℃.将这六天的气温,从低到高排列后,处在第3、4位的两个数的平均数即为中位数.考查中位数的意义和求法,一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.15.答案:x=3解析:解:由原方程,得3−x−1=x−4,−2x=−6,x=3,经检验x=3是原方程的解.故答案是:x=3.方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.本题考查了解分式方程,把分式方程转化为整式方程求解.最后注意需验根.16.答案:2200π9解析:解:∵草坪上的自动喷水装置能旋转220°,它的喷射半径是20m,∴它能喷灌的草坪是扇形,半径为20m,圆心角为220°,∴它能喷灌的草坪的面积为:220×π×202360=2200π9m2.故答案为:2200π9.根据已知得出自动喷水装置它能喷灌的草坪是扇形,半径为20m,圆心角为220°,利用扇形面积公式S扇形=nπR2360求出即可.此题主要考查了扇形面积求法,利用已知得出图形形状进而利用公式求出是解题关键.17.答案:4√3解析:本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(2,3)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.易知直线y=kx−2k+3过定点D(2,3),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.解:对于直线y=kx−2k+3=k(x−2)+3,当x=2时,y=3,故直线y=kx−2k+3恒经过点(2,3),记为点D.过点D作DH⊥x轴于点H,则有OH=2,DH=3,OD=√OH2+DH2=√13.∵⊙O过点A(5,0),∴OA=5,∴OB=OA=5.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2√OB2−OD2=2×√25−13=4√3.故答案为4√3.18.答案:−1(答案不唯一)解析:解:当k=−1时,一次函数为y=−x+1,y随着x的增大而减小,∴命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,故答案为:−1(答案不唯一).根据一次函数的性质:对于一次函数y=kx+b,当k<0时,y随x的增大而减小解答即可.本题考查的是命题和定理、一次函数的性质,掌握对于一次函数y =kx +b ,当k <0时,y 随x 的增大而减小是解题的关键.19.答案:解:(1)设种植草皮的面积为x 亩,则种植树木面积为(30−x)亩,则{x ≥1030−x ≥10x ≥32(30−x)解得18≤x ≤20答:种植草皮的最小面积是18亩.(2)设绿化总费用为y 元,由题意得y =8000x +12000(30−x)=360000−4000x ,当x =20时,y 有最小值280000元.解析:(1)关系式为:种植草皮的面积≥10;种植树木的面积≥10;种植草皮面积≥种植树木面积×32,据此列不等式组求解即可;(2)总费用=种植草皮总费用+种植树木总费用,结合(1)中自变量的取值求解.解决本题的关键是读懂题意,找到符合题意的不等关系式组及所求量的等量关系.准确的解不等式是需要掌握的基本计算能力,要熟练掌握利用自变量的取值范围求最值的方法.注意本题的不等关系为:种植草皮的面积≥10;种植树木的面积≥10;种植草皮面积≥种植树木面积×32. 20.答案:解:(1)x(4−x)+(x +2)(x −2)=4x −x 2+x 2−4=4x −4;(2)(1+1x 2−1)÷x 2−x x 2−2x +1=x 2−1+1(x +1)(x −1)⋅(x −1)2x(x −1)=x 2x +1⋅1x=x x+1.解析:(1)根据单项式乘多项式和平方差公式可以解答本题;(2)根据分式的加法和除法可以解答本题.本题考查分式的混合运算、单项式乘多项式和平方差公式,解答本题的关键是明确它们各自的计算方法.21.答案:证明:∵四边形ABCD 是平行四边形,∴OA =OC ,AD//BC ,∴∠EAO=∠FCO,∵OE⊥AD,OF⊥BC,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,∵{∠EAO=∠FCO ∠AEO=∠CFO OA=OC,∴△AEO≌△CFO(AAS),∴OE=OF.解析:由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形对角线互相平分定理的应用是解此题的关键.22.答案:(1)证明:∵△=(a+1)2−4a=(a−1)2≥0,∴此方程总有两个实数根;(2)当a=0,方程为x2+x=0,解得x1=0,x2=−1.解析:(1)计算判别式得到△=(a−1)2,然后利用非负数的性质得到△≥0,然后根据判别式的意义得到结论;(2)在满足△>0时取a=0,则方程为x2+x=0,然后解方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.23.答案:4解析:解:(1)毎位考生可选择:100米跑、立定跳远、引体向上(用A表示);100米跑、立定跳远、一分钟跳绳(用B表示);100米跑、50米跑、引体向上(用C表示);100米跑、50米跑、1分钟跳绳(用D表示);故答案为4.(2)用A、B、C、D代表四种选择方案.解法一:用树状图分析如下:解法二:用列表法分析如下:小刚A B C D小明A(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)两人选择的方案共有16种等可能的结果,其中选择同种方案有4种,所以小明与小刚选择同种方案的概率为1.4(1)先列举出毎位考生可选择所有方案:100米跑、立定跳远、引体向上(用A表示);100米跑、立定跳远、一分钟跳绳(用B表示);100米跑、50米跑、引体向上(用C表示);100米跑、50米跑、1分钟跳绳(用D表示);共用4种选择方案.(2)利用数形图展示所有16种等可能的结果,其中选择两种方案有12种,根据概率的概念计算即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.24.答案:(1)证明:如图,设P是⊙O上点A,B以外任意一点,过点P作PP′⊥AB,交⊙O于点P′,垂足为M,若M与圆心O不重合,连接OP,OP′,在△OPP′中,∵OP=OP′,∴△OPP′是等腰三角形,又PP′⊥AB,∴PM=MP′,则AB是PP′的垂直平分线,若M与圆心O重合,显然AB是PP′的垂直平分线,这就是说,对于圆上任意一点P,在圆上都有关于直线AB的对称点P′,因此⊙O是以直径AB所在直线为对称轴的轴对称图形;(2)①证明:设⊙O半径为r,由πr2=4π可得r=2,∴AB=4,连接AC,则∠BCA=90°,∵C是切点,连接OC,∴OC⊥CD,∵BD⊥CD,∴OC//BD,∴∠OCB=∠DBC,而∠OCB=∠OBC,∴∠DBC=∠OBC,又∵∠BCA=∠BDC=90°,∴△ACB∽△CDB,∴BCAB =BDBC,∴BC2=AB⋅BD=4BD,∴12BC2=2BD;②证明:由①证明可知∠CBD=∠OBC,与切点C的位置无关,又OD ⊥BC ,∴BD =OB ,又∵△OCB 是等腰三角形,∴BC 与OD 互相垂直平分,又∠BDC =90°,∴四边形BOCD 是边长为2的正方形,∴OD =2√2.解析:(1)过点P 作PP′⊥AB ,交⊙O 于点P′,垂足为M ,由垂径定理得出△OPP′是等腰三角形,由轴对称的性质可得出结论;(2)①求出AB =4,证明△ACB∽△CDB ,由相似三角形的性质得出BC AB =BD BC ,则可得出结论;②证明四边形BOCD 是边长为2的正方形,由正方形的性质可得出结论.本题是圆的综合题,考查了垂径定理,相似三角形的判定与性质,等腰三角形的性质,轴对称的性质,正方形的性质,垂直平分线的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.25.答案:解:(1)由题意可得:{1=a ×1−3=4a −2b +c c =−3解得:a =1,b =2,c =−3(2)∵y =x 2+2x −3=(x +1)2−4∴顶点坐标为(−1,−4)如图:当y=−3时,−3=x2+2x−3∴x=−2,x=0∴x的取值范围是−2<x<0(3)由题意A(−3,0),B(1,0),C(0,−3),∴OA=OC=3,∴△ABC的外接圆的圆心O′是直线y=x与直线x=−1的交点,∴O′(−1,−1),∴△ABC的外心坐标是(−1,−1)解析:本题考查了三角形的外接圆和外心,二次函数与不等式、抛物线与x轴的交点等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)用待定系数法可求a,b,c的值;(2)利用描点法画出函数图象,根据图象写出函数值小于−3得到自变量x的取值范围即可;(3)由题意可知△ABC的外接圆的圆心O′是直线y=x与直线x=−1的交点,即可求△ABC的外心坐标.。

湖北省黄石市九年级上册期末数学试卷(有答案)【精选】.doc

湖北省黄石市九年级上册期末数学试卷(有答案)【精选】.doc

湖北省黄石市九年级(上)期末数学试卷一、选择题1.(3分)﹣7的相反数是()A.﹣B.﹣7 C.D.72.(3分)方程92=16的解是()A.B.C.D.3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a3+a4=a7 B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a45.(3分)将0.00007用科学记数法表示为()A.7×10﹣6 B.70×10﹣5C.7×10﹣5D.0.7×10﹣66.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆椎D.球7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:A .4B .1.70C .1.75D .1.658.(3分)如图,在Rt △ABC中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°9.(3分)已知二次函数y=a 2+b +c (a ≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线=﹣1;③当=1时,y=2a ;④am 2+bm +a >0(m ≠﹣1).其中正确的个数是( )A .1B .2C .3D .410.(3分)如图,在Rt △ABC 中,∠C=90°,AC=1cm ,BC=2cm ,点P 从点A 出发,以1cm/s 的速度沿折线AC→CB→BA 运动,最终回到点A ,设点P 的运动时间为(s ),线段AP 的长度为y(cm),则能够反映y与之间函数关系的图象大致是()A. B.C.D.二、填空题11.(3分)抛物线y=的顶点是.12.(3分)若二次根式有意义,则的取值范围是.13.(3分)分解因式:a3﹣9a=.14.(3分)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.16.(3分)将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为.三、解答题17.(7分)计算:2tan30°18.(7分)先化简,再求值:,其中=0.19.(7分)已知一元二次方程2﹣(m+6)+m2=0有两个相等的实根,且满足1+2=12,求m的值.20.(7分)解不等式组,并把它们的解集表示在数轴上.21.(7分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:,;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?22.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.24.(10分)如图,已知抛物线y=a2+b+c与轴的一个交点为A(3,0),与y轴的交点为点B(0,3),其顶点为C,对称轴为=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.25.(10分)如图,点M(﹣3,m)是一次函数y=+1与反比例函数y=(≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为时,△AMC与△AMC′的面积相等.湖北省黄石市九年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)﹣7的相反数是()A.﹣B.﹣7 C.D.7【解答】解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选:D.2.(3分)方程92=16的解是()A.B.C.D.【解答】解:∵92=16,∴2=,则=±,故选:C.3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.4.(3分)下列运算正确的是()A.a3+a4=a7 B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4【解答】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.5.(3分)将0.00007用科学记数法表示为()A.7×10﹣6 B.70×10﹣5C.7×10﹣5D.0.7×10﹣6【解答】解:0.00007=7×10﹣5.故选:C.6.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆椎D.球【解答】解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:A.4 B.1.70 C.1.75 D.1.65【解答】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,则中位数是1.70,故选:B.8.(3分)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B 的大小是()A.32°B.64°C.77°D.87°【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选:C.9.(3分)已知二次函数y=a2+b+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线=﹣1;③当=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线=﹣1,(故②正确);当=1时,y=a+b+c∵对称轴是直线=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);=m对应的函数值为y=am2+bm+c,=﹣1对应的函数值为y=a﹣b+c,又∵=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.10.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s 的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为(s),线段AP的长度为y(cm),则能够反映y与之间函数关系的图象大致是()A. B.C.D.【解答】解:①当点P在AC边上,即0≤≤1时,y=,它的图象是一次函数图象的一部分;②点P在边BC上,即1<≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<≤3+时,y=+3﹣=﹣+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.二、填空题11.(3分)抛物线y=的顶点是(﹣1,﹣2).【解答】解:∵y=,∴该函数的顶点坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).12.(3分)若二次根式有意义,则的取值范围是≥﹣1.【解答】解:由题意得:+1≥0,解得:≥﹣1,故答案为:≥﹣1.13.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).14.(3分)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【解答】解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:=.故答案为:.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10cm.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1016.(3分)将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为28.【解答】解:∵2=,132÷6=22,∴m=22,n=6,∴m+n=22+6=28,故答案为:28.三、解答题17.(7分)计算:2tan30°【解答】解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.18.(7分)先化简,再求值:,其中=0.【解答】解:原式=÷=(﹣1)•=,当=0时,原式==.19.(7分)已知一元二次方程2﹣(m+6)+m2=0有两个相等的实根,且满足1+2=12,求m的值.【解答】解:∵一元二次方程2﹣(m+6)+m2=0有两个相等的实根,∴△=0,即(m+6)2﹣4m2=0,解得m=﹣2或m=6,∵1+2=12,∴m+6=m2,解得m=﹣2或m=3,∴m=﹣2.20.(7分)解不等式组,并把它们的解集表示在数轴上.【解答】解:,解不等式①得,<2,解不等式②得,≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤<2.21.(7分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:a=0.3,b=6;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【解答】解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:该校学生中类别为C的人数约为240名.22.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.23.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【解答】证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.24.(10分)如图,已知抛物线y=a2+b+c与轴的一个交点为A(3,0),与y轴的交点为点B(0,3),其顶点为C,对称轴为=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.【解答】解:(1)由题意可知,抛物线y=a2+b+c与轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣2+2+3.(2)依题意:设M点坐标为(0,t),①当MA=MB时:=解得t=0,故M(0,0);②当AB=AM时:=3解得t=3(舍去)或t=﹣3,故M(0,﹣3);③当AB=BM时,=3解得t=3±3,故M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=+b,则,解得.则直线AB的解析式为y=﹣+3.△AOB沿轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣+3+m.设直线AC的解析式为y=′+b′,则,解得.则直线AC的解析式为y=﹣2+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于,EF交AC于M.则BE=E=m,P=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF ﹣S△PA﹣S△AFM=PE2﹣P2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于,交AC于H.因为BE=m,所以P=PA=3﹣m,又因为直线AC的解析式为y=﹣2+6,所以当=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH ﹣S△PA=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.25.(10分)如图,点M(﹣3,m)是一次函数y=+1与反比例函数y=(≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为3时,△AMC与△AMC′的面积相等.21【解答】解:(1)把M (﹣3,m )代入y=+1,则m=﹣2.将(﹣3,﹣2)代入y=,得=6,则反比例函数解析式是:y=;(2)①连接CC′交AB 于点D .则AB 垂直平分CC′.当a=4时,A (4,5),B (4,1.5),则AB=3.5.∵点Q 为OP 的中点,∴Q (2,0),∴C (2,3),则D (4,3),∴CD=2,∴S △ABC=AB•CD=×3.5×2=3.5,则S △ABC′=3.5;②∵△AMC 与△AMC′的面积相等,∴C 和C′到直线MA 的距离相等,∴C 、A 、C′三点共线,∴AP=CQ=,又∵AP=PN ,∴=a +1,解得a=3或a=﹣4(舍去),∴当a 的值为3时,△AMC 与△AMC′的面积相等.故答案是:3.22。

初中数学黄石市秋季期末考试九年级数学考试卷及答案

初中数学黄石市秋季期末考试九年级数学考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:要使式子有意义,x的取值范围是A.x>2 B.x≥2 C.x≥-2 D.x >-2试题2:下列图形中,既是轴对称图形,又是中心对称图形的是A B CD试题3:若关于x的方程(x+1)2=1-k没有实根,则k的取值范围是A.k<1 B.k<-1 C.k≥1 D.k>1试题4:评卷人得分甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是,,,,则射击成绩波动最小的是A.甲 B.乙 C.丙 D.丁试题5:如图,△ABC内接于⊙O,若AC=BC,弦CD平分∠ACB,则下列结论中,正确的个数是①CD是⊙O的直径②CD平分弦AB③CD⊥AB④=⑤=A.2个 B.3个 C.4个 D.5个试题6:等腰三角形ABC和DEF相似,其相似比为3∶4,则它们底边上对应高线的比为A.3∶4 B.4∶3 C.1∶2 D.2∶1试题7:如图,直径AB为6的半圆O,绕A点逆时针旋转60°,此时点B到了点,则图中阴影部分的面积为A.6πB.5πC.4πD.3π试题8:若关于x的一元二次方程的常数项是0,则m的值是A.1B.2C.1或2 D.试题9:已知二次函数的图象如图所示,那么一次函数与反比例函数在同一坐标系内的图象大致为试题10:已知O为圆锥顶点,OA、OB为圆锥的母线,C为OB中点,一只小蚂蚁从点C开始沿圆锥侧面爬行到点A,另一只小蚂蚁从点C开始绕着圆锥侧面爬行到点B,它们所爬行的最短路线的痕迹如右图所示.若沿OA剪开,则得到的圆锥侧面展开图为A B C D试题11:.将抛物线y=-x2向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为________________.试题12:在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.这个游戏公平吗?请填上你的正确判断:.试题13:如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则R与r之间的关系是.试题14:如图,已知梯形ABCD中,AD∥BC,∠B=90°,AD=3,BC=5,AB=1,把线段CD绕点D逆时针旋转90°到DE位置,连结AE,则AE的长为____________.试题15:已知(n=1,2,3,…);记,…,=2(1-)(1-)…(1-),则通过计算推测出的表达式=_______(用含n的式子表示)试题16:用两个全等的含30°角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到图2所示的图案.若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为__________;若摆放这个图案共用两种卡片(2n+1)张(n为正整数),则这个图案中阴影部分的面积之和为.(结果保留p)……试题17:试题18:当a=2,b=-1,c=-1时,求代数式的值.试题19:解方程组:试题20:已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.求证:BE=AF+CE.试题21:经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:⑴三辆车全部直行;⑵两辆车向右转,一辆车向左转;⑶至少有两辆车向左转.试题22:已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…-1 0 1 2 3 4 …y…8 3 0 -1 0 3 …⑴求该二次函数的解析式;⑵当x为何值时,y有最小值,最小值是多少?⑶若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m取何值时,y1>y2?v试题23:已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.⑴求证:AB=AC;⑵求证:DE为⊙O的切线;⑶若⊙O的半径为5,∠BAC=60°,求DE的长.试题24:一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度-水流速度)⑴甲、乙两港口的距离是_________千米;快艇在静水中的速度是_________千米/时;⑵求轮船返回时的解析式,写出自变量取值范围;⑶快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)试题25:如图1,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.⑴当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.⑵当正方形GFED绕D旋转到如图3的位置时(点F在AD上),延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=时,求CH的长.试题26:在平面直角坐标系xOy中,抛物线的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线和直线y2=x于点A,点B.⑴直接写出A,B两点的坐标(用含n的代数式表示);⑵设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;⑶已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤,求a,b,c的值.试题1答案:D试题2答案:D试题3答案:D试题4答案:D试题5答案:DA试题7答案: A试题8答案: B试题9答案: B试题10答案: C试题11答案:试题12答案: 公平试题13答案:试题14答案:试题15答案:试题16答案: 、原式==............................................................................................. 3分试题18答案:当a=2,b=-1,c=-1时,=1或∴代数式的值为1或......................................................... 4分试题19答案:解:由①得③代入②,整理得,解得或............... 4分代入②得或∴原方程组的解为或.................................... 3分试题20答案:证明:将绕点逆时针旋转90°至的位置,∵∴在同一条直线上。

湖北省黄石市九年级上期末数学试卷(有答案)【精选】

湖北省黄石市九年级上期末数学试卷(有答案)【精选】

湖北省黄石市九年级(上)期末数学试卷一、选择题1.(3分)﹣7的相反数是()A.﹣B.﹣7 C.D.72.(3分)方程92=16的解是()A.B.C.D.3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()A. B.C.D.4.(3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a45.(3分)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣66.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆椎D.球7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:A .4B .1.70C .1.75D .1.658.(3分)如图,在Rt △ABC中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°9.(3分)已知二次函数y=a 2+b +c (a ≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线=﹣1;③当=1时,y=2a ;④am 2+bm +a >0(m ≠﹣1). 其中正确的个数是( )A .1B .2C .3D .410.(3分)如图,在Rt △ABC 中,∠C=90°,AC=1cm ,BC=2cm ,点P 从点A 出发,以1cm/s 的速度沿折线AC→CB→BA 运动,最终回到点A ,设点P 的运动时间为(s ),线段AP 的长度为y (cm ),则能够反映y 与之间函数关系的图象大致是( )A.B.C.D.二、填空题11.(3分)抛物线y=的顶点是.12.(3分)若二次根式有意义,则的取值范围是.13.(3分)分解因式:a3﹣9a=.14.(3分)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.16.(3分)将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为.三、解答题17.(7分)计算:2tan30°18.(7分)先化简,再求值:,其中=0.19.(7分)已知一元二次方程2﹣(m+6)+m2=0有两个相等的实根,且满足1+2=12,求m的值.20.(7分)解不等式组,并把它们的解集表示在数轴上.21.(7分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?22.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.24.(10分)如图,已知抛物线y=a2+b+c与轴的一个交点为A(3,0),与y轴的交点为点B (0,3),其顶点为C,对称轴为=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.25.(10分)如图,点M(﹣3,m)是一次函数y=+1与反比例函数y=(≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为时,△AMC与△AMC′的面积相等.湖北省黄石市九年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)﹣7的相反数是()A.﹣B.﹣7 C.D.7【解答】解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选:D.2.(3分)方程92=16的解是()A.B.C.D.【解答】解:∵92=16,∴2=,则=±,故选:C.3.(3分)下面的图形中,是轴对称图形但不是中心对称图形的是()A. B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.4.(3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4【解答】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.5.(3分)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣6【解答】解:0.00007=7×10﹣5.故选:C.6.(3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆椎D.球【解答】解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.7.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:A.4 B.1.70 C.1.75 D.1.65【解答】解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,则中位数是1.70,故选:B.8.(3分)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64°C.77°D.87°【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选:C.9.(3分)已知二次函数y=a2+b+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线=﹣1;③当=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线=﹣1,(故②正确);当=1时,y=a+b+c∵对称轴是直线=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);=m对应的函数值为y=am2+bm+c,=﹣1对应的函数值为y=a﹣b+c,又∵=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.10.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s 的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为(s),线段AP的长度为y(cm),则能够反映y与之间函数关系的图象大致是()A.B.C.D.【解答】解:①当点P在AC边上,即0≤≤1时,y=,它的图象是一次函数图象的一部分;②点P在边BC上,即1<≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<≤3+时,y=+3﹣=﹣+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.二、填空题11.(3分)抛物线y=的顶点是(﹣1,﹣2).【解答】解:∵y=,∴该函数的顶点坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).12.(3分)若二次根式有意义,则的取值范围是≥﹣1.【解答】解:由题意得:+1≥0,解得:≥﹣1,故答案为:≥﹣1.13.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).14.(3分)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【解答】解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:=.故答案为:.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10cm.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1016.(3分)将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为28.【解答】解:∵2=,132÷6=22,∴m=22,n=6,∴m+n=22+6=28,故答案为:28.三、解答题17.(7分)计算:2tan30°【解答】解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.18.(7分)先化简,再求值:,其中=0.【解答】解:原式=÷=(﹣1)•=,当=0时,原式==.19.(7分)已知一元二次方程2﹣(m+6)+m2=0有两个相等的实根,且满足1+2=12,求m的值.【解答】解:∵一元二次方程2﹣(m+6)+m2=0有两个相等的实根,∴△=0,即(m+6)2﹣4m2=0,解得m=﹣2或m=6,∵1+2=12,∴m+6=m2,解得m=﹣2或m=3,∴m=﹣2.20.(7分)解不等式组,并把它们的解集表示在数轴上.【解答】解:,解不等式①得,<2,解不等式②得,≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤<2.21.(7分)某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:,;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【解答】解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:该校学生中类别为C的人数约为240名.22.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.23.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【解答】证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.24.(10分)如图,已知抛物线y=a2+b+c与轴的一个交点为A(3,0),与y轴的交点为点B (0,3),其顶点为C,对称轴为=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.【解答】解:(1)由题意可知,抛物线y=a2+b+c与轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣2+2+3.(2)依题意:设M点坐标为(0,t),①当MA=MB时:=解得t=0,故M(0,0);②当AB=AM时:=3解得t=3(舍去)或t=﹣3,故M(0,﹣3);③当AB=BM时,=3解得t=3±3,故M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=+b,则,解得.则直线AB的解析式为y=﹣+3.△AOB沿轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣+3+m.设直线AC的解析式为y=′+b′,则,解得.则直线AC的解析式为y=﹣2+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于,EF交AC于M.则BE=E=m,P=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF ﹣S△PA﹣S△AFM=PE2﹣P2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于,交AC于H.因为BE=m,所以P=PA=3﹣m,又因为直线AC的解析式为y=﹣2+6,所以当=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH ﹣S△PA=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.25.(10分)如图,点M(﹣3,m)是一次函数y=+1与反比例函数y=(≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为3时,△AMC与△AMC′的面积相等.【解答】解:(1)把M(﹣3,m)代入y=+1,则m=﹣2.将(﹣3,﹣2)代入y=,得=6,则反比例函数解析式是:y=;(2)①连接CC′交AB于点D.则AB垂直平分CC′.当a=4时,A(4,5),B(4,1.5),则AB=3.5.∵点Q为OP的中点,∴Q(2,0),∴C(2,3),则D(4,3),∴CD=2,=AB•CD=×3.5×2=3.5,则S△ABC′=3.5;∴S△ABC②∵△AMC与△AMC′的面积相等,∴C和C′到直线MA的距离相等,∴C、A、C′三点共线,∴AP=CQ=,又∵AP=PN,∴=a+1,解得a=3或a=﹣4(舍去),∴当a的值为3时,△AMC与△AMC′的面积相等.故答案是:3.。

湖北省黄石市名校2022年九年级数学第一学期期末教学质量检测模拟试题含解析

湖北省黄石市名校2022年九年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分)1.将抛物线y =ax 2+bx +c 向左平移2个单位,再向下平移3个单位得抛物线y =﹣(x +2)2+3,则( ) A .a =﹣1,b =﹣8,c =﹣10B .a =﹣1,b =﹣8,c =﹣16C .a =﹣1,b =0,c =0D .a =﹣1,b =0,c =62.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是( )A .4.5米B .8米C .5米D .5.5米3.在Rt △ABC 中,∠C =90°,若1cos 2B =,则sin A 的值为( ) A .1 B .12 C .32 D .334.已知(x 2+y 2)(x 2+y 2-1)-6=0,则 x 2+y 2 的值是( )A .3或-2B .-3或2C .3D .-25.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:36.矩形、菱形、正方形都一定具有的性质是( )A .邻边相等B .四个角都是直角C .对角线相等D .对角线互相平分7.如图,已知菱形OABC ,OC 在x 轴上,AB 交y 轴于点D ,点A 在反比例函数1k y x=上,点B 在反比例函数22k y x =-上,且2,则k 的值为( )A .3B .22C .522D .5338.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( )A .a ∥bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b 9.已知二次函数y =kx 2-7x-7的图象与x 轴没有交点,则k 的取值范围为( )A .k >74-B .k≥74-且k≠0C .k <74-D .k >74-且k≠0 10.已知函数k y x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限C .当x<0时,必y<0D .点(-2, -3)不在此函数的图象上 11.如图,⊙O 的半径为6,直径CD 过弦EF 的中点G ,若∠EOD =60°,则弦CF 的长等于( )A .6B .3C .3D .912.若方程240x x m -+=有两个不相等的实数根,则实数m 的值可能是( )A .3B .4C .5D .6二、填空题(每题4分,共24分)13.正方形A 1B 1C2C 1,A 2B 2C 3C 2,A 3B 3C 4C 3按如图所示的方式放置,点A 1、A2、A 3和点C 1、C 2、C 3、C 4分别在抛物线y =x 2和y 轴上,若点C 1(0,1),则正方形A 3B 3C 4C 3的面积是________.14.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 15.若圆锥的母线长为25cm ,底面半径为10cm ,则圆锥的侧面展开图的圆心角应为_________________度.16.计算:211a a a a a-⎛⎫+⋅= ⎪-⎝⎭____________ 17.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为13,那么盒子内白色兵乓球的个数为________. 18.如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为_____.三、解答题(共78分)19.(8分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.20.(8分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点.①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.21.(8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y=﹣10x+1. (1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?22.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.23.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:(1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.(2)如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)(3)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.24.(10分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量y (单位:件)与销售单价x (单位:元/件)之间满足一次函数关系,如图所示.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)求每天的销售利润W (单位:元)与销售单价x 之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25.(12分)(1)已知如图1,在ABC 中,AB BC =,90ABC ∠=︒,点D 在ABC 内部,点E 在ABC 外部,满足BD BE ⊥,且BD BE =.求证:ABD CBE ≌.(2)已知如图2,在等边ABC 内有一点P ,满足5PA =,4PB =,3PC =,求BPC ∠的度数.26.如图,已知抛物线2143y x bx =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为()2,0A -.(1)求抛物线的解析式;(2)求线段BC 所在直线的解析式;(3)在抛物线的对称轴上是否存在点P ,使ACP ∆为等腰三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.参考答案一、选择题(每题4分,共48分)1、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a 、b 、c 的值.【详解】解:∵y =-(x +2)2+3,∴抛物线的顶点坐标为(-2, 3),∵抛物线y=ax 2+bx+c 向左平移 2 个单位,再向下平移 3个单位长度得抛物线y =-(x +2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x 2+1,∴a =-1,b =0,c =1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.2、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:11111111.5,2,6,AC B C AC A B C ABC ===∆~∆ 由相似三角形的性质得:1111AC AC B C BC =,即1.526AC = 解得: 4.5AC =(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.3、B【分析】根据互余角的三角函数间的关系:sin (90°-α)=cosα,cos (90°-α)=sinα解答即可. 【详解】解:解:∵在△ABC 中,∠C=90°,∴∠A+∠B=90°,∴sinA= cosB=12, 故选:B .【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时, sinA= cosB 是解题的关键.4、C【分析】设m=x 2+y 2,则有260m m --=,求出m 的值,结合x 2+y 2≥0,即可得到答案.【详解】解:根据题意,设m=x 2+y 2,∴原方程可化为:(1)60m m --=,∴260m m --=,解得:3m =或2m =-;∵220m x y =+≥,∴3m =,∴223x y +=;故选:C .【点睛】本题考查了换元法求一元二次方程,解题的关键是熟练掌握解一元二次方程的方法和步骤.5、B【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式. 6、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分. 故选D.7、B【分析】由OD=22则点A 、B 的纵坐标为22得到A 22,2),B (2,22,求得22,22,根据勾股定理即可得到结论.【详解】解:∵四边形OABC 是菱形,∴AB ∥OC ,AB=AO ,∵OD=2,∴点A 、B 的纵坐标为2∴A 22,2,B (2-2, ∴2222=,22, ∴22, 在Rt △AOD 中,由勾股定理,得222AD OD AO +=,∴222+=,解得:k =故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键. 8、C【详解】解:∵e 是单位向量,且2a e =-,4b e =,∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误,故选C.9、C【分析】根据二次函数图像与x 轴没有交点说明240b ac -< ,建立一个关于k 的不等式,解不等式即可.【详解】∵二次函数277y kx x =--的图象与x 轴无交点, ∴2040k b ac ≠⎧⎨-<⎩ 即049280k k ≠⎧⎨+<⎩解得74k <- 故选C .【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x 轴交点个数的关系,掌握根的判别式是解题的关键. 10、C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C . 11、B【分析】连接DF ,根据垂径定理得到DE DF = , 得到∠DCF=12∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF ,∵直径CD过弦EF的中点G,∴DE DF=,∴∠DCF=12∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×3=3,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.12、A【分析】根据一元二次方程有两个实数根可得:△>0,列出不等式即可求出m的取值范围,从而求出实数m的可能值.【详解】解:由题可知:()244m0∆=-->解出:4m<各个选项中,只有A选项的值满足该取值范围,故选A.【点睛】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与△的关系是解决此题的关键.二、填空题(每题4分,共24分)13、2.【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论.【详解】∵点1C (0,1),四边形1121A B C C ,2232A B C C ,3343A B C C 均是正方形,点1A 、2A 、3A 和点1C 、2C 、3C 、4C 分别在抛物线2y x =和y 轴上,∴1A (1,1),2C (0,2),∴2A ,2),∴3C (0,),∵点3A 的纵坐标与点3C 相同,点3A 在二次函数2y x =的图象上,∴3A ,2+,即33A C =,∴33432233()2A B C C S A C ===+正方形.故答案为:.【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键. 14、1【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得, 10m 3610m 45+=+++ 解得m =1,经检验m =1是原分式方程的根,故答案为1.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.15、144 【分析】根据圆锥侧面展开图的弧长等于圆锥底面圆的周长列式计算,弧长公式为180n R π ,圆周长公式为2r π . 【详解】解:圆锥的侧面展开图的圆心角度数为n °,根据题意得, 25210180n ,∴n=144∴圆锥的侧面展开图的圆心角度数为144°.故答案为:144°.【点睛】本题考查圆锥的侧面展开图公式;用到的知识点为,圆锥的侧面展开图的弧长等于圆锥的底面圆周长.记准公式及有空间想象力是解答此题的关键.16、1【分析】根据分式混合运算的法则计算即可.【详解】解:原式=2211+a 1a a a a a a--⋅⋅- =11+a a a- =a a =1,故答案为:1.【点睛】本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.17、1【分析】先求出盒子内乒乓球的总个数,然后用总个数减去黄色兵乓球个数得到白色乒乓球的个数.【详解】解:盒子内乒乓球的总个数为2÷13=6(个),白色兵乓球的个数6−2=1(个),故答案为:1.【点睛】此题主要考查了概率公式,关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.18、(2,6)【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M 作MF ⊥CD 于F ,过C 作CE ⊥OA 于E ,在Rt △CMF 中,根据勾股定理即可求得MF 与EM ,进而就可求得OE ,CE 的长,从而求得C 的坐标.【详解】∵四边形OCDB 是平行四边形,点B 的坐标为(16,0),CD ∥OA ,CD =OB =16,过点M 作MF ⊥CD 于F ,则182CF CD ,== 过C 作CE ⊥OA 于E ,∵A (20,0),∴OA =20,OM =10, ∴OE =OM −ME =OM −CF =10−8=2,连接MC ,110,2MC OA == ∴在Rt △CMF 中,6.MF ===∴点C 的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题(共78分)19、(1)2(1)4y x =--;(2)C 在,D 不在,见解析【分析】(1)根据点A 的坐标设出二次函数的顶点式,再代入B 的值即可得出答案;(2)将C 和D 的值代入函数解析式即可得出答案.【详解】解:(1) 设二次函数的解析式是()2y a x h k =-+,∵ 二次函数的顶点坐标为 ()A 1,4-∴()2y a x 14=-+又 经过点 ()B 3,0∴ 代入得:()20a 314=--解得:a 1=∴函数解析式为:2(1)4y x =--(2)将x=2代入解析式得2(21)4=-3y =--∴点 ()C 2,3- 在该函数图象上将x=-1代入解析式得2(-11)4=0y =--∴点 ()D 1,1- 不在该函数图象上【点睛】本题考查的是待定系数法求函数解析式,解题关键是根据顶点坐标设出顶点式.20、 (1)见解析;(2)①AE=22,DE =42;②tan ∠DBC =77. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可;②连接AC ,由自相似菱形的定义即可得出结论;③由自相似菱形的性质即可得出结论;(2)①由(1)③得△ABE ∽△DEA ,得出AB BE AE DE AE AD==,求出AE =22,DE =42即可; ②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM =22AE AM -=7,求出BN =7,再由三角函数定义即可得出答案.【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB =CD ,BE =CE ,∠ABE =∠DCE =90°,在△ABE 和△DCE 中AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠,∴△ABE ≌△DCE (SAS ),∴△ABE ∽△DCE ,∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED =∠B 时,△ABE ∽△DEA ,∴若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点, 则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED ,故答案为:真命题;(2)①∵菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点,∴BE =2,AB =AD =4,由(1)③得:△ABE ∽△DEA , ∴AB BE AE DE AE AD== ∴AE 2=BE •AD =2×4=8,∴AE ,DE =AB AE BE ⋅=42⨯,故答案为:AE ;DE ;②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形,∴DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即)2﹣(x +4)2)2﹣x 2,解得:x =1,∴AM =1,EN =DM =5,∴DN =EM =,在Rt △BDN 中,∵BN =BE +EN =2+5=7,∴tan ∠DBC =DN BN =.【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键.21、y=﹣10x 2+1600x ﹣48000;80元时,最大利润为16000元.【解析】试题分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润试题解析:(1)S=y (x ﹣20)=(x ﹣40)(﹣10x+1)=﹣10x 2+1600x ﹣48000;(2)S=﹣10x 2+1600x ﹣48000=﹣10(x ﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.考点:二次函数的应用22、(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.23、(1)详见解析;(2)详见解析;(3)BC =【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠CAD,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形 1122OA OB OC OD AC BD ∴===== AE CE ⊥90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒ 由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =AE ∴=AE BC =BC ∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形.24、(1)5600y x =-+(80120x ≤≤);(2)25100048000W x x =-+-,每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.【分析】(1)设y 与x 之间的函数解析式为:y =kx +b ,根据题意列方程组即可得到结论;(2)根据题意得到合适解析式,然后根据二次函数的性质即可得到结论;(3)设产品的成本单价为b 元,根据题意列不等式即可得到结论.【详解】(1)设y 关于x 的函数解析式为y kx b =+. 由图象,得85175,95125.k b k b +=⎧⎨+=⎩解得5,600.k b =-⎧⎨=⎩即y 关于x 的函数解析式是5600y x =-+(80120x ≤≤).(2)根据题意,得()()()22560080510004800051002000W x x x x x =-+-=-+-=--+,∴当100x =时,W 取得最大值,此时2000W =.即每件销售单价为100元时,每天的销售利润最大,最大利润为2000元.(3)设科技创新后成本为b 元.当90x =时,()()590600903750b -⨯+-≥.解得65b ≤.答:该产品的成本单价应不超过65元.【点睛】此题主要考查了二次函数和一次函数的应用以及一元二次方程的应用,正确得出函数解析式是解题关键.25、(1)详见解析;(2)150°【分析】(1)先证∠ABD =∠CBE ,根据SAS 可证△ABD ≌△CBE ;(2)把线段PC 以点C 为中心顺时针旋转60°到线段CQ 处,连结AQ .根据旋转性质得△PCQ 是等边三角形,根据等边三角形性质证△BCP ≌△ACQ (SAS ),得BP=AQ=4,∠BPC=∠AQC ,根据勾股定理逆定理可得∠AQP=90°,进一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°. 【详解】(1)证明:∵∠ABC=90°,BD ⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD =∠CBE .又∵AB=CB ,BD=BE∴△ABD ≌△CBE (SAS ).(2)如图,把线段PC 以点C 为中心顺时针旋转60°到线段CQ 处,连结AQ .由旋转知识可得:∠PCQ =60°,CP=CQ=1,∴△PCQ 是等边三角形,∴CP=CQ=PQ=1.又∵△ABC 是等边三角形,∴∠ACB=60°=∠PCQ ,BC=AC ,∴∠BCP+∠PCA=∠PCA+∠ACQ ,即∠BCP=∠ACQ .在△BCP 与△ACQ 中CP CQ BCP ACQ BC AC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△ACQ (SAS )∴BP=AQ=4,∠BPC=∠AQC .又∵PA=5,∴222224325PB PC PA +=+==.∴∠AQP=90°又∵△PCQ 是等边三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°=150°∴∠BPC=150°.【点睛】考核知识点:等边三角形,全等三角形,旋转,勾股定理.根据旋转性质和全等三角形判定和性质求出边和角的关系是关键.26、(1)214433y x x =-++;(2)243y x =-+;(3)存在,(2,2)或(2,-2)或(2,0)或(2,12) 【分析】(1)将A 点代入抛物线的解析式即可求得答案;(2)先求得点B 、点C 的坐标,利用待定系数法即可求得直线BC 的解析式;(3)设出P 点坐标,然后表示出△ACP 的三边长度,分三种情况计论,根据腰相等建立方程,求解即可.【详解】(1)将点()20A -,代入2143y x bx =-++中, 得:()()2122403b --+-+=, 解得:43b =, ∴抛物线的解析式为214433y x x =-++; (2)当0x =时,4y =,∴点C 的坐标为(0,4) ,当0y =时,2144033x x -++=, 解得:1226x x =-=, ,∴点B 的坐标为(6,0) ,设直线BC 的解析式为y kx n =+,将点B (6,0),点C (0,4)代入,得:064k n n =+⎧⎨=⎩, ∴234k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为243y x =-+, (3)抛物线的对称轴为()6222x +-==, 假设存在点P ,设(2,)P t ,则AC ==AP ==CP ==∵△ACP 为等腰三角形,①当AC AP ==解之得:2t =±,∴点P 的坐标为(2,2)或(2,-2);②当AC CP ==,解之得:0t =或8t =(舍去),∴点P 的坐标为(2,0)或(2,8),设直线AC 的解析式为y kx b =+,将点A(-2,0)、C (0,4)代入得204k b b -+=⎧⎨=⎩, 解得:24k b =⎧⎨=⎩, ∴直线AC 的解析式为24y x =+,当2x =时,2248y =⨯+=,∴点(2,8)在直线AC 上,∴A 、C 、P 在同一直线上,点(2,8)应舍去;③当AP CP ==解之得:12t =, ∴点P 的坐标为(2,12); 综上,符合条件的点P 存在,坐标为:(2,2)或(2,-2)或(2,0)或(2,12). 【点睛】本题为二次函数的综合应用,涉及待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的性质,方程思想及分类讨论思想等知识点.在(3)中利用点P 的坐标分别表示出AP 、CP 的长是解题的关键.。

2022年湖北省黄石市下陆区数学九年级第一学期期末复习检测模拟试题含解析

2022年湖北省黄石市下陆区数学九年级第一学期期末复习检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分)1.如图,将矩形纸片ABCD 折叠,使点A 落在BC 上的点F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( )A .邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形2.已知关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,并且关于m 的分式方程2119233km m m+-+=--有整数解,则同时满足两个条件的整数k 值个数有( ). A .2个 B .3个 C .4个 D .5个3.如图1,在Rt △ABC 中,∠B =90°,∠ACB =45°,延长BC 到D ,使CD =AC ,则tan22.5°=( )A 21B 21C 21+D 21- 4.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为x 元,则可列方程为( ) A .()()40306001010000x x +--=B .()()40306001010000x x +-+=C .()()30600104010000x x ---=⎡⎤⎣⎦D .()()30600104010000x x ⎡⎤=⎦+⎣--5.在Rt△ABC 中,∠C=90°,各边都扩大2倍,则锐角A 的锐角三角函数值( )A .扩大2倍B .缩小12C .不变D .无法确定 6.如图是二次函数2y ax bx c =++图象的一部分,图象过点()5,0A -,对称轴为直线2x =-,给出四个结论:①0abc >; ②40a b +=;③若点()13,B y 、()24,C y -为函数图象上的两点,则12y y >;④关于x 的方程220ax bx c +++=一定有两个不相等的实数根.其中,正确结论的是个数是( )A .4B .3C .2D .17.2020-的绝对值是( )A .2020-B .2020C .12020-D .12020 8.对于二次函数22(1)2y x =-+的图象,下列说法正确的是A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点. 9.已知函数()13a y a x+=+是反比例函数,则此反比例函数的图象在( ) A .第一、三象限B .第二、四象限C .第一、四象限D .第二、三象限10.如图,在ABCD 中,点,E F 分别在边AD BC 、上,且//, EF CD G 为边AD 延长线上一点,连接BG ,则图中与ABG ∆相似的三角形有( )个A .1B .2C .3D .411.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有( )个 A .4 B .3 C .2 D .112.关于二次函数y =x 2+4x ﹣5,下列说法正确的是( )A .图象与y 轴的交点坐标为(0,5)B .图象的对称轴在y 轴的右侧C .当x <﹣2时,y 的值随x 值的增大而减小D .图象与x 轴的两个交点之间的距离为5二、填空题(每题4分,共24分)13.抛物线y =3(x+2)2+5的顶点坐标是_____.14.抛物线23y x =-的顶点坐标是______.15.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为________cm ,面积为________2cm .16.抛物线2(-1)3y x =+的顶点坐标是______.17.在反比例函数y =﹣2x的图象上有两点(﹣12,y 1),(﹣1,y 1),则y 1_____y 1.(填>或<) 18.如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE.若∠D=70°,则∠EAC 的度数为____________.三、解答题(共78分)19.(8分)快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到A ,B 两个书店做志愿者服务活动. (1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)20.(8分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.(1)当销售价格上涨时,请写出每天的销售量y (件)与销售价格(元/件)之间的函数关系式.(2)如果要求每天的销售量不少于10件,且每件文具的利润至少为18元,间当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?21.(8分)如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是90°的扇形ABC .(1)求剪出的扇形ABC 的周长.(2)求被剪掉的阴影部分的面积.22.(10分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜. 请你运用所学的概率的相关知识通过计算说明这个游戏对甲、乙双方是否公平.23.(10分)经市场调查,某种商品在第x 天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y 元. 时间x (天)1≤x<50 50≤x≤90 售价(元/件)x+40 90每天销量(件)200-2x (1)求出y 与x 的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.24.(10分)如图,DEF 是ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E ,点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:()1分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;() 2若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求a 、b 的值.25.(12分)如图,t R ABC ∆中,90ACB ∠=︒,AC BC =,P 为ABC ∆内部一点,135APB BPC ∠=∠=︒.求证:PAB PBC ∆∆.26.数学活动课上老师带领全班学生测量旗杆高度.如图垂直于地面的旗杆顶端A 垂下一根绳子.小明同学将绳子拉直钉在地上,绳子末端恰好在点C 处且测得旗杆顶端A 的仰角为75°;小亮同学接着拿起绳子末端向前至D 处,拉直绳子,此时测得绳子末端E 距离地面1.5 m 且与旗杆顶端A 的仰角为60°根据两位同学的测量数据,求旗杆AB 的高度.(参考数据:sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,结果精确到1米)参考答案一、选择题(每题4分,共48分)1、A【解析】∵将长方形纸片折叠,A 落在BC 上的F 处,∴BA=BF ,∵折痕为BE ,沿EF 剪下,∴四边形ABFE 为矩形,∴四边形ABEF 为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选A .2、B【解析】关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,确定出k 的范围,根据分式方程整数解,确定出k 的值,即可求解.【详解】关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,则()()()210234120,k k k k ->⎧⎪⎨=---+<⎪⎩ 解得:17.16k > 分式方程去分母得:()212319km m ++-=,解得:121m k ,=+ 当2k =时,4m =;当3k =时,3m =(舍去);当5k =时,2m =;当11k =时,1m =;同时满足两个条件的整数k 值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.3、B【解析】设AB=x ,求出BC=x ,x ,求出BD 为(x ),通过∠ACB =45°,CD =AC ,可以知道∠D 即为22.5°,再解直角三角形求出tanD 即可.【详解】解:设AB=x ,∵在Rt △ABC 中,∠B=90°,∠ACB=45°,∴∠BAC=∠ACB=45°,∴AB=BC=x ,由勾股定理得:x ,∴∴,∴tan22.5°=tanD=AB BD =1 故选B .【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,设出AB=x 能求出x 是解此题的关键.4、A【分析】设这种台灯上涨了x 元,台灯将少售出10x ,根据“利润=(售价-成本)×销量”列方程即可.【详解】解:设这种台灯上涨了x 元,则根据题意得,(40+x-30)(600-10x )=10000.故选:A.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.5、C【解析】∵在Rt △ABC 中,∠C =90°, ∴BC sin A AB =,AC cos A AB =,BC tan A AC=, ∴在Rt △ABC 中,各边都扩大2倍得:2BC BC sin A 2AB AB ==,2AC AC cos A 2AB AB ==,2BC BC tan A 2AC AC==, 故在Rt △ABC 中,各边都扩大2倍,则锐角A 的锐角三角函数值不变.故选C.【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A 的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A 的三角函数值是不会变的.6、C【分析】①根据抛物线开口方向、对称轴及与y 轴交点情况可判断;②根据抛物线对称轴可判断;③根据点离对称轴的远近可判断;④根据抛物线与直线2y =-交点个数可判断.【详解】由图象可知:开口向下,故0a <,抛物线与y 轴交点在x 轴上方,故c >0, ∵对称轴202b x a =-=-<,即a b 、同号, ∴0b <,∴0abc >,故①正确; ∵对称轴为22b x a=-=-, ∴4b a =,∴40a b -=,故②不正确;∵抛物线是轴对称图形,对称轴为2x =-,点()24C y -,关于对称轴为2x =-的对称点为()20C y ',当2x >-时,此时y 随x 的增大而减少,∵3>0,∴12y y <,故③错误;∵抛物线的顶点在第二象限,开口向下,与x 轴有两个交点,∴抛物线2y ax bx c =++与直线 2y =-有两个交点, ∴关于x 的方程220ax bx c +++=有两个不相等的实数根,所以④正确;综上:①④正确,共2个;故选:C .【点睛】本题考查二次函数的图象及性质;熟练掌握函数图象及性质,能够从函数图象获取信息,结合函数解析式进行求解是关键.7、B【分析】根据绝对值的定义直接解答.【详解】解:根据绝对值的概念可知:|−2121|=2121,故选:B .【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.8、D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A 、B 、C ,令y =0利用判别式可判断D ,则可求得答案.【详解】∵y =2(x−1)2+2,∴抛物线开口向上,对称轴为x =1,顶点坐标为(1,2),故A 、B 、C 均不正确,令y =0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x 轴没有交点,故D 正确;故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h,k).9、A【分析】首先根据反比例函数的定义,即可得出2a=-,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【详解】根据已知条件,得11a+=-即2a=-∴函数解析式为1 yx =∴此反比例函数的图象在第一、三象限故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.10、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案. 【详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.11、B【解析】根据中心对称图形的概念判断即可.【详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.12、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C 进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣42=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题(每题4分,共24分)13、(﹣2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,顶点坐标为(h ,k ),对称轴为x=h .14、(0,-3).【解析】试题解析:二次函数23y x =-,1,0, 3.a b c ===- 对称轴0.2b x a=-= 当0x =时, 3.y =-顶点坐标为:()0,3.-故答案为:()0,3.-15、5 24【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm ,8cm ,∴对角线的一半分别为3cm ,4cm ,=5cm ,∴面积S=12×6×8=14cm 1. 故答案为5;14.【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.16、 (1,3)【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.17、>【分析】直接将(﹣12,y 2),(﹣2,y 2)代入y =﹣2x,求出y 2,y 2即可. 【详解】解:∵反比例函数y =﹣2x 的图象上有两点(﹣12,y 2),(﹣2,y 2), ∴1212y =--=4,y 2=﹣22-=2. ∵4>2,∴y 2>y 2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18、15︒【分析】根据菱形的性质求∠ACD 的度数,根据圆内接四边形的性质求∠AEC 的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD 是菱形,∴AD ∥BC,AD=DC,∴∠DAC=∠ACB, ∠DAC=∠DCA∵∠D=70°,∴∠DAC=180180705522D ,∴∠ACB=55°,∵四边形ABCD 是⊙O 的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.三、解答题(共78分)19、(1)12;(2)14【分析】(1)用树状图列出所有可能的情况,然后即可得出其概率;(2)用树状图列出所有可能的情况,然后即可得出其概率.【详解】(1)P (2人选择不同的书店)2142==(2)P (3人选择同一书店)2184==【点睛】此题主要考查利用树状图求概率,熟练掌握,即可解题.20、(1)10500y x =-+;(2)当销售价格定为38元时,该文具每天的销售利润最大,最大利润为1元【分析】(1)根据实际销售量等于25010(25)--x ,化简即可;(2)利用二次函数的性质及题中对销售量及每件文具利润的约束条件,可求得答案.【详解】解:(1)25010(25)y x =--10500x =-+∴每天的销售量y (件)与销售价格x (元/件)之间的函数关系式为:10500y x =-+;(2)设销售利润为w 元,由题意得:(20)(10500)w x x =--+21070010000x x =-+-210(35)2250x =--+∵10500102018x x -+≥⎧⎨-≥⎩,解得:3849x ≤≤ ∵100-<,抛物线的对称轴为直线35x =∴抛物线开口向下,在对称轴的右侧,w 随x 的增大而减小∴当38x =时,w 取最大值为1.答:当销售价格定为38元时,该文具每天的销售利润最大,最大利润为1元.【点睛】本题主要考查了一元二次方程和二次函数的应用,准确列式是解题的关键.21、(1)(102+52)cm ;(1)50πcm 1.【分析】(1)连接BC ,首先证明BC 是直径,求出AB ,AC ,利用弧长公式求出弧BC 的长即可解决问题. (1)根据S 阴=S 圆O ﹣S 扇形ABC 计算即可解决问题. 【详解】解:(1)如图,连接BC∵∠BAC =90°,∴BC 是⊙O 的直径,∴BC =10cm ,∵AB =AC , ∴AB =AC =2∴BC 的长=90102180π⋅=2π, ∴扇形ABC 的周长=(22)cm .(1)S 阴=S 圆O ﹣S 扇形ABC =π•101﹣290(102)360π⋅⋅=50πcm 1. 【点睛】本题考查了弧长计算和不规则图形的面积计算,熟练掌握弧长公式与扇形面积公式是解题的关键.22、公平,见解析【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【详解】画树状图如图所示,由图知共有16种等可能结果,其中x y +为奇数的可能有8种,为偶数也有8种可能,故x y +结果为奇数或偶数的概率都是12, 甲乙获胜的概率相同,故游戏公平.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.23、(1)当1≤x<50时,y=﹣2x 2+180x+2000,当50≤x≤90时,y=﹣120x+12000;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.【解析】试题分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案. 试题解析:(1)当1≤x<50时,y=(x+40﹣30)(200-2x)=﹣2x 2+180x+2000,当50≤x≤90时,y=(90﹣30)(200-2x )=﹣120x+12000;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y 最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x 2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.24、(1)见解析;(2)a 1=-;b 1=-;【解析】(1)在坐标系中直接读出点的坐标即可,再由所读数值发现坐标之间的特征;(2)由上问所得结论可求解a 、b 的值.【详解】()1由图象可知,点()A 2,3,点()D 2,3--,点()B 1,2,点()E 1,2--,点()C 3,1,点()F 3,1--; 对应点的坐标特征为:横坐标、纵坐标都互为相反数;()2由()1可知,a 32a 0++=,4b 2b 30-+-=,解得a 1=-,b 1=-.【点睛】本题考查了图形在坐标系中的旋转,根据坐标系中点的坐标确定旋转特点,从而确定旋转前后对应坐标之间的关系是解题关键.25、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB ,即可得出结论;【详解】解:90ACB ∠=︒,AB BC =45ABC PBA PBC ∴∠=︒=∠+∠,又135APB ∠=︒,45PAB PBA ∴∠+∠=︒,PBC PAB ∴∠=∠,又135APB BPC ∠=∠=︒,PAB PBC ∴∆∆.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB 是解本题的关键. 26、15米.【分析】根据题意分别表示出AB 、AF 的长,进而得出等式求出答案.【详解】过E 作EF ⊥AB 于F ,设AC=AE=x∵AB ⊥CD ,ED ⊥CD ,∴四边形FBDE 为矩形,∴ 1.5BF ED ==,在Rt AEF ⊿中 ∵AF sin AEF AE∠= , ∴60?AF xsin =︒,∴AB=AF+BF 60 1.5xsin =︒+,在Rt ACB ⊿中, ∵AB sin ACB AC∠=, ∴75AB xsin =︒,∴75?60 1.5xsin xsin ︒=︒+,1.57560x sin sin =︒-︒, ∴ 1.5 1.5750.970.97151575600.970.87AB sin sin sin =︒⨯≈⨯=⨯=︒-︒-(米). ∴旗杆AB 的高度为15米.【点睛】本题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄石市2010—2011学年度上学期期末考试九年级数学试题卷姓名___________ 考号_______________注意事项:1.本试卷分为试题卷和答题卷两部分。

考试时间为120分钟,满分120分。

2.考生在答题前请阅读答题卷中的“注意事项”,然后按要求答题。

3.所有答案均须做在答题卷相应区域,做在其他区域无效。

第Ⅰ卷(选择题)一、选择题(每小题3分,共30分)1.估算324+的值 A .在5和6之间 B .在6和7之间 C .在7和8之间 D .在8和9之间 2.如图,小芳和爸爸正在散步,爸爸身高1.8m ,他在地面上的影长为2.1m 。

若小芳比爸爸矮0.3m ,则她的影长为A .1.3mB .1.65mC .1.75mD .1.8m3.抛物线2)1(212-+=x y 的顶点是A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)4.已知αβ、是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是A .3或-1B .3C .1D .-3或1 5.如图,先对折矩形得折痕MN ,再折纸使折线过点B ,且使得A 在MN 上,这时折线EB 与BC 所成的角为 A .75° B .60° C .45° D .30° 6.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么 A .a =1,b =5 B .a =5,b =1 C .a =11,b =5 D .a =5,b =117.某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为S =10t +t 2,若滑到坡底的时间为2秒,则此人下滑的高度为 A .24米B .12米C .123米D .11米a b 158 4 -6 (第6题图)(第7题图)︒30 D F CBAH (第8题图)DABCM DMCBEAN(第5题图)太阳光线2.1m(第2题图)8.矩形ABCD 中,AD =8cm ,AB =6cm .动点E 从点C 开始沿边CB 向点B 以2cm /s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm /s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的A .B .C .D .9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120°,则r 与R 之间的关系是 A .R =2rB .R =rC .R =3rD .R =4r10.如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是 A . 6 B .62 C .52D .222+第Ⅱ卷(非选择题 共6道填空题9道解答题)二、填空题(每小题3分,共18分)11.使二次根式3x +有意义的x 的取值范围是__________.12.若抛物线26y x x k =-+的顶点的纵坐标为n ,则k n -的值为__________. 13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为31,那么袋中的球共有__________个.14.如图一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了________圈. 15.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8(第9题图)BVxA1OC 1 y (第10题图)B A 图2图3(第14题图)+3中线段AB 的长为_______.16.一组按规律排列的整数5,7,11,19,…,第6个整数为__________,根据上述规律,第n 个整数为_____________(n 为正整数). 三、解答题(共72分) 17.(本题满分7分)已知:1x =,1y =-,求代数式222x xy y ++的值. 18.(本题满分7分)解方程组⎩⎨⎧=+--+=+-09460122y x y x y x19.(本题满分7分)已知:关于x 的方程2210x kx +-= ⑴求证:方程有两个不相等的实数根;⑵若方程的一个根是-1,求另一个根及k 值. 20.(本题满分8分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.⑴当每辆车的月租金定为3600元时,能租出多少辆车?⑵当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 21.(本题满分8分)将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上。

⑴从中随机抽取两张卡片,求卡片正面上的数字之和大于4的概率; ⑵若先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率(请用树状图或列表法加以说明). 22.(本题满分8分)阅读:D 为△ABC 中BC 边上一点,连接AD ,E 为AD 上一点. 如图1,当D 为BC 边的中点时,有EBD ECD S S ∆∆=,ABE ACE S S ∆∆=;当m DCBD=时,有EBD ABE ECD ACE S S m S S ∆∆∆∆==.解决问题: 在△ABC 中,D 为BC 边的中点,P 为AB 边上的任意一点,CP 交AD 于点E .设△EDC 的面积为S 1,△APE 的面积为S 2.⑴如图2,当1=AP BP时,121S S =的值为__________; ⑵如图3,当n APBP=时,121S S =的值为__________; ⑶若24=∆ABC S ,22=S ,则AP BP的值为__________.23.(本小题满分8分)如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量.⑴求该药品的稳定价格与稳定需求量.⑵价格在什么范围内,该药品的需求量低于供应量? ⑶由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量. 24.(本题满分9分)如图,P 是⊙O 上的一个点,⊙P 与⊙O 的一个交点是E ,⊙O 的弦AB (或延长线)与⊙P 相切,C 是切点,AE (或其延长线)交⊙P 于F ,连结P A ,PB ,设⊙O 的半径为R ,⊙P 的半径为r (R >r ). ⑴(如图1)求证:P A ·PB =2Rr ;⑵(如图2)当切点C 在⊙O 的外部时,⑴中的结论是否成立,试证明之。

⑶探究(图2)已知P A =10,PB =4,R =2r ,求EF 的长。

25.(本题满分10分)点P 为抛物线222y x mx m =-+(m 为常数,m >0)上任一点,ACBD EACBD PEACBD EP图1图2图3(第22题图)/件)图1 (第将抛物线绕顶点G 逆时针旋转90°后得到的新图象与y 轴交于A 、B 两点(点A 在点B 的上方),点Q 为点P 旋转后的对应点.⑴当m =2,点P 横坐标为4时,求Q 点的坐标; ⑵设点Q (a ,b ),用含m 、b 的代数式表示a ;⑶如图,点Q 在第一象限内,点D 在x 轴的正半轴上,点C 为OD 的中点,QO 平分∠AQC ,AQ =2QC ,当QD =m 时,求m 的值.黄石市2010—2011学年度上学期期末考试九年级数学参考答案一、选择题1.C 2.C 3.D 4.B 5.B 6.A 7.B 8.A 9.C 10.D 二、填空题11.≧-3 12.9 13.12 14.4 151 16.67 32+n (n 为正整数) 三、解答题17.解:原式=2()x y + .............................................................................................. 4分=211)+=2=12 ...................................................... 3分18.解:⎪⎩⎪⎨⎧-=--+-=-②946①122y x y x y x 由①得y =x +1 ③代入②,整理得x 2-4x +3=0,解得x =1或x =3 .................................. 4分 代入②得y =2或y =4 ∴原方程组的解为⎩⎨⎧==21y x 或⎩⎨⎧==43y x ........................................................ 3分19.解:⑴2x 2+kx -1=0,2242(1)8k k ∆=-⨯⨯-=+,无论k 取何值,k 2≥0,所以280k +>,即0∆>,∴方程2210x kx +-=有两个不相等的实数根. .................................. 3分 ⑵设2210x kx +-=的另一个根为x ,则12k x -=-,1(1)2x -=-,解得:12x =,k =1,∴2210x kx +-=的另一个根为12,k 的值为1. ................................. 4分20.解:⑴当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600-=12,所以这时租出了88辆车. ....................................................................... 2分 ⑵设每辆车的月租金定为x 元,则租赁公司的月收益为:y =(100-503000-x )(x -150)-503000-x ×50,整理得:y =-502x +162x -21000=-501(x -4050)2+307050. .......... 4分所以,当x =4050时,y 最大,其最大值为307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元. .... 2分21.解:⑴可能出现的结果为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,其中和大于4的有4种,所以P 和大于4=32................................. 4分⑵所有可能出现的结果共有12种,组成的两位数恰好是3的倍数有4种,所以,概率为P =31124=. ................................................................................ 4分22.解:⑴1; ............................................................................................................. 1分⑵22n n +;.................................................................................................... 3分⑶2. ............................................................................................................. 4分解答过程:⑵连BE ,∵n S S AP BP APEBPE==∆∆,∴S △BPE =nS 2 ∵BD =CD ,∴S △BDE =S △EDC =S 1,S △AEC =S △AEB =S 2+nS 2 又n S S BEC AEC 1=∆∆,∴nS nS S 12122=+,∴2221n n S S += ⑶由⑵知S △ABD =S 2+nS 2+S 1=122421=⨯∵S 2=2,∴S 1=10-2n ,∵n nS S S S S AEC BEC =+=∆∆2212,∴n nn =+-22)210(2 ∴n 2-3n -10=0,∴n =2(n =-5舍),∴2=APBP.23.解:⑴由题可得⎩⎨⎧-=+-=3827021x y x y ,当y 1=y 2时,即-x +70=2x -38 ∴3x =108,∴x =36 当x =36时,y 1=y 2=34所以该药品的稳定价格为36元/件,稳定需求量为34万件. ............... 4分 ⑵令y 1=0,得x =70,由图象可知,当药品每件价格在大于36元小于70元时, 该药品的需求量低于供应量.⑶设政府对该药品每件价格补贴a 元,则有⎩⎨⎧-+=++-=+38)(273470634a x x ,解得⎩⎨⎧==930a x 所以政府部门对该药品每件应补贴9元. .............................................. 4分24.解:⑴连结P 、O 并延长交⊙O 于H ,连结AH连结PC ,∵AB 是⊙P 的切线.∴∠PCB =90°,∵PH 是直径,∴∠P AH =90° 又∵∠PCB =∠P AH∴△PBC ∽△PHA ∴PA PH PC PB =,∴Rr PB PA 2=⋅ ............................................................. 3分 ⑵结论仍然成立理由如下:如图,同⑴问.△PBC ∽△PHA ,∴PAPHPC PB =AC BD PE S 1S 1 nS 2 S 2 S 2+nS 2∴Rr PB PA 2=⋅ ....................................................................................... 2分⑶过P 作AE 的垂线,垂足为Q ,连PE . ∵P A =10,PB =4,R =2r 而Rr PB PA 2=⋅ ∴10=r ,102=R 在△PCB 与△PQE 中 ⎩⎨⎧︒=∠=∠∠=∠90PQE PCB QEPCBP ∴△PCB ∽△PQE ∴PE PB PQ PC =,∴25=PQ ∴215=QE ,由垂径定理可知:152==QE EF ............................ 4分25.解:⑴当m =2时,2)2(-=x y ,则G (2,0),P (4,4). ........................... 1分 如图,连接QG 、PG , 过点Q 作QF ⊥x 轴于F , 过点P 作PE ⊥x 轴于E . 依题意,可得△GQF ≌△PGE . 则2,4,FQ EG FG EP ====∴FO =2.∴Q (-2,2). ...................... 2分⑵用含m ,b 的代数式表示a :2b m a -=. .............................................. 3分 ⑶如图,延长QC 到点E ,使CQ CE =,连接OE .HB FEOPCHBFAOPCBF QAOCPE∵C 为OD 中点,∴OC =CD .∵∠ECO =∠QCD ,∴△ECO ≌△QCD . ∴OE =DQ =m .∵AQ =2QC ,∴AQ =QE . ∵QO 平分∠AQC ,∴∠1=∠2. ∴△AQO ≌△EQO . ∴AO =EO =m .∴A (0,m ).∵A (0,m )在新的图象上,∴20m m -=. ∴11=m ,02=m (舍).∴1=m . .................................................................................................. 4分。

相关文档
最新文档