2020-2021初三数学 圆与相似的专项 培优练习题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初三数学圆与相似的专项培优练习题含答案
一、相似
1.综合题
(1)【探索发现】
如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.
(2)【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)
(3)【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
(4)【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且
tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.
【答案】(1)解:∵EF、ED为△ABC中位线,
∴ED∥AB,EF∥BC,EF= BC,ED= AB,
又∠B=90°,
∴四边形FEDB是矩形,
则;
(2)解:∵PN∥BC,
∴△APN∽△ABC,
∴,即,
∴PN=a- PQ,
设PQ=x,
则S矩形PQMN=PQ•PN=x(a- x)=- x2+ax=- (x- )2+ ,
∴当PQ= 时,S矩形PQMN最大值为 .
(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,
由题意知四边形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI= =24,
∵BI=24<32,
∴中位线IK的两端点在线段AB和DE上,
过点K作KL⊥BC于点L,
由【探索发现】知矩形的最大面积为×BG• BF= ×(40+20)× (32+16)=720,
答:该矩形的面积为720;
(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,
∵tanB=tanC= ,
∴∠B=∠C,
∴EB=EC,
∵BC=108cm,且EH⊥BC,
∴BH=CH= BC=54cm,
∵tanB= = ,
∴EH= BH= ×54=72cm,
在Rt△BHE中,BE= =90cm,
∵AB=50cm,
∴AE=40cm,
∴BE的中点Q在线段AB上,
∵CD=60cm,
∴ED=30cm,
∴CE的中点P在线段CD上,
∴中位线PQ的两端点在线段AB、CD上,
由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,
答:该矩形的面积为1944cm2.
【解析】【分析】(1)由三角形的中位线定理可得ED∥AB,EF∥BC,EF= BC,ED= AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB是平行四边形,而∠B=90°,根据一个角是直角的平行四边形是矩形可得四边形FEDB是矩形,所以
;
(2)因为PN∥BC,由相似三角形的判定可得△APN∽△ABC,则可得比例式,即
,解得,设PQ=x,则S矩形PQMN=PQ•PN=x()
,因为0,所以函数有最大值,即当PQ=时,
S矩形PQMN有最大值为;
(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由矩形的判定可得四边形ABCH是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△AEF≌△HED,所以AF=DH=16,同理可得
△CDG≌△HDE,则CG=HE=20,所以=24,BI=24<32,所以中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由(1)得矩形的最大面积为×BG• BF=
×(40+20)×(32+16)=720;
(4)延长BA、CD交于点E,过点E作EH⊥BC于点H,因为tanB=tanC,所以∠B=∠C,
则EB=EC,由等腰三角形的三线合一可得BH=CH=BC=54cm;由tanB可求得EH=BH=
×54=72cm,在Rt△BHE中,由勾股定理可得BE=90cm,所以AE=BE-AB=40cm,所以BE的中点Q在线段AB上,易得CE的中点P在线段CD上,由(2)得矩形PQMN的最大面积为
BC•EH=1944cm2。
2.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
【答案】(1)解:把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得
,解得,
∴抛物线解析式为y=﹣ x2+ x+4;
∵AC=BC,CO⊥AB,
∴OB=OA=3,
∴B(3,0),
∵BD⊥x轴交抛物线于点D,
∴D点的横坐标为3,
当x=3时,y=﹣ ×9+ ×3+4=5,
∴D点坐标为(3,5)。
(2)解:在Rt△OBC中,BC= =5,
设M(0,m),则BN=CM=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,
∴当时,△CMN∽△COB,则∠CMN=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);当时,△CMN∽△CBO,则∠CNM=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,)。
(3)解:连接DN,AD,如图,
∵AC=BC,CO⊥AB,
∴OC平分∠ACB,
∴∠ACO=∠BCO,
∵BD∥OC,
∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,
∴△ACM≌△DBN,
∴AM=DN,
∴AM+AN=DN+AN,
而DN+AN≥AD(当且仅当点A、N、D共线时取等号),
∴DN+AN的最小值=AD= ,
∴AM+AN的最小值为.
【解析】【分析】(1)将A(﹣3,0),C(0,4)代入函数解析式构造方程组解出a,c 的值可得抛物线解析式;由AC=BC,CO⊥AB,根据等腰三角形的“三线合一”定理,可得OB=OA=3,而BD⊥x轴交抛物线于点D,则D点的横坐标为3,当x=3时求得y的值,即可得点D的坐标。
(2)当△CMN是直角三角形时,有两种情况:∠CMN=90°,或∠CNM=90°,则可得△CMN∽△COB,或△CMN∽△CBO,由对应边成比例,设M(0,m),构造方程解答即可。
(3)求AM+AN的最小值,一般有两种方法:解析法和几何法;解析法:用含字母的函数关系式表示出AM+AN的值,根据字母的取值范围和函数的最值来求;几何法:将点A,M,N三点移到一条直线上;此题适用于几何法:观察图象不难发现,AC=BD=5,CM=BN,且∠BCO=∠DBC,连接AD,可证得△ACM≌△DBN,则AM=DN,而DN+AN≥A D (当且仅当点A、N、D共线时取等号),求AD的长即可。
3.如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求证:AB平分;
(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)解:将,代入得:,
解得:,,
抛物线的解析式为
(2)解:,,
,
取,则,
由两点间的距离公式可知,
,,
,
,
在和中,,,,
≌,
,
平分
(3)解:如图所示:抛物线的对称轴交x轴与点E,交BC与点F.
抛物线的对称轴为,则.
,,
,
,
,
,
,
同理:,
又,
,
,
点M的坐标为或
【解析】【分析】(1)利用待定系数法,将点A、B两点坐标分别代入抛物线的解析式,求出a、b的值,即可解答。
(2)利用勾股定理,在Rt△AOC中,求出AC的长,再根据两点间的距离公式求出BD的长,由点B、C的坐标,求出BC的长,可证得BD=BC,然后证明△ABC ≌△ABD ,利用全等三角形的性质,可证得结论。
(3)抛物线的对称轴交x轴与点E,交BC与点F.求出抛物线的对称轴,就可求出AE的长,再利用点A、B的坐标,求出tan∠EAB的值,再由∠M'AB = 90 °,求出tan∠∠M'AE 的值,求出M'E的长,就可得出点M的坐标,再用同样的方法求出点M的坐标,即可解答。
4.已知顶点为抛物线经过点,点 .
(1)求抛物线的解析式;
(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
【答案】(1)解:把点代入,
解得:a=1,
∴抛物线的解析式为:或 .
(2)解:设直线AB解析式为:y=kx+b,代入点A、B的坐标得:
,
解得:,
∴直线AB的解析式为:y=-2x-1,
∴E(0,-1),F(0,- ),M(- ,0),
∴OE=1,FE= ,
∵∠OPM=∠MAF,
∴当OP∥AF时,△OPE∽△FAE,
∴
∴OP= FA= ,
设点P(t,-2t-1),
∴OP= ,
化简得:(15t+2)(3t+2)=0,
解得,,
∴S△OPE= ·OE· ,
当t=- 时,S△OPE= ×1× = ,
当t=- 时,S△OPE= ×1× = ,
综上,△POE的面积为或 .
(3)Q(- ,).
【解析】【解答】(3)解:由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),
∴N(m,-1),
∵△QEN沿QE翻折得到△QEN1
∴NN1中点坐标为(,),EN=EN1,
∴NN1中点一定在直线AB上,
即 =-2× -1,
∴n=- -m,
∴N1(- -m,0),
∵EN2=EN12,
∴m2=(- -m)2+1,
解得:m=- ,
∴Q(- ,).
【分析】(1)用待定系数法将点B点坐标代入二次函数解析式即可得出a值.
(2)设直线AB解析式为:y=kx+b,代入点A、B的坐标得一个关于k和b的二元一次方程组,解之即可得直线AB解析式,根据题意得E(0,-1),F(0,- ),M(- ,0),根
据相似三角形的判定和性质得OP= FA= ,设点P(t,-2t-1),根据两点间的距离公式即可求得t值,再由三角形面积公式△POE的面积.
(3)由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),从而得N(m,-1),根据翻折的性质知NN1中点坐标为(,)且在直线AB上,将此中点坐标代入直线AB解析式可得n=- -m,即N1(- -m,0),再根据翻折的性质和两点间的距离公式得m2=(- -m)2+1,解之即可得Q点坐标.
5.操作:和都是等边三角形,绕着点按顺时针方向旋转,是、的中点,有以下三种图形.
探究:
(1)在上述三个图形中,是否一个固定的值,若是,请选择任意一个图形求出这个比值;
(2)的值是否也等于这个定值,若是,请结合图(1)证明你的结论;
(3)与有怎样的位置关系,请你结合图(2)或图(3)证明你的结论.
【答案】(1)解:∵是等边三角形,由图(1)得AO⊥BC,
∴,∴;
(2)证明:,
,
∴
∴
∴
(3)证明:在图(3)中,由(2)得
∴,
∴∠2+∠4=∠1+∠3,即∠AEF =∠AOB
∵∠AOB=90°,
∴
∴ .
【解析】【分析】(1)由等边三角形的性质可得AO⊥BC,BO= BC= AB,根据勾股定理计算即可求得AO= BO,即AO∶BO是一个固定的值∶1;(2)由等边三角形的性质可得AO⊥BC,,由同角的余角相等可得,由(1)可得
,可得,根据相似三角形的性质可得;(3)在图(3)中,由(2)得,根据相似三角形的性质可得∠1=∠2,根据对顶角相等得∠3=∠4,则∠2+∠4=∠1+∠3=∠AOB=90°,即 .
6.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
【答案】(1)解:∵PD平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA•BD=PB•AE
(2)解:如图,过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵PD平分∠APB,AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0的两个实数根,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC= ,
∴cos∠BDF=cos∠APC= ,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=DF,
∴四边形ADFE是菱形,此时点F即为M点,
∵cos∠BAC=cos∠APC= ,
∴sin∠BAC= ,
∴,
∴DG= ,
∴菱形ADME的面积为:DG•AE=2× = .
【解析】【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得
AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC= ,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
7.如图,抛物线y= x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D且它的坐标为(3,﹣1).
(1)求抛物线的函数关系式;
(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,并延长DA交y轴于点F,求证:△OAE∽△CFD;
(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出Q的坐标.【答案】(1)解:∵顶点D的坐标为(3,﹣1).
∴, =﹣1,
解得b=﹣3,c= ,
∴抛物线的函数关系式:y= x2﹣3x+ ;
(2)解:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,
令x=0,得y= ,
∴C(0,),
∴CG=OC+OG= +1= ,
∴tan∠DCG= ,
设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,
由OE⊥CD,易知∠EOM=∠DCG,
∴tan∠EOM=tan∠DCG= ,
解得EM=2,
∴DE=EM+DM=3,
在Rt△AEM中,AM= ,EM=2,由勾股定理得:AE= ;
在Rt△ADM中,AM= ,DM=1,由勾股定理得:AD= .
∵AE2+AD2=6+3=9=DE2,
∴△ADE为直角三角形,∠EAD=90°,
设AE交CD于点P,
∵∠AEO+∠EPH=90°,∠ADC+APD=90°,∠EPH=∠APD(对顶角相等),
∴∠AEO=∠ADC,
∴△OAE∽△CFD
(3)解:依题意画出图形,如答图2所示:
由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,
要使切线长PQ最小,只需EP长最小,即EP2最小.
设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,
∵y= (x﹣3)2﹣1,
∴(x﹣3)2=2y+2,
∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,
当y=1时,EP2有最小值,最小值为5.
将y=1代入y= (x﹣3)2﹣1,得(x﹣3)2﹣1=1,
解得:x1=1,x2=5,
又∵点P在对称轴右侧的抛物线上,
∴x1=1舍去,
∴P(5,1),
∴Q1(3,1);
∵△EQ2P为直角三角形,
∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点,
设点Q2的坐标为(m,n),
则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,
①﹣②得n=2m﹣5③,
将③代入到①得到,
m1=3(舍),m2= ,
再将m= 代入③得n= ,
∴Q2(,),
此时点Q坐标为(3,1)或(,)
【解析】【分析】(1)根据抛物线的顶点坐标及顶点坐标公式建立出关于b,c的二元一次方程组,求解得出b,c的值,从而得出抛物线的解析式;
(2)如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,根据抛物线与坐标轴交点的坐标特点求出C点的坐标,A点坐标,进而得出CG的长,根据正切函数的定义
求出tan∠DCG=,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,根据同角的余角相等易知∠EOM=∠DCG,根据等角的同名三角函数值相等得出
tan∠EOM=tan∠DCG==故解得EM=2,DE=EM+DM=3,在Rt△AEM中,由勾股定理得AE 的长,在Rt△ADM中,由勾股定理得AD的长,根据勾股定理的逆定理判断出△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,根据等角的余角相等得出∠AEO=∠ADC,从而判断出△OAE∽△CFD ;
(3)依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,根据抛物线的解析式,整体替换得出EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.然后根据抛物线上点的坐标特点将y=1代入抛物线的解析式,求出对应的自变量x的值,再检验得出P 点的坐标,进而得出Q1的坐标,由切割线定理得到Q2P=Q1P=2,EQ2=1,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,
由切割线定理得到Q2P=Q1P=2,EQ2=1,将③代入到①得到,求解并检验得出m,n的值,从而得出Q2的坐标,综上所述即可得出答案。
8.已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.
(1)求抛物线解析式;
(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;
(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.
【答案】(1)解:如图1,
当x=0时,y=3,
∴A(0,3),
∴OA=OC=3,
∵BC=4,
∴OB=1,
∴B(﹣1,0),C(3,0),
把B(﹣1,0),C(3,0)代入抛物线y=ax2+bx+3中得:,
解得:,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)解:如图2,
设P(t,﹣t2+2t+3)(0<t<3),
过P作PG⊥x轴于G,
∵OQ∥PG,
∴△BOQ∽△BGP,
∴,
∴,
∴d=
d=﹣t+3(0<t<3)
(3)解:如图3,连接AN,延长PN交x轴于G,
由(2)知:OQ=3﹣t,OA=3,
∴AQ=OA﹣OQ=3﹣(3﹣t)=t,
∴QN=OG=AQ=t,
∴△AQN是等腰直角三角形,
∴∠QAN=45°,AN= t,
∵PG∥OK,
∴,
∴,
OK=3t+3,
AK=3t,
∵∠QAN=∠NKQ+∠ANK,。
∴∠NKQ+∠ANK=45°,
∵∠MCN+∠NKQ=45°,
∴∠ANK=∠MCN,
∵NG=CG=3﹣t,
∴△NGC是等腰直角三角形,
∴NC= (3﹣t),∠GNC=45°,
∴∠CNH=∠NCM+∠NMC=45°,
∴∠NKQ=∠NMC,
∴△AKN∽△NMC,
∴,
∵AQ=QN=t,AM=PQ,
∴Rt△AQM≌△Rt△QNP(HL),
∴MQ=PN=﹣t2+2t+3﹣(3﹣t)=﹣t2+3t,
∴,
t2﹣7t+9=0,
t1= >3,t2= ,
∵0<t<3,
∴t1>3,不符合题意,舍去,
∴t= .
【解析】【分析】(1)根据函数图像与坐标轴交点的坐标特点,得出A点的坐标,再根据点到坐标轴的距离得出OA=OC=3,又BC=4,从而得出OB的距离,进而得出B,C两点的坐标,再将B,C两点的坐标代入抛物线y=ax2+bx+3中得出一个关于a,b的二元一次方程组,求解得出a,b的值,从而得出抛物线的解析式;
(2)过P作PG⊥x轴于G,根据P点的横坐标得出P点坐标设P(t,﹣t2+2t+3)(0<t<3),根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似,得出△BOQ∽△BGP,根据相似三角形对应边成比例得出OQ∶PG=OB∶BG,从而得出d关于t的函数关系式;
(3)连接AN,延长PN交x轴于G,由(2)知:OQ=3﹣t,OA=3,从而得AQ=OA﹣OQ=3﹣(3﹣t)=t,进而得QN=OG=AQ=t,从而判断出△AQN是等腰直角三角形,根据等腰直角三角形的性质得出∠QAN=45°,AN= t,根据平行线分线段成比例得出
PG ∶OK=CG ∶OC,故OK=3t+3,AK=3t ,根据等式的性质得出∠ANK=∠MCN ,判断出△NGC 是等腰直角三角形,根据等腰直角三角形的性质得出NC=
(3﹣t ),∠GNC=45°,再判
断出△AKN ∽△NMC ,根据相似三角形对应边成比例得出 A K ∶M N = A N ∶N C ,再利用HL 判断出Rt △AQM ≌△Rt △QNP ,故MQ=PN=﹣t 2+2t+3﹣(3﹣t )=﹣t 2+3t ,从而得出关于t 的方程,求解并检验即可得出答案
二、圆的综合
9.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .
(1)判断直线DE 与⊙O 的位置关系,并说明理由; (2)若AE =8,⊙O 的半径为5,求DE 的长.
【答案】(1)直线DE 与⊙O 相切(2)4 【解析】
试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切 (2)
如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,
∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系
点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.
10.如图,在锐角△ABC 中,AC 是最短边.以AC 为直径的⊙O ,交BC 于D ,过O 作OE ∥BC ,交OD 于E ,连接AD 、AE 、CE . (1)求证:∠ACE=∠DCE ;
(2)若∠B=45°,∠BAE=15°,求∠EAO 的度数;
(3)若AC=4,
2
3
CDF COE S S ∆∆=,求CF 的长.
【答案】(1)证明见解析,(2)60°;(343
【解析】 【分析】
(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°;
(3)易证12COE CAE S S =V V ,由于23
CDF COE S S =V V ,所以
CDF CAE S S V V =1
3,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】
(1)∵OC =OE ,∴∠OEC =∠OCE .
∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .
∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°. (3)∵O 是AC 中点,∴
1
2
COE CAE S S =V V . 23CDF COE S S =V V Q
,∴CDF CAE S
S V V =13
. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴
CF CA 3∴CF 343
【点睛】
本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.
11.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
解决问题:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.
(1)使∠APB=30°的点P有_______个;
(2)若点P在y轴正半轴上,且∠APB=30°,求满足条件的点P的坐标;
(3)设sin∠APB=m,若点P在y轴上移动时, 满足条件的点P有4个,求m的取值范围.
【答案】(1)无数;(2)(0,370,37
+3)0﹤m﹤2 3 .
【解析】
试题分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,由此即可求出m的范围.
试题解析:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为
半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,则∠APB=1
2
∠ACB=1
2
×60°=30°,∴使∠APB=30°的点P
有无数个.
故答案为:无数.
(2)点P在y轴的正半轴上,过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),∴OA=1,OB=5,∴AB=4.
∵点C为圆心,CG⊥AB,∴AG=BG=1
2
AB=2,∴OG=OA+AG=3.
∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG=22
AC AG
-
=22
42
-
=23,∴点C的坐标为(3,23).
过点C作CD⊥y轴,垂足为D,连接CP2,如图1.∵点C的坐标为(3,23),∴CD=3,OD=23.
∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,∴DP2=22
43
-=7.
∵点C为圆心,CD⊥P1P2,∴P1D=P2D=7,∴P1(0,23+7),P2(0,23﹣7).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=
2
AE
得:当AE
最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.∵∠APB为锐角,∴sin∠APB随∠APB增大而增大,.
连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.
∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°,∴四边形OPEH是矩形,∴OP=EH,
PE=OH=3,∴EA=3.sin∠APB=sin∠AEH=2
3
,∴m的取值范围是
2
3
m
<<.
点睛:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与
性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.
12.阅读下列材料:
如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点, 求证:AC ⊥BC
证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D , ∵DA 、DC 是⊙O 1的切线 ∴DA=DC . ∴∠DAC=∠DCA . 同理∠DCB=∠DBC .
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°, ∴∠DCA+∠DCB=90°. 即AC ⊥BC .
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容; (2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.
【答案】(1)见解析;(2)213
222
y x x =+- ;(3)见解析 【解析】
试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;
(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;
(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.
试题解析:(1)DA 、DC 是1O e 的切线,
∴DA =DC .应用的是切线长定理;
180DAC DCA DCB DBC ∠+∠+∠+∠=o ,应用的是三角形内角和定理.
(2)设C 点坐标为(0,y ),则222AB AC BC =+, 即()
()2
2
22241
41y y --
=-+++,
即2
25172y =+,解得y =2(舍去)或y =−2.
故C 点坐标为(0,−2),
设经过、、A B C 三点的抛物线的函数解析式为2y ax bx c ,
=++ 则16400
2,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ 解得12322a b c ⎧
=⎪⎪
⎪
=⎨⎪
=-⎪⎪⎩
,
故所求二次函数的解析式为213
2.22
y x x =+-
(3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3
(,0)2
D -, 设过CD 两点的直线为y =kx +b ,则
3
02
2k b b ⎧-+=⎪⎨⎪=-⎩, 解得432k b ⎧=-
⎪⎨⎪=-⎩,
故此一次函数的解析式为4
23
y x =-
-, ∵过12,O O 的直线必过C 点且与直线4
23
y x =--垂直, 故过12,O O 的直线的解析式为3
24
y x =
-, 由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28
--, 代入直线解析式得
3325
2,428
⎛⎫⨯--=- ⎪⎝⎭ 故这条抛物线的顶点落在两圆的连心12O O 上.
13.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;
(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,
sin∠AGF=4
5
,求⊙O的半径.
【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.
【解析】
分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;
(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:
证明:∵AD∥BC,AD=BC,
∴四边形ABCD为平行四边形;
故答案为:AD=BC;
(2)作出相应的图形,如图所示;
(3)∵AD∥BC,
∴∠DAB+∠CBA=180°,
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°,
∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,
∴∠FAG+∠FGA=90°,
∵AE平分∠DAB,
∴∠FAG=∠EAB,
∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF=4
5
AE AB =,
∵AE=4,
∴AB=5,
则圆O的半径为2.5.
点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
14.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.
【答案】(1)证明见解析;(2
35.
【解析】
【分析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225
DE CE
-=△CDE∽△DBE,根据相似三角形的性质即可得到结论.
【详解】
(1)如图,连接BD.
∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.
∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.
∵点D在⊙O上,∴DE是⊙O的切线;
(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .
∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =
-=.
∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 5335
⨯==,∴⊙O 的半径35
4
=
.
【点睛】
本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.
15.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.
【答案】AB =3. 【解析】 【分析】
作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r
,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =3AE =
2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可. 【详解】
作DE ⊥AC ,BF ⊥AC ,
∵BC =CD ,
∴BC CD =u u u r u u u r ,
∴∠CAB =∠DAC , ∵∠DAB =120°, ∴∠DAC =∠CAB =60°, ∵DE ⊥AC ,
∴∠DEA =∠DEC =90°, ∴sin60°=
4DE ,cos60°=4
AE
, ∴DE =3AE =2, ∵AC =7, ∴CE =5, ∴DC (
)
2
223537+=
∴BC 37, ∵BF ⊥AC ,
∴∠BFA =∠BFC =90°, ∴tan60°=
BF
AF
,BF 2+CF 2=BC 2, ∴BF 3, ∴
()2
2
2
3
737AF +-=
,
∴AF =2或AF =32
, ∵cos60°=
AF
AB
, ∴AB =2AF ,
当AF=2时,AB=2AF=4,∴AB=AD,
∵DC=BC,AC=AC,
∴△ADC≌△ABC(SSS),∴∠ADC=∠ABC,
∵ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,
∴∠ADC=∠ABC=90°,
但AC2=49,
2
222
453 AD DC
+=+=,
AC2≠AD2+DC2,
∴AB=4(不合题意,舍去),
当AF=3
2
时,AB=2AF=3,
∴AB=3.
【点睛】
此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.
16.结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=1
2 AC•BC
=1
2
(x+3)(x+4)
=1
2
(x2+7x+12)
=1
2
×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若AC•BC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;
【解析】
【分析】
(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.
【详解】
设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,
根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,
(1)如图1,
在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,
整理,得:x2+(m+n)x=mn,
所以S△ABC=AC•BC
=(x+m)(x+n)。