突发型黄土滑坡监测预警理论方法研究--以甘肃黑方台为例
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
突发型黄土滑坡监测预警理论方法研究———以甘肃黑 方台为例
许 强 彭大雷 何朝阳 亓 星 赵宽耀 修德皓
(地质灾害防治与地质环境保护国家重点实验室(成都理工大学),成都 610059,中国)
摘 要 灌溉诱发的黄土滑坡大多数具有明显的突发性特征;斜坡破坏过程变形量小,历时短,具有较大的危险性。由于此类 黄土滑坡加速变形阶段经历时间较短,GNSS系统和裂缝计等传统监测手段难以获取加速变形阶段系统完整的监测数据,更难以 提前预警。针对这一难题,自主研发了自适应智能变频裂缝仪,它能够根据滑坡变形快慢自动调整采样频率。基于获取的黑方 台多个突发型黄土滑坡的全过程变形-时间曲线,对这些变形曲线特征和规律进行分析研究,建立了针对性的黄土滑坡综合预警 模型。将变形速率阈值和改进切线角作为滑坡预警的重要指标,建立了 4级预警判据,通过自主研发的“地质灾害实时监测预警 系统”实现滑坡的实时自动预警,并将预警信息与当地的群防群测信息平台对接,为防灾应急避让提供直接依据。2017年以来 已先后 6次对黑方台黄土滑坡实施成功预警,避免了重大人员伤亡,取得显著的防灾减灾效果。 关键词 实时监测;预警;突发型滑坡;黄土滑坡;预警判据 中图分类号:P642.22 文献标识码:A doi:10.13544/j.cnki.jeg.2019-038
JournalofEngineeringGeology 工程地质学报 1004-9665/2020/28(1)011111
许强,彭大雷,何朝阳,等.2020.突发型黄土滑坡监测预警理论方法研究———以甘肃黑方台为例[J].工程地质学报,28(1):111-121.doi:10. 13544/j.cnki.jeg.2019-038 XuQiang,PengDalei,HeChaoyang,etal.2020.Theoryandmethodofmonitoringandearlywarningforsuddenloesslandslide—A casestudyat Heifangtaiterrace[J].JournalofEngineeringGeology,28(1):111-121.doi:10.13544/j.cnki.jeg.2019-038
(StateKeyLaboratoryofGeohazardPreventionandGeoenvironmentProtection,ChengduUniversityofTechnology,Chengdu610059,China)
Abstract Mostoftheloesslandslidesinducedbyirrigationownobvioussuddencharacteristics.Thedeformation anddisplacementduringslopefailureprocessaresmallandthetimeofdurationisshort,whichisofgreatrisk.Due tosuchloesslandslidesundergoashorttimein accelerated deformation stage,itisdifficultfortraditional monitoringmethods,suchasGNSSsystem andcrackgauge,toobtaincompletemonitoringdatainaccelerated deformationstageandtopredictthesuddenlandslideoccurrence.Withrespecttothisproblem,aselfadaptive frequencyconversion acquisition monitoringmethod isdesigned tomonitorthedeformation ofsudden loess landslides,whichadjustautomaticallythefrequencysamplingaccordingtothespeedoflandslidedeformation.To
THEORYANDMETHOD OFMONITORING AND EARLY WARNING FOR SUDDEN LOESS LANDSLIDE—A CASE STUDY AT HEIFANGTAI TERRACE
XUQiang PENGDalei HEChaoyang QIXing ZHAOKuanyao XIUDehao
收稿日期:2019-01-21;修回日期:2019-10-29. 基金项目:国家自然科学基金重点项目(资助号:41630640),国家创新研究群体科学基金项目(资助号:41521002),国家自然科学基金 重大项目(资助号:41790445). ThisstudyissupportedbytheKeyProgramofNationalNaturalScienceFoundationofChina(GrantNo.41630640),theScienceFundforCreative ResearchGroupsoftheNationalNaturalScienceFoundationofChina(GrantNo.41521002)andtheMajorProgram ofNationalNaturalScience FoundationofChina(GrantNo.41790445). 第一作者简介:许强(1968-),男l:xq@cdut.edu.cn
112
JournalofEngineeringGeology 工程地质学报 2020
meettheneedsforriskmitigationandmanagementofslopesuddenfailure,itisofpracticalsignificancetodevelop aselfadaptivefrequencyconversionacquisitionmonitoringmethodandestablisharealtimeautomaticearlywarning system.Thenew artificialintelligencebytheauthorsinstitutecanobtainentiremonitoringdatainaccelerated deformationstageandtopredictthesuddenfailureoccurrencetime.Takingdeformationratethresholdandthe improvedtangentangleastheearlywarningparametersofcomprehensivewarningmodel,afourlevelearlywarning criterionisestablished.Therealtimeautomaticearlywarningofthelandslideisrealizedthroughtheselfdeveloped “realtimemonitoringandearlywarningsystemofgeologicalhazards”.Theearlywarninginformationisreleasedin thelocalgroupdefenseinformationplatform,whichprovidesadirectgaugefordisasterpreventionandemergency avoidance.Since2017,ithasbeensuccessfullywarnedsixtimesofloessslopesuddenfailureontheHeifangtai terrace,whichavoidedheavycasualtiesandachieved
许 强 彭大雷 何朝阳 亓 星 赵宽耀 修德皓
(地质灾害防治与地质环境保护国家重点实验室(成都理工大学),成都 610059,中国)
摘 要 灌溉诱发的黄土滑坡大多数具有明显的突发性特征;斜坡破坏过程变形量小,历时短,具有较大的危险性。由于此类 黄土滑坡加速变形阶段经历时间较短,GNSS系统和裂缝计等传统监测手段难以获取加速变形阶段系统完整的监测数据,更难以 提前预警。针对这一难题,自主研发了自适应智能变频裂缝仪,它能够根据滑坡变形快慢自动调整采样频率。基于获取的黑方 台多个突发型黄土滑坡的全过程变形-时间曲线,对这些变形曲线特征和规律进行分析研究,建立了针对性的黄土滑坡综合预警 模型。将变形速率阈值和改进切线角作为滑坡预警的重要指标,建立了 4级预警判据,通过自主研发的“地质灾害实时监测预警 系统”实现滑坡的实时自动预警,并将预警信息与当地的群防群测信息平台对接,为防灾应急避让提供直接依据。2017年以来 已先后 6次对黑方台黄土滑坡实施成功预警,避免了重大人员伤亡,取得显著的防灾减灾效果。 关键词 实时监测;预警;突发型滑坡;黄土滑坡;预警判据 中图分类号:P642.22 文献标识码:A doi:10.13544/j.cnki.jeg.2019-038
JournalofEngineeringGeology 工程地质学报 1004-9665/2020/28(1)011111
许强,彭大雷,何朝阳,等.2020.突发型黄土滑坡监测预警理论方法研究———以甘肃黑方台为例[J].工程地质学报,28(1):111-121.doi:10. 13544/j.cnki.jeg.2019-038 XuQiang,PengDalei,HeChaoyang,etal.2020.Theoryandmethodofmonitoringandearlywarningforsuddenloesslandslide—A casestudyat Heifangtaiterrace[J].JournalofEngineeringGeology,28(1):111-121.doi:10.13544/j.cnki.jeg.2019-038
(StateKeyLaboratoryofGeohazardPreventionandGeoenvironmentProtection,ChengduUniversityofTechnology,Chengdu610059,China)
Abstract Mostoftheloesslandslidesinducedbyirrigationownobvioussuddencharacteristics.Thedeformation anddisplacementduringslopefailureprocessaresmallandthetimeofdurationisshort,whichisofgreatrisk.Due tosuchloesslandslidesundergoashorttimein accelerated deformation stage,itisdifficultfortraditional monitoringmethods,suchasGNSSsystem andcrackgauge,toobtaincompletemonitoringdatainaccelerated deformationstageandtopredictthesuddenlandslideoccurrence.Withrespecttothisproblem,aselfadaptive frequencyconversion acquisition monitoringmethod isdesigned tomonitorthedeformation ofsudden loess landslides,whichadjustautomaticallythefrequencysamplingaccordingtothespeedoflandslidedeformation.To
THEORYANDMETHOD OFMONITORING AND EARLY WARNING FOR SUDDEN LOESS LANDSLIDE—A CASE STUDY AT HEIFANGTAI TERRACE
XUQiang PENGDalei HEChaoyang QIXing ZHAOKuanyao XIUDehao
收稿日期:2019-01-21;修回日期:2019-10-29. 基金项目:国家自然科学基金重点项目(资助号:41630640),国家创新研究群体科学基金项目(资助号:41521002),国家自然科学基金 重大项目(资助号:41790445). ThisstudyissupportedbytheKeyProgramofNationalNaturalScienceFoundationofChina(GrantNo.41630640),theScienceFundforCreative ResearchGroupsoftheNationalNaturalScienceFoundationofChina(GrantNo.41521002)andtheMajorProgram ofNationalNaturalScience FoundationofChina(GrantNo.41790445). 第一作者简介:许强(1968-),男l:xq@cdut.edu.cn
112
JournalofEngineeringGeology 工程地质学报 2020
meettheneedsforriskmitigationandmanagementofslopesuddenfailure,itisofpracticalsignificancetodevelop aselfadaptivefrequencyconversionacquisitionmonitoringmethodandestablisharealtimeautomaticearlywarning system.Thenew artificialintelligencebytheauthorsinstitutecanobtainentiremonitoringdatainaccelerated deformationstageandtopredictthesuddenfailureoccurrencetime.Takingdeformationratethresholdandthe improvedtangentangleastheearlywarningparametersofcomprehensivewarningmodel,afourlevelearlywarning criterionisestablished.Therealtimeautomaticearlywarningofthelandslideisrealizedthroughtheselfdeveloped “realtimemonitoringandearlywarningsystemofgeologicalhazards”.Theearlywarninginformationisreleasedin thelocalgroupdefenseinformationplatform,whichprovidesadirectgaugefordisasterpreventionandemergency avoidance.Since2017,ithasbeensuccessfullywarnedsixtimesofloessslopesuddenfailureontheHeifangtai terrace,whichavoidedheavycasualtiesandachieved