高考函数习题及答案
函数与导数例高考题汇编(含答案)
![函数与导数例高考题汇编(含答案)](https://img.taocdn.com/s3/m/d627d607e3bd960590c69ec3d5bbfd0a7956d5a7.png)
函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
高考数学函数专题习题及详细答案
![高考数学函数专题习题及详细答案](https://img.taocdn.com/s3/m/9ed2156a178884868762caaedd3383c4bb4cb48e.png)
函数专题练习【1】1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞B . 1(,1)3-C . 11(,)33-D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈D . x 1() ,2y x=∈7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈B .()2ln 2ln (0)f x x x =>)C .()22()xf x e x R =∈D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0(B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0B .1C .2D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
数学高考考试题及答案
![数学高考考试题及答案](https://img.taocdn.com/s3/m/2c4db44d6fdb6f1aff00bed5b9f3f90f76c64d8f.png)
数学高考考试题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
A. 4B. 5C. 6D. 7答案:A2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
A. -2B. 5C. 11D. 14答案:C4. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第5项a5。
A. 17B. 18C. 19D. 20答案:A5. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心到直线x + y - 6 = 0的距离。
A. 0B. 3C. 4D. 5答案:B二、填空题1. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求g(2)的值。
答案:52. 已知复数z = 2 + 3i,求z的共轭复数。
答案:2 - 3i3. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标。
答案:(-1/2, 0)4. 已知等比数列{bn}的首项b1 = 4,公比q = 2,求第4项b4。
答案:325. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
答案:6三、解答题1. 已知函数h(x) = x^2 - 4x + 4,求该函数的最小值。
答案:02. 已知矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。
答案:-23. 已知函数f(x) = x^2 - 6x + 8,求函数f(x)的对称轴。
答案:x = 34. 已知抛物线方程为y = -2x^2 + 4x + 1,求抛物线的顶点坐标。
答案:(1, 3)5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求圆的半径。
高考数学构造函数试题(含答案)
![高考数学构造函数试题(含答案)](https://img.taocdn.com/s3/m/c79f3931f08583d049649b6648d7c1c708a10b98.png)
构造函数一、考点一f(x)与f′(x)共存的不等式问题例题1.(1)定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<12,则不等式f xlg>lg x+12的解集为(0,10).(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,若当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3) =0,则不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【解析】(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=12,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【答案】(1)(0,10);(2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f xg x(g(x)≠0).例题2.(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x) >0成立的x的取值范围是(A)A.-∞,-1∪(0,1) B.(-1,0)∪1,+∞C.-∞,-1∪(-1,0) D.(0,1)∪1,+∞(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是(A)A.f(x)>0B.f(x)<0C.f(x)>xD.f(x)<x【解析】(1)令g(x)=f xx,则g′(x)=xf′x -f xx2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0.又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0;当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].g 0 =0.当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0.【答案】(1)A ;(2)A[解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f x x n ,则F ′(x )=xf ′x -nf xx n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f x x ,则F ′(x )=xf ′x -f xx 2>0例题3.(1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有(D )A.e 2019f (-2019)<f (0),f (2019)>e 2019f (0)B.e 2019f (-2019)<f (0),f (2019)<e 2019f (0)C.e 2019f (-2019)>f (0),f (2019)>e 2019f (0)D.e 2019f (-2019)>f (0),f (2019)<e 2019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e(e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为(2,+∞).【解析】(1)构造函数h (x )=f x e x ,则h ′(x )=f ′x -f xe x<0,即h (x )在R 上单调递减,故h (-2019)>h (0),即f -2019 e -2019>f 0e⇒e 2019f (-2019)>f (0);同理,h (2019)<h (0),即f (2019)<e 2019f (0),故选D .(2)由f (x )+2f ′(x )>0得212f x +f ′x>0,可构造函数h (x )=e x2f (x ),则h ′(x )=12e x2[f (x )+2f ′(x )]>0,所以函数h (x )=e x2f (x )在R 上单调递增,且h (2)=ef (2)=1.不等式e x f (x )-e x2>0等价于e x2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e xf (x )-e x2>0的解集为(2,+∞).【答案】(1)D ;(2)(2,+∞)[解题技法](1)对于不等式f 'x +f x >0(或<0),构造函数F (x )=e x f (x )(2)对于不等式f 'x -f x >0(或<0),构造函数F (x )=f (x )e x(3)对于不等式nf 'x +f x >0(或<0),构造函数F (x )=e xn f (x )(4)对于不等式nf'x -f x >0(或<0),构造函数F(x)=f x e x n(5)对于不等式f'x +nf x >0(或<0),构造函数F(x)=e nx f(x)(6)对于不等式f'x -nf x >0(或<0),构造函数F(x)=f x e nx1.已知函数f(x)是定义在R上的偶函数,设函数f(x)的导函数为f′(x),若对任意的x>0都有2f(x)+xf′(x)>0成立,则(A) A.4f(-2)<9f(3) B.4f(-2)>9f(3) C.2f(3)>3f(-2) D.3f(-3)<2f(-2)【答案】A【解析】根据题意,令g(x)=x2f(x),其导函数g′(x)=2xf(x)+x2f′(x),又对任意的x>0都有2f(x)+ xf′(x)>0成立,则当x>0时,有g′(x)=x[2f(x)+xf′(x)]>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g (x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).2.f(x)在0,+∞上的导函数为f′(x),xf′(x)>2f(x),则下列不等式成立的是(A) A.20182f(2019)>20192f(2018) B.20182f(2019)<20192f(2018)C.2018f(2019)>2019f(2018)D.2018f(2019)<2019f(2018)【答案】A【解析】令g(x)=f xx2,x∈(0,+∞),则g′(x)=x2f′x -2xf xx4=xf′x -2f xx3>0,则g(x)在(0,+∞)上为增函数,即f201920192>f201820182,∴20182f(2019)>20192f(2018)。
高考数学历年函数试题及答案
![高考数学历年函数试题及答案](https://img.taocdn.com/s3/m/c470e23a366baf1ffc4ffe4733687e21af45ffef.png)
1. 设(x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,]都有(Ⅰ)设);41(),21(,2)1(f f f 求=(Ⅱ)证明)(x f 是周期函数。
2. 设函数.,1|2|)(2R x x x x f ∈--+=(Ⅰ)判断函数)(x f 的奇偶性;(Ⅱ)求函数)(x f 的最小值.3. 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象4.(本小题满分12分)求函数xx x x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.5.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.6.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos C B A ++取得最大值,并求出这个最大值7.设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.8. 设函数f (x )=2x 3+3ax 2+3bx+8c 在x =1及x =2时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的x ,3,0〕〔∈都有f (x )<c 2成立,求c 的取值范围. 9.已知函数32()1f x x ax x =+++,a ∈R .x(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 10.在ABC ∆中,内角A 、b 、c 的对边长分别为a 、b 、c.已知222a c b -=,且sin 4cos sin B A C =,求b.11. 已知函数42()36f x x x =-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程12. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13. 已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围解答: 2. 解:(Ⅰ).7)2(,3)2(=-=f f由于),2()2(),2()2(f f f f -≠-≠-故)(x f 既不是奇函数,也不是偶函数.由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433. 解x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是 4.解:xx x x x x x f cos sin 22cos sin )cos (sin )(22222--+=所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41 5. 解:函数f (x )的导数:.163)(2-+='x ax x f(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;(II )当3-=a时,133)(23+-+-=x x x x f =,98)31(33+--x由函数3x y =在R 上的单调性,可知当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a时,函数))((R x x f ∈不是减函数.综上,所求a 的取值范围是 6. 解: 由,222,AC B C B A -=+=++ππ得所以有 .2sin 2cos A C B =+当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π7. 解:其判别试.81212124222a a a -=+-=∆(ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f ax x 所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f所以 ,232>a 即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈当.)(,0)(',),(21为减函数时x f x f x x x <∈依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a -解得 1≤.26<a由2x ≤1得,232a -≤3,a -解得 .2626<<-a 从而 .)26,1[∈a综上,a 的取值范围为),26,1[),26[]26, +∞-∞- 即 ∈a ).,1[]26,(+∞--∞ 9. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增; 当23a>,由()0f x '=求得两根为3a x -=即()f x在3a ⎛⎫--∞ ⎪ ⎪⎝⎭,递增,33a a ⎛---+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增; (2)(法一)∵函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,⎝⎭递减,∴23313a ⎧---⎪⎪-,且23a>,解得:2a ≥。
函数高考综合题(含答案)
![函数高考综合题(含答案)](https://img.taocdn.com/s3/m/49ed2f5858fb770bf68a5525.png)
函数高考综合题(含答案)(21)(本小题满分12分)设函数2()ln x f x e a x =-。
(Ⅰ)讨论()f x 的导函数'()f x 零点的个数;(Ⅱ)证明:当0a >时,2()2ln f x a a a≥+。
21.(本小题满分14分)设a 为实数,函数2()()(1)f x x a x a a a =-+---.(1)若1)0(≤f ,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2≥a 时,讨论4()f x x+在区间),0(+∞内的零点个数. )222(0)||(1)||||f a a a a a a a a a a=+--=+-+=+10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述:(2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+> ∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(m in==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点.当2x ≥时,令x x x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与aa g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >,所以当),(+∞∈a x 时,)()(x g x f 与有一个交点;故当2>a 时,()y f x =与x x g 4)(-=有两个交点. 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x +有两个零点。
高考函数图像考试题及答案
![高考函数图像考试题及答案](https://img.taocdn.com/s3/m/ecbde175c950ad02de80d4d8d15abe23482f030d.png)
高考函数图像考试题及答案一、选择题1. 设函数 f(x) = x^2 - 4x + 3, 下列哪个选项表示 f(x) 的图像对 x 轴的交点?A. (-1, 0), (4, 0)B. (-1, 0), (3, 0)C. (1, 0), (3, 0)D. (1, 0), (4, 0)答案:C2. 若函数 g(x) 的图像关于 x 轴对称,下列哪个选项表示 g(x) 为偶函数的条件?A. g(x) = g(-x)B. g(x) = -g(-x)C. g(-x) = -g(x)D. g(-x) = g(x)答案:A3. 若函数 h(x) 的图像关于 y 轴对称,下列哪个选项表示 h(x) 为奇函数的条件?A. h(x) = h(-x)B. h(x) = -h(-x)C. h(-x) = -h(x)D. h(-x) = h(x)答案:C4. 下列哪个选项描述的函数图像在 x 轴方向上比函数 y = x^2 的图像右移 2 个单位?A. y = (x - 2)^2B. y = (x + 2)^2C. y = (x - 2)^2 - 4D. y = (x + 2)^2 - 4答案:B5. 若函数 p(x) 的图像与函数 y = x^2 的图像相切于点 (2, 4),则下列哪个选项表示 p(x) 的函数表达式?A. p(x) = x^2 + 4x + 4B. p(x) = x^2 + 4x + 8C. p(x) = x^2 + 2x + 2D. p(x) = x^2 + 2x + 4答案:A二、填空题1. 函数 f(x) = 3x + 1 的图像在 y 轴上的截距为 __________。
答案:12. 若函数 g(x) 的图像关于 y 轴对称,则 g(2) = ________。
答案:g(2) = g(-2)3. 若函数 h(x) 的图像关于 x 轴对称,并且 h(0) = 5,则 h(-1) =________。
历年高考数学函数题库(含答案)
![历年高考数学函数题库(含答案)](https://img.taocdn.com/s3/m/b0f3e8fe0d22590102020740be1e650e53eacf61.png)
【答案】D,做出点知即,,2121y y x x >-<-方法二:设3()F x x bx =-【答案】C图像大致是=,则函数题库(1)g -=【答案】330.(2012高考广东文11)函数的定义域为 .1x y x+=【答案】[)()1,00,-+∞U 31.(2102高考北京文12)已知函数,若,则x x f lg )(=1)(=ab f =+)()(22b f a f _____________。
【答案】232.(2102高考北京文14)已知,,若)3)(2()(++-=m x m x m x f 22)(-=xx g ,或,则m 的取值范围是_________。
R x ∈∀0)(<x f 0)(<x g 【答案】)0,4(-33.(2012高考天津文科14)已知函数的图像与函数的图像恰有两个交211x y x -=-y kx =点,则实数的取值范围是 .k 【答案】或。
10<<k 21<<k 34.(2012高考江苏5)函数的定义域为 .x x f 6log 21)(-=【答案】。
(0 6⎤⎦(【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式。
35.(2012高考江苏10)设是定义在上且周期为2的函数,在区间上,()f x R [11]-,其中.若,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,a b ∈R ,1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭则的值为 .3a b +【答案】。
10-【答案】C【解析】因为,所以令,得,此时原函数是增函'12cos 2y x =-'12cos 02y x =->1cos 4x <数;令,得,此时原函数是减函数,结合余弦函数图象,可得选C'12cos 0y x =-<1cos x >8.(2011年高考浙江卷理科1)设函数,则实数=2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若α(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2【答案】 B【解析】:当,故选B2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间上的增函数),0(+∞的是( )A B C D 3x y =1+=x y 12+-=x y xy -=2【答案】B解析:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数都是偶函数,所以,x y x y -==和内层有它们的就是偶函数,但是,它们在的单调性相反,再加上外层函数的单调性),0(+∞就可以确定。
高考函数专项大题(带答案)
![高考函数专项大题(带答案)](https://img.taocdn.com/s3/m/66dc47df08a1284ac8504326.png)
函数高考专项1、已知二次函数cx bx ax x f ++=2)(,不等式x x f 2)(->的解集为)3,1(. (Ⅰ)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求实数a 的取值范围.2、设定义在R 上的函数f (x )=a 0x 4+a 1x 3+a 2x 2+a 3x (a i ∈R ,i =0,1,2,3 ),当x =-22时,f (x )取得极大值23,并且函数y =f ' (x )的图象关于y 轴对称。
(1)求f (x )的表达式;(2)试在函数f (x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-1,1]上;(3)求证:|f (sin x )-f (cos x ) | ≤ 223(x ∈R ).3、已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。
(Ⅰ)、求数列{}n a 的通项公式; (Ⅱ)、设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m 。
4、已知函数()21log 0,2a f x x a a ⎛⎫=>≠⎪⎝⎭, (1)若()()()()2221220081220088,f x x x f x f x f x =+++ 求的值.(2)当()()()1,010,x x f x ∈-=+>时,g 求a 的取值范围.(3)若()()1,g x f x =+当动点(),p x y 在()y g x =的图象上运动时,点,32x y M ⎛⎫⎪⎝⎭在函数()y H x =的图象上运动,求()y H x =的解析式.5、已知函数.21)1()())((=-+∈=x f x f R x x f y 满足 (Ⅰ)求*))(1()1()21(N n nn f nf f ∈-+和的值; (Ⅱ)若数列)1()1()2()1()0(}{f nn f n f n f f a a n n +-++++= 满足,求列数}{n a 的通项公式;(Ⅲ)若数列{b n }满足1433221,41+++++==n n n n n b b b b b b b b S b a ,则实数k 为何值时,不等式n n b kS <2恒成立.6、已知()()2,ln 23+-+==x ax x x g x x x f(Ⅰ)求函数()x f 的单调区间;(Ⅱ)求函数()x f 在[]()02,>+t t t 上的最小值; (Ⅲ)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围.7、已知函数2() 1 f x ax bx =++(,a b 为实数),x R ∈, () (0)() () (0)f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0,f -=且函数()f x 的值域为[0, )+∞,求)(x f 的表达式;(2)在(1)的条件下,当[2, 2]x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值 范围;(3)设0m n ⋅<,0,m n +>0a >且()f x 为偶函数,判断()F m +()F n 能否大于零.8、已知二次函数221(),:8直线f x ax bx c l y t t =++=-+,其中(02≤≤,t t 为常数); 2: 2.l x =若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (Ⅰ)根据图象求a 、b 、c 的值;(Ⅱ)求阴影面积S 关于t 的函数S(t )的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m , 使得y =f (x )的图象与y =g (x )的图象有且只有两个不同的交点? 若存在,求出m 的值; 若不存在,说明理由.9、若定义在R 上的函数()f x 对任意的R x x ∈21,,都有1)()()(2121-+=+x f x f x x f 成立,且当0>x 时,1)(>x f 。
2020高考—函数(解答+答案)
![2020高考—函数(解答+答案)](https://img.taocdn.com/s3/m/bc3c13a9bb68a98270fefa61.png)
(ii)若0<2a+1<2,即 1 a 1 ,则当x∈(0,2a+1)∪(2,+∞)时,g'(x)<0;当x∈(2a+1,
2
2
2)时,g'(x)>0.所以g(x)在(0,2a+1),(2,+∞)单调递减,在(2a+1,2)单调递增.由于g(0)=1,
(1)若 f x x2 2x,g x x2 2x,D (, ) ,求 h(x)的表达式;
(2)若 f (x) x2 x 1,g(x) k ln x,h(x) kx k, D (0, ) ,求 k 的取值范围; (3)若
f (x) x4 2x2,g(x) 4x2 8 ,h(x) 4 t3 t x 3t4 2t2 (0 t 2),
(ii)若a> 1 ,则f(lna)<0. e
由于f(–2)=e–2>0,所以f(x)在(–∞,lna)存在唯一零点.
由(1)知,当x>2时,ex–x–2>0,所以当x>4且x>2ln(2a)时,
f
(x)
x
e2
x
e2
a(x
2)
eln(2a) ( x
2)
a(x
2)
2a
0
.
2
故f(x)在(lna,+∞)存在唯一零点,从而f(x)在(–∞,+∞)有两个零点.
(1,+∞)单调递减.从而当 x=1 时,h(x)取得最大值,最大值为 h(1)=−1−c.
故当且仅当−1−c≤0,即 c≥−1 时,f(x)≤2x+c.
高考数学函数专题习题与详细答案
![高考数学函数专题习题与详细答案](https://img.taocdn.com/s3/m/01c921fa25c52cc58ad6be4d.png)
函数专题练习1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值围是(A )(0,1)(B )1(0,)3 (C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3-∞- 6、下列函数中,在其定义域既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈ D7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈ B .()2ln 2ln (0)f x x x =>g)C .()22()xf x e x R =∈ D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0 (B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
高考函数选择题汇总(附答案)
![高考函数选择题汇总(附答案)](https://img.taocdn.com/s3/m/4e72c225bb1aa8114431b90d6c85ec3a87c28b80.png)
A.
B.
C.
D.
)
21.(2020·浙江)已知 a,b∈R 且 ab≠0,若(x﹣a)
(x﹣b)
(x﹣2a﹣b)≥0 在 x≥0 上恒成立,则
(
)
A.a<0
B.a>0
C.b<0
22.(2019·浙江)在同一直角坐标系中,函数 y=
(
D.b>0
1
,y=loga(x+ 1 )
,
(a>0 且 a≠1)的图像可能是
1 ,则 ∑22
=1
() = (
A.-3
)
B.-2
C.0
D.1
3.
(2021·新高考Ⅱ卷)已知函数 () 的定义域为 , ( + 2) 为偶函数, (2 + 1) 为奇函
数,则(
)
A.(− 1) = 0
2
B.(−1) = 0
C.(2) = 0
D.(4) = 0
4.
(2021·北京)函数 () = cos − cos2 ,试判断函数的奇偶性及最大值(
论.
4.
【答案】D
【解析】
【解答】解:∵f(-x)=cos(-x)-cos(-2x)=cosx-cos2x=f(x)
∴f(x)为偶函数
又 f(x)=cosx-cos2x=-2cos2x+cosx+1
令 t=cosx,则 y=-2t2+t+1,t∈[-1,1],
1
1
1
则当 = − 2× −2 = 4时,y 取得最大值
④f(x)的最大值为 2
其中所有正确结论的编号是(
A.①②④
28.(2019·浙江)函数 f(x)=
高考数学试题真题及答案
![高考数学试题真题及答案](https://img.taocdn.com/s3/m/8df183b20875f46527d3240c844769eae009a392.png)
高考数学试题真题及答案一、选择题(每题5分,共20分)1. 若函数\( f(x) = x^2 - 4x + 3 \)在区间\( (1, +\infty) \)上单调递增,则下列说法正确的是:A. 函数的最小值为2B. 函数的最小值为1C. 函数在\( x = 2 \)处取得最小值D. 函数在\( x = 1 \)处取得最小值答案:C2. 已知向量\( \vec{a} = (3, -2) \)和\( \vec{b} = (2, 1) \),则\( \vec{a} \cdot \vec{b} \)的值为:A. 4B. 2C. -2D. -4答案:B3. 若\( \sin \alpha = \frac{3}{5} \)且\( \alpha \)为锐角,则\( \cos \alpha \)的值为:A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{3}{5} \)答案:A4. 已知等比数列\( \{a_n\} \)的首项\( a_1 = 2 \),公比\( q = 2 \),则\( a_5 \)的值为:A. 16B. 32C. 64D. 128答案:C二、填空题(每题5分,共20分)5. 已知双曲线的方程为\( \frac{x^2}{9} - \frac{y^2}{16} = 1 \),其渐近线方程为\( \pm \frac{4}{3}x \)。
6. 若从5名男生和3名女生中选出3人参加比赛,其中至少有1名女生,则不同的选法共有多少种?答案:307. 函数\( f(x) = \ln(x+1) - x \)在区间\( (0, +\infty) \)上是减函数。
8. 已知\( \tan \theta = \frac{1}{2} \),则\( \sin \theta \cos \theta \)的值为\( \frac{1}{5} \)。
函数高考真题及答案及解析
![函数高考真题及答案及解析](https://img.taocdn.com/s3/m/415a7b21c4da50e2524de518964bcf84b9d52d1a.png)
函数高考真题及答案及解析高考是每个学生都会经历的一场重要考试,而函数作为数学考试的重要一部分,往往也是考生们头疼的问题之一。
本文将带领大家回顾一些函数相关的高考真题,并附上详细的解析,帮助大家更好地掌握函数的知识。
问题一:已知函数f(x) = x^2 + 3x + 2,求f(2)的值。
解析:要求f(2)的值,就是将x替换为2,带入函数进行计算。
f(2) = 2^2 + 3(2) + 2 = 4 + 6 + 2 = 12所以f(2)的值为12。
问题二:已知函数g(x) = |x-1|,求g(-2)的值。
解析:g(x) = |x-1|表示的是x-1的绝对值。
要求g(-2)的值,就是将x替换为-2,带入函数进行计算。
g(-2) = |-2-1| = |-3| = 3所以g(-2)的值为3。
问题三:已知函数h(x) = 2x^2 + 5x - 3,求h(3)的值。
解析:同样,要求h(3)的值,就是将x替换为3,带入函数进行计算。
h(3) = 2(3)^2 + 5(3) - 3 = 2(9) + 15 - 3 = 18 + 15 - 3 = 30所以h(3)的值为30。
通过以上三个问题的解析,我们可以看出,高考函数题往往涉及到对函数表达式的替换和计算。
这种题型相对简单,只需要将给定的值代入函数进行计算即可。
下面我们再来看一些更加复杂的函数题。
问题四:已知函数P(x)满足P(x) = 2P(x-1) + 1,且P(0) = 1,求P(3)的值。
解析:根据题目所给条件,P(x)等于2P(x-1)加1。
初始条件是P(0)等于1。
要求P(3)的值,就需要使用递推的方式来解决这个问题。
首先,计算P(1)的值:P(1) = 2P(0) + 1 = 2(1) + 1 = 3接下来,计算P(2)的值:P(2) = 2P(1) + 1 = 2(3) + 1 = 7最后,计算P(3)的值:P(3) = 2P(2) + 1 = 2(7) + 1 = 15所以P(3)的值为15。
高中数学高考总复习函数概念习题及详解
![高中数学高考总复习函数概念习题及详解](https://img.taocdn.com/s3/m/4133e45ca417866fb84a8e4d.png)
高中数学高考总复习函数概念习题及详解一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.高考总复习含详解答案6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x高考总复习含详解答案-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是()A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f高考总复习含详解答案2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)高考总复习含详解答案[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)高考总复习含详解答案=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。
高考数学一轮复习《函数》复习练习题(含答案)
![高考数学一轮复习《函数》复习练习题(含答案)](https://img.taocdn.com/s3/m/bd01272bcd7931b765ce0508763231126edb77e3.png)
高考数学一轮复习《函数》复习练习题(含答案)一、单选题1.函数ln e x y =的单调增区间是( )A .(0,)+∞B .[0,)+∞C .(,)e +∞D .(,)-∞+∞2.若函数1311()log [(23]2)f x a x a ⎛⎫=-+≠ ⎪⎝⎭的定义域为R ,则下列叙述正确的是 A .()f x 在R 上是增函数B .()f x 在R 上是减函数C .()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递减 D .()f x 在[0,)+∞上单调递减,在(,0]-∞上单调递增3.已知函数()2e e x x f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞C .()()0,11,+∞D .(]{},01-∞4.下列函数中,是奇函数且在区间(0,)+∞上单调递增的是 A .x y e -= B .||y x = C .tan y x =D .1y x x =- 5.已知函数,如果关于x 的方程只有一个实根,那么实数的取值范围是A .B .C .D .6.函数34()e ex x x x f x --=+的部分图象大致为( ) A . B .C .D .7.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .()30y x x =>C .1y x x =+D .y x x = 8.使212x x +-有意义的实数x 的取值范围是( )A .(][),43,-∞-+∞ B .(-∞,-4)∪(3,+∞) C .(-4,3)D .[-4,3]9.函数2cos y x x =的部分图象是( ) A . B .C .D .10.设函数3,10,()((5)),10,x x f x f f x x -≥⎧=⎨+<⎩则(7)f 的值为( ) A .5 B .6 C .7 D .811.下列函数中与y x =具有相同图象的一个函数是A .B .C .ln x y e =D .ln x y e = 12.函数sin (0)ln x y x x=≠的部分图象大致是 A . B .C .D .二、填空题13.已知集合{|12}A x x =<<,集合2{|}B x y m x ==-,若A B A =,则m 的取值范围是______14.如图所示,,OA OB 是两个不共线向量(AOB ∠为锐角),N 为线段OB 的中点,M 为线段OA 上靠近点A 的三等分点,点C 在MN 上,且OC xOA yOB =+(,)x y R ∈,则22x y +的最小值为______.15.函数2(2)3,[,]y x a x x a b =+++∈的图像关于直线1x =对称,则b 的值为________. 16.定义在R 上的函数f (x )满足f (2+x )=f (2﹣x ),若当x ∈(0,2)时,f (x )=2x ,则f (3)=_____.17.已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______. 18.已知常数0a >,函数2()2xx f x ax =+的图象经过点6()5P p ,、1()5Q q -,,若216p q pq += ,则a =___19.函数()21f x x --的定义域为______. 20.已知函数()()233424x log x x f x x -⎧-≥⎪=⎨⎪⎩,,<,若方程()3f x m =-有两个根,则实数m 的取值范围为_____.三、解答题21.已知函数()1log (01amx f x a x -=>-且1)a ≠的图象关于原点对称. (1)求m 的值;(2)判断函数()f x 在区间()1,+∞,上的单调性并加以证明;(3)当()1,,a x t a >∈时,()f x 的值域是()1,+∞,求a 与t 的值.22.已知函数()log (23)1(0,1)a f x x a a =-+>≠.(1)当2a =时,求不等式()3f x <的解集;(2)当10a =时,设()()1g x f x =-,且(3),(4)==g m g n ,求6log 45(用,m n 表示);(3)在(2)的条件下,是否存在正整数...k ,使得不等式22(1)lg()+>g x kx 在区间[]3,5上有解,若存在,求出k 的最大值,若不存在,请说明理由.23.判断下列函数的奇偶性:(1)()f x =(2)()f x =(3)2()2||1,[1,1]f x x x x =-+∈-.(4)22(0)()(0).x x x f x x x x ⎧+<=⎨-+>⎩,24.定义在(1,1)-上的函数()f x 满足:①对任意,(1,1)x y ∈-都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭;②当0x <,()0f x >.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 在(0,1)上的单调性,并说明理由;(3)若11()52f =,试求111()()()21119f f f --的值.25.某商场销售一种水果的经验表明,该水果每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式()22115a y x x =+--,其中511x <<,a 为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.(1)求a 的值;(2)若该水果的成本为5元/千克,试确定销售价格x 的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.26.已知()21f x x =-,()()()1020x x g x x x ⎧-≥⎪=⎨-<⎪⎩. (1)求()g f x ⎡⎤⎣⎦;(2)设()()(){}max ,F x f x g x =,作函数()F x 的图象,并由此求出()F x 的最小值.27.已知函数()()2f x x x a =-, ()()21g x x a x a =-+-+ (其中a R ∈).(Ⅰ)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并直接写出函数()f x 的单调区间;(Ⅱ)令()()()F x f x g x =-,讨论函数()y F x =在区间[]1,3-上零点的个数。
高考数学历年(2018-2022)真题按知识点分类(函数及其性质)练习(附答案)
![高考数学历年(2018-2022)真题按知识点分类(函数及其性质)练习(附答案)](https://img.taocdn.com/s3/m/8eddcf71302b3169a45177232f60ddccda38e66b.png)
高考数学历年(2018-2022)真题按知识点分类(函数及其性质)练习一、单选题1.(2022ꞏ天津ꞏ统考高考真题)函数()21x f x x-=的图像为( )A .B .C .D .2.(2022ꞏ全国ꞏ统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .3.(2022ꞏ全国ꞏ统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .14.(2022ꞏ全国ꞏ统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+ B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 5.(2022ꞏ全国ꞏ统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-6.(2021ꞏ天津ꞏ统考高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .7.(2021ꞏ全国ꞏ统考高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =8.(2021ꞏ北京ꞏ统考高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2021ꞏ浙江ꞏ统考高考真题)已知函数21(),()sin 4f x x g x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =10.(2021ꞏ全国ꞏ高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x =11.(2021ꞏ全国ꞏ高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ) A .53-B .13-C .13D .5312.(2021ꞏ全国ꞏ统考高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32- C .74 D .52 13.(2021ꞏ全国ꞏ统考高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++14.(2020ꞏ山东ꞏ统考高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数15.(2020ꞏ山东ꞏ统考高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞16.(2020ꞏ山东ꞏ统考高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01x y a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .17.(2020ꞏ天津ꞏ统考高考真题)函数241xy x =+的图象大致为( ) A . B .C .D .18.(2020ꞏ北京ꞏ统考高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ).A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞19.(2020ꞏ海南ꞏ高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃20.(2020ꞏ浙江ꞏ统考高考真题)函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .21.(2020ꞏ全国ꞏ统考高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称22.(2020ꞏ全国ꞏ统考高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减23.(2020ꞏ全国ꞏ统考高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减24.(2019ꞏ北京ꞏ高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x =B .y =2x -C .12log y x =D .1y x=25.(2019ꞏ北京ꞏ高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件26.(2019ꞏ全国ꞏ统考高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭27.(2019ꞏ全国ꞏ统考高考真题)函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .28.(2019ꞏ浙江ꞏ高考真题)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .29.(2019ꞏ全国ꞏ高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+30.(2019ꞏ全国ꞏ高考真题)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦31.(2019ꞏ天津ꞏ高考真题)已知函数01,()1,1.x f x x x ⎧⎪=⎨>⎪⎩剟若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤ ⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦32.(2018ꞏ全国ꞏ高考真题)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+33.(2018ꞏ全国ꞏ高考真题)函数422y x x =-++的图像大致为A .B .C .D .34.(2018ꞏ浙江ꞏ高考真题)函数y =||2x sin2x 的图象可能是A .B .C .D .35.(2018ꞏ全国ꞏ高考真题)设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,36.(2018ꞏ全国ꞏ高考真题)已知()f x 是定义域为(,)∞∞-+的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、多选题37.(2022ꞏ全国ꞏ统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=三、填空题38.(2022ꞏ北京ꞏ统考高考真题)函数1()f x x=+的定义域是_________. 39.(2021ꞏ全国ꞏ统考高考真题)写出一个同时具有下列性质①②③的函数():f x _______.①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.40.(2021ꞏ浙江ꞏ统考高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a ___________.41.(2021ꞏ全国ꞏ统考高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a ______.42.(2020ꞏ北京ꞏ统考高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强; ②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.43.(2020ꞏ全国ꞏ统考高考真题)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.44.(2019ꞏ江苏ꞏ高考真题)函数y =_____.45.(2019ꞏ江苏ꞏ高考真题)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.46.(2019ꞏ浙江ꞏ高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 47.(2019ꞏ全国ꞏ高考真题)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则=a __________.48.(2018ꞏ全国ꞏ高考真题)已知函数()()22log f x x a =+,若()31f =,则=a ________.49.(2018ꞏ江苏ꞏ高考真题)函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2]-上,cos ,02,2()1,20,2xx f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则((15))f f 的值为____.50.(2018ꞏ江苏ꞏ高考真题)函数()f x =________. 51.(2018ꞏ全国ꞏ高考真题)已知函数())ln 1f x x =-+,()4f a =,则()f a -=________.52.(2018ꞏ天津ꞏ高考真题)已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.四、解答题53.(2021ꞏ全国ꞏ高考真题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围.54.(2020ꞏ山东ꞏ统考高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.55.(2018ꞏ全国ꞏ高考真题) 设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求a b +的最小值.五、双空题56.(2022ꞏ浙江ꞏ统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________. 57.(2022ꞏ全国ꞏ统考高考真题)若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______.58.(2022ꞏ北京ꞏ统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.59.(2019ꞏ北京ꞏ高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.参考答案1.D【要点分析】要点分析函数()f x 的定义域、奇偶性、单调性及其在(),0∞-上的函数值符号,结合排除法可得出合适的选项. 【答案详解】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x-=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D. 2.A【要点分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【答案详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 3.A【要点分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos3f x x π=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法; 法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.4.A【要点分析】由函数图像的特征结合函数的性质逐项排除即可得解.【答案详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.5.D【要点分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解. 【答案详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=- , ()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-. 所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.6.B【要点分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【答案详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.7.B【要点分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.8.A【要点分析】利用两者之间的推出关系可判断两者之间的条件关系.【答案详解】若函数()f x 在[]0,1上单调递增,则()f x 在[]0,1上的最大值为()1f , 若()f x 在[]0,1上的最大值为()1f ,比如()213f x x ⎛⎫=- ⎪⎝⎭,但()213f x x ⎛⎫=- ⎪⎝⎭在10,3⎡⎤⎢⎥⎣⎦为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数,故()f x 在[]0,1上的最大值为()1f 推不出()f x 在[]0,1上单调递增,故“函数()f x 在[]0,1上单调递增”是“()f x 在[]0,1上的最大值为()1f ”的充分不必要条件, 故选:A.9.D【要点分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【答案详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.10.D【要点分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意,故选:D.11.C【要点分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点睛】关键点名师点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.12.D【要点分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.13.B【要点分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x --=-不是奇函数; 对于B ,()211f x x-=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.14.C【要点分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数. 故选:C15.B【要点分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ . 故选:B16.B【要点分析】根据偶函数,指数函数的知识确定正确选项.【答案详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增. 注意到01a =, 所以B 选项符合. 故选:B17.A【要点分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【答案详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.【名师点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.18.D【要点分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【答案详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【名师点睛】本题考查了图象法解不等式,属于基础题. 19.D【要点分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果. 【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 20.A【要点分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【答案详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A.【名师点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 21.D【要点分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【答案详解】sin x 可以为负,所以A 错; 1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本要点分析判断能力,属中档题. 22.A【要点分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x-==在()0,+?上单调递减,在(),0-?上单调递减, 所以函数()331f x x x=-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 23.D【要点分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.【要点分析】由题意结合函数的解析式考查函数的单调性即可.【答案详解】函数122,log xy y x -==,1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题. 25.C【要点分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【答案详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 26.C【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【答案详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.【要点分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【答案详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【名师点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 28.D【解析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【答案详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【名师点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 29.D【要点分析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x . 【答案详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题. 30.B【要点分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,要点分析出临界点位置,精准运算得到解决.【答案详解】(0,1]x ∈ 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【名师点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力. 31.D【要点分析】画出()f x 图象及直线14y x a =-+,借助图象要点分析.【答案详解】如图,当直线14y x a =-+位于B 点及其上方且位于A 点及其下方, 或者直线14y x a =-+与曲线1y x =相切在第一象限时符合要求. 即1124a ≤-+≤,即5944a ≤≤,或者2114x -=-,得2x =,12y =,即11224a =-⨯+,得1a =, 所以a 的取值范围是{}59,144⎡⎤⎢⎥⎣⎦.故选D .【名师点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法. 32.B【答案详解】要点分析:确定函数y lnx =过定点(1,0)关于x=1对称点,代入选项验证即可.答案详解:函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点. 故选项B 正确名师点睛:本题主要考查函数的对称性和函数的图像,属于中档题. 33.D【答案详解】要点分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.答案详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<,得2x <-或02x <<,此时函数单调递增,排除C ,故选D. 名师点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.34.D【答案详解】要点分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.答案详解:令||()2sin 2x f x x =,因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.名师点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 35.D【要点分析】要点分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.答案详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .名师点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果. 【答案详解】 36.C【答案详解】要点分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.答案详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++ , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴= ,从而(1)(2)(3)(50)(1)2f f f f f ++++== ,选C.名师点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 37.BC【要点分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x fx ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC. [方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.38.()(],00,1-∞⋃【要点分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃39.()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【要点分析】根据幂函数的性质可得所求的()f x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考函数习题1.[2011·沈阳模拟] 集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x+1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞) D.R2.[2011·郑州模拟] 下列说法中,正确的是( )①任取x ∈R 都有3x >2x ;②当a >1时,任取x ∈R 都有a x >a -x ;③y =(3)-x是增函数;④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x的图像对称于y 轴. A .①②④ B .④⑤ 】C .②③④D .①⑤3.[2011·郑州模拟] 函数y =xa x|x |(0<a <1)的图像的大致形状是( )图K8-14.[2011·聊城模拟] 若函数y =2|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m <0C .m ≥1 D.0<m ≤1 ·5.[2010·湖北卷] 已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( )A .4 C .-4 D .-146.[2011·郑州模拟] 设f (x )是定义在R 上以2为周期的偶函数,已知当x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>0 7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f ⎝ ⎛⎭⎪⎫log 123,c =f -,则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <a D .a <b <c;8.已知函数f (x )=(x -a )(x -b )(其中a >b )的图像如图K8-2所示,则函数g (x )=a x+b 的图像是( )&9.[2011·锦州一模] 设0<a <1,函数f (x )=log a (a 2x -2a x-2),则使f (x )<0的x 的取 值范围是( ) &A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞) 10.[2011·济宁模拟] 很难想象如果城市污水不经过处理我们的生活会变成什么样.污水经过污水处理厂的“污水处理池”过滤一次,能过滤出有害物质的34.若过滤n 次后,流出的水中有害物质在原来的1%以下,则n 的最小值为________(参考数据lg2≈ .11.若函数f (x )=log a (ax 2-x )在[2,4]上是增函数,则a 的取值范围为________.12.若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________. (13.函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,则f (x )=2x +2-3×4x的最大值为________.14.(10分)(1)已知f (x )=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x -1|的图像,并利用图像回答:k 为何值时,方程|3x-1|=k 无解有一解有两解[15.(13分)设a >0,f (x )=exa +aex 是R 上的偶函数(其中e≈.(1)求a 的值;(2)证明:f (x )在(0,+∞)上是增函数.,16.(12分)定义在R 上的单调函数f (x )满足f (3)=log 23,且对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ).(1)求证:f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x-2)<0对任意x ∈R 恒成立,求实数k 的取值范围.;…函数习题答案1.B [解析] ∵y =b x+1>1,如果A ∩B 只有一个子集,则A ∩B =∅,∴a ≤1. 2.B [解析] 利用指数函数的性质判断.3.D [解析] x >0时,y =a x ;x <0时,y =-a x .即把函数y =a x(0<a <1,x ≠0)的图像在x >0时不变,在x <0时,沿x 轴对称.4.A [解析] ∵|1-x |≥0,∴2|1-x |≥1.∵y =2|1-x |+m ≥1+m ,∴要使函数y =2|1-x |+m 的图像与x 轴有公共点,则1+m ≤0,即m ≤-1.5.B [解析] 根据分段函数可得f 19=log 319=-2,则ff 19=f (-2)=2-2=14,所以B 正确.6.D [解析] 由于x ∈(0,1)时,f (x )=log 12(1-x ),所以f (x )在区间(0,1)上单调递增且f (x )>0, ~又因为f (x )为偶函数,所以f (x )在区间(-1,0)上单调递减且f (x )>0,又因为f (x )是周期为2的周期函数,所以f (x )在区间(1,2)上递减且f (x )>0,故选D.7.B [解析] log 123=-log 23=-log 49,b =f ⎝ ⎛⎭⎪⎫log 123=f (-log 49)=f (log 49),log 47<log 49,-=⎝ ⎛⎭⎪⎫15-35=535=5125>532=2>log 49. 又f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f (x )在(0,+∞)上单调递减,∴f -<f ⎝ ⎛⎭⎪⎫log 123<f (log 47),即c <b <a ,选B.8.A [解析] 由图形可知b <-1,0<a <1,所以函数g (x )=a x+b 在定义域上单调递减,且与x 轴负半轴相交,所以选A.9.C [解析] f (x )<0⇔log a (a 2x -2a x -2)<0⇔log a (a 2x -2a x -2)<log a 1,因为0<a <1,所以a2x-2a x -2>1,即(a x )2-2a x +1>4⇔(a x -1)2>4⇔a x -1>2或a x -1<-2,所以a x >3或a x<-1(舍去),因此x <log a 3,故选C.10.4 [解析] 设原有的有害物质为a ,则过滤n 次后有害物质还有⎝ ⎛⎭⎪⎫14n a ,令⎝ ⎛⎭⎪⎫14n<1%,则n >1lg2,即n ≥4,所以n 的最小值为4. 11.a >1 [解析] 函数f (x )是由φ(x )=ax 2-x 和y =log a φ(x )复合而成的,根据复合函数的单调性的判断方法.(1)当a >1时,若使f (x )=log a (ax 2-x )在[2,4]上是增函数,则φ(x )=ax 2-x 在[2,4]上是增函数且大于零.故有⎩⎪⎨⎪⎧12a ≤2,φ2=4a -2>0,解得a >12,∴a >1.((2)当a <1时,若使f (x )=log a (ax 2-x )在[2,4]上是增函数,则φ(x )=ax 2-x 在[2,4]上是减函数且大于零.⎩⎪⎨⎪⎧12a≥4,φ4=16a -4>0,不等式组无解.综上所述,存在实数a >1使得函数f (x )=log a (ax 2-x )在[2,4]上是增函数.12.a >1 [解析] 设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,就是函数y =a x(a >0,且a ≠1)与函数y =x +a 有两个交点.由图像可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图像过点(0,1),而直线y =x +a 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.[解析] 由3-4x +x 2>0,得x >3或x <1,∴M ={x |x >3或x <1}.f (x )=-3×(2x )2+2x +2=-3⎝⎛⎭⎪⎫2x -162+2512.∵x >3或x <1,∴2x >8或0<2x <2,∴当2x=16,即x =log 216时,f (x )最大,最大值为2512. 14.[解答] (1)常数m =1.(2)y =|3x -1|的图像如下:当k <0时,直线y =k 与函数y =|3x-1|的图像无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图像有唯一的交点,所以方程有一解; )当0<k <1时,直线y =k 与函数y =|3x-1|的图像有两个不同交点,所以方程有两解.15.[解答] (1)依题意,对一切x ∈R 有f (x )=f (-x ),即e xa +a e x =1a ex +a e x,所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对一切x ∈R 成立.由此得到a -1a=0,即a 2=1.又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,f (x 1)-f (x 2)=e x 1-e x 2+1e x 1-1e x 2=(e x 2-e x 1)⎝ ⎛⎭⎪⎫1e x 1+x 2-1=e x 1(e x 2-x 1-1)·1-e x 2+x 1e x 2+x 1由x 1>0,x 2>0,x 2-x 1>0,得x 1+x 2>0,e x 2-x 1-1>0,1-e x 2+x 1<0,*∴f (x 1)-f (x 2)<0,即f (x )在(0,+∞)上是增函数.16.[解答] (1)证明:由f (x +y )=f (x )+f (y ),令x =y =0,得f (0)=0.令y =-x ,得f (0)=f (x )+f (-x ),又f (0)=0,则有f (x )+f (-x )=0,即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.(2)f (3)=log 23>0,即f (3)>f (0),又f (x )是R 上的单调函数,所以f (x )在R 上是增函数.又由(1)知f (x )是奇函数.f (k ·3x )+f (3x -9x -2)<0⇔f (k ·3x )<f (9x -3x +2)⇔k ·3x <9x -3x +2,即(3x )2-(1+k )3x +2>0对任意x ∈R 恒成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立.令g (t )=t 2-(1+k )t +2,其对称轴为t =1+k 2,当t =1+k 2≤0,即k ≤-1时,g (0)=2>0,符合题意;当t =1+k 2>0,即k >-1时,则需满足g ⎝ ⎛⎭⎪⎫1+k 2>0,解得-1<k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x)+f (3x-9x-2)<0对任意x ∈R 恒成立. 本题还有更简捷的解法:分离系数由k <3x +23x -1,令u =3x+23x -1,u 的最小值为22-1,则要使对任意x ∈R 不等式k <3x+23x -1恒成立,只要使k <22-1.。