新人教版八年级数学一次函数测试题
人教版8年级数学第十九章一次函数单元测试卷-试卷及答案解析
第十九章一次函数单元测试卷一、选择题(本大题共10道小题)1. 设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =02. 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )时间(分钟)路程(千米)单位家01283421A .12分钟B .15分钟C .25分钟D .27分钟3. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )4. 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .3-3y 1=kx+by 2=x+ax yO5. 甲、乙两辆摩托车同时分别从相距20 km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km)与行驶时间t (h)之间的函数关系.则下列说法错误的是 ( )A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地 km6. 某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图1l 、2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )6545060y I 1I 2A .骑车的同学比步行的同学晚出发30分钟B .步行的速度是6千米/时C .骑车同学从出发到追上步行同学用了20分钟D .骑车的同学和步行的同学同时达到目的地7. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )8. 如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( ) A. x >-2 B. x >0 C. x >1 D. x <19. 已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-2-4Oy x10. 一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( )二、填空题(本大题共10道小题) 11. 在函数y =3x +1x -2中,自变量x 的取值范围是________. 12. 将直线2y x =向右平移2个单位所得的直线的解析式是 .13. 直线2(2)y x =-可以由直线2y x =向 平移 个单位得到的.14. 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.BAO yx15. 如果直线y ax b =+不经过第四象限,那么ab 0(填“≥”、“≤”、“=”).16. 已知二元一次方程组⎩⎨⎧x -y =-5x +2y =-2的解为⎩⎨⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________. 17. 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.-1B A2O y x18. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________. 19. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.20. 一个一次函数的图象与直线59544y x =+平行,与x 轴,y 轴分别交于A ,B 两点,并且通过()125--,,则在线段AB 上(包括端点A ,B 两点),横纵坐标都是整数的点有_______个.三、解答题(本大题共5道小题)21. 已知2y -与x 成正比例,当3x =时,1y =,求y 与x 之间的函数关系式,并判断它是不是正比例函数.22. 为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示. (1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.23. 我市花石镇组织10辆汽车装运完A 、B 、C 三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下x y y x 函数关系式;⑵如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;⑶若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.24. 一次函数(2)3y k x k =-+-的图象能否不经过第三象限?为什么?25. 作函数31y x x =-+-的图象,并根据图象求出函数的最小值.人教版8年级数学第十九章一次函数单元测试卷-答案一、选择题(本大题共10道小题)1. 【答案】D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.2. 【答案】B【解析】由题上班是平路用时3分钟走1千米,所以平路的速度是13千米/分,同理上坡路的速度为15千米/分,下坡的速度为12千米/分,所以下班先走上坡路用时12105÷=分,再走下坡路用时1122÷=分,最后走平路用时1133÷=分,所以下班共用时15分钟。
人教版八年级数学下册第十九章 一次函数练习(含答案)
第十九章一次函数一、单选题1.在函数y中,自变量x的取值范围是( )A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠12.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量3.小明从家出发,外出散步,到一个公共阅报栏看了一会报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(米)与离家后所用时间t(分)之间的函数关系.则下列说法中错误的是()A.小明看报用时8分钟B.小明离家最远的距离为400米C.小明从家到公共阅报栏步行的速度为50米/分D.小明从出发到回家共用时16分钟4.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.13B.3C.﹣13D.﹣35.已知一次函数y kx b =+,若32k b -=,则它的图象一定经过的定点坐标为( ) A .()3,2 B .()3,2- C .()3,2- D .()3,2-- 6.点A(x 1,y 1)、B(x 2,y 2)都在直线y =kx+2(k <0)上,且x 1<x 2则y 1、y 2的大小关系是( )A .y 1 =y 2B .y 1 <y 2C .y 1 >y 2D .y 1 ≥y 27.关于函数y =﹣3x +2,下列结论正确的是( )A .图象经过点(﹣3,2)B .图象经过第一、三象限C .y 的值随着x 的值增大而减小D .y 的值随着x 的值增大而增大8.如图是一次函数y=x -3的图象,若点P(2,m)在该直线的上方,则m 的取值范围是( )9.等腰三角形的周长是40 cm ,腰长y(cm )是底边长x(cm )的函数.此函数的表达式和自变量取值范围正确的是( )A .y =-2x +40(0<x <20)B .y =-0.5x +20(10<x <20)C .y =-2x +40(10<x <20)D .y =-0.5x +20(0<x <20)10.A ,B 两地相距80km ,甲、乙两人骑车分别从A ,B 两地同时相向而行,他们都保持匀速行驶.如图,l 1,l 2分别表示甲、乙两人离B 地的距离y (km )与骑车时间x (h )的函数关系.根据图象得出的下列结论,正确的个数是( )①甲骑车速度为30km/小时,乙的速度为20km/小时;①l 1的函数表达式为y=80﹣30x ;①l2的函数表达式为y=20x;①85小时后两人相遇.A.1个B.2个C.3个D.4个二、填空题11.齿轮每分钟转120转,如果用n表示转数,t(min)表示时间,那么用t表示n的关系式为n=________.12.一次函数y=12x﹣4和y=﹣3x+3的图象的交点坐标是_____.13.若函数的图象经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式______.14.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.15.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了______件.三、解答题16.下表是橘子的销售额随橘子卖出质量的变化表:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5千克时,销售额是_______元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为______.(4)当橘子的销售额是100元时,共卖出多少千克橘子?17.如图,直线l1:y1=-34x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C,两条直线l1、l2相交于点D,连接AB.(1)求两直线l1、l2交点D的坐标;(2)求①ABD的面积.18.在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:(1)弹簧不挂物体时的长度是多少?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,写出y与x的关系式.(3)如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?19.一条河流经过A、B两个港口,水流的速度是4千米/时.甲、乙两船同时出发,由A 港口顺流驶向B港口,甲船的静水速度快于乙船的静水速度.两船分别到达B港口后立即返回A港口.两船与A港口的距离y(千米)与出发时间x(时)之间的函数图像如图所示.(1)A、B两港口相距千米.乙船在静水中的速度为千米/时.(2)求甲船从B港口返回A港口时y与x之间的函数关系式.(3)求两船在途中相遇时,相遇处于B港口之间的距离答案1.C2.B3.A4.B5.D6.C7.C8.C9.D10.D11.120t12.(2,﹣3)13.y=-x+314.x=215.28016.(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量;(2)10;(3)2y x =;(4)共卖出50千克橘子.17.(1)D 点坐标为(4,3);(2)S ①ABD =15.18.(1)12cm ;(2)0.512y x =+;(3)19cm19.(1)96,20;(2)24168y x =-+;(3)12千米。
一次函数测试题(最新人教版)
《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。
人教版八年级下册数学第十九章 一次函数含答案(有答案)
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、在同一坐标系中,函数y=ax2与y=ax﹣a(a≠0)的图象的大致位置可能是()A. B. C.D.2、已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A. x=0B. x=1C. x=﹣2D. x=33、小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q4、以下各点中,在正比例函数y=2x图象上的是()A.(2,1)B.(1,2)C.(—1,2)D.(1,—2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)6、有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是()A. B. C.D.7、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根8、图中两直线l1, l2的交点坐标可以看作方程组( )的解.A. B. C. D.9、汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C.D.10、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,设第n(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是()A.y=4nB.y=3nC.y=6nD.y=3n+113、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;② 、两点的距离为5;③ 的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、关于x的反比例函数y=(k为常数)的图象如图所示,则一次函数y=kx+2﹣k的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距________米.17、如图,直线交坐标轴于两点,则不等式的解是________.18、如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为________.19、若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(﹣4,m)、N (﹣5,n)都在其图象上,则m和n的大小关系是________.20、甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为________.(并写出自变量取值范围)21、函数的图象经过的象限是________.22、如图平面直角坐标系中,直线y=kx+1与x轴交于点A点,与y轴交于B 点,P(a,b)是这条直线上一点,且a、b(a<b)是方程x2﹣6x+8=0的两根.Q是x轴上一动点,N是坐标平面内一点,以点P、B、Q、N四点为顶点的四边形恰好是矩形,则点N的坐标为________或________.23、一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.24、如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.25、已知平面上四点,,,,直线 y=mx-3m+2 将四边形分成面积相等的两部分,则的值为________.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、在直角坐标系中直接画出函数y=|x|的图象;若一次函数y=kx+b的图象分别过点A(-1,1),B(2,2),请你依据这两个函数的图象写出方程组的解.28、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知一次函数的图象经过和(-3,3)两点,求这个一次函数的表达式并画出它的图象.试判断点P(-1,1)是否在这个一次函数的图象上.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、D6、A7、A8、B9、B10、B11、C12、D13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、30、。
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一次函数的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限2.函数图象向右平移个单位后,对应函数为()A.B.C.D.3.已知直线经过一、二、四象限,则直线的图象只能是()A.B.C.D.4.一次函数的函数值随的增大而减小,则的值为()A.2 B.3 C.4 D.55.一次函数的图象经过两个点和,则,的大小关系是()A. B. C.当时, D.当时,6.网语期印,李明同学在老家学习生活,为缓解线上学习疲劳,在某个周末和爸爸进行登山锻炼,登山过程中,两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示(甲为爸爸,乙为李明),李明提速后,李明的登山速度是原来速度的2倍,并先到达山顶.根据图象所提供的信息,下列说法情误的是()A.甲登山的速度是每分钟米B.乙在A地时距地面的高度b为米C.乙登山分钟时追上甲D.登山时间为5分钟、8分钟、分钟时,甲、乙两人距地面的高度差为米7.如图,直线分别与轴、轴交于点和点,直线分别与轴、轴交于点和点,点是内部(包括边上)的一点,则的最大值与最小值之差为()A.1 B.2 C.4 D.68.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题9.在函数y= 中,自变量x的取值范围是.10.若点在函数的图象上,则代数式的值为。
11.已知一次函数与(k是常数,)的图像的交点坐标是,则方程组的解是.12.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(小时)的函数关系及自变量的取值范围是13.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系.如果通讯费用为60元,那么A方案与B方案的通话时间相差分钟.三、解答题14.已知一次函数(,为常数,)的图象经过点和.(1)求该一次函数的解析式;(2)当时,求该一次函数的函数值的取值范围.15.如图,一次函数的图象与轴交于点B,与正比例函数的图象交于点.(1)求的面积;(2)利用函数图象直接写出当时,x的取值范围.16.油炸冰激凌是以面包、鸡蛋、冰激凌为材料制作的一种西式小吃,某油炸冰激凌专卖店每天固定制作甲、乙两个款型的油炸冰激凌共1000个,且所有产品当天全部售出,原料成本、销售单价及店员生产提成如表所示:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过10750元,应怎样安排甲、乙两种款型的制作量,可使该店这一天所获得的利润最大?并求出最大利润(总成本=原料成本+生产提成,利润=销售收入﹣投入总成本)17.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求乙车出发多少时间,两车相距50千米?18.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A ,B 两种图书.经调查,购进A 种图书费用y 元与购进A 种图书本数x 之间的函数关系如图所示,B 种图书每本20元. (1)当和时,求y 与x 之间的函数关系式;(2)现学校准备购进300本图书,其中购进A 种图书x 本,设购进两种图书的总费用为w 元. ①当时,求出w 与x 间的函数表达式;②若购进A 种图书不少于60本,且不超过B 种图书本数的2倍,那么应该怎样分配购买A ,B 两种图书才能使总费用最少?最少总费用多少元?19.如图,直线124l y x =-+:分别与x 轴、y 轴交于A ,B 两点,直线2l 与1l 交于点()2P a ,,与x 轴交于点()30C -,,点M 在线段AB 上,直线ME x ⊥轴于点E ,与2l 交于点N . (1)求直线2l 的表达式; (2)设点M 的横坐标为m . ①当32m =时,求线段MN 的长; ②若点M ,N ,E 三点中,其中两点恰好关于第三点对称,直接写出此时m 的值参考答案:1.D2.D3.B4.A5.A6.C7.B8.B9.x≠﹣110.1111.12.13.3014.(1)解:∵点,在该一次函数的图象上∴解得∴该一次函数的解析式为.(2)解:∵∴该一次函数的函数值随的增大而减小.当时;当时.∴当时,该一次函数的函数值的取值范围是.15.(1)解:∵一次函数的图象过点∴∴∴一次函数的表达式为 .当时∴∴ .(2)当时,的取值范围为16.(1)解:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元可得:y=(20﹣10﹣2) x+(16﹣8﹣1.5) (1000﹣x)=1.5x+6500;(2)设安排甲型产品x件,则乙型产品(1000-x)件,根据题意得到不等式,解不等式即可得到结论.由题意,12x+9.5(1000﹣x)≤10750,解得x≤500∵y=1.5x+6500,1.5>0∴x=500时,y有最大值=1.5×500+6500=7250答:该店每天制作甲、乙款型的油炸冰激凌各500个,可使该店这一天所获得的利润最大,最大利润7250元.17.(1)解:由图象可知乙车比甲车晚出发1个小时(2)解:设甲的函数解析式为y=kx,把点(5,300)代入得到k=60,故y=60x设乙的函数解析式为y=k′x+b,把点(1,0)和点(4,300)代入得到解得故y=100x﹣100由得= =1.5所以乙车出发后1.5小时追上甲车.(3)解:由题意:60x﹣(100x﹣100)=50或100x﹣100﹣60x=50解得到x= 或因为﹣1= ,﹣1=所以求乙车出发或小时,两车相距50千米.18.(1)解:当时,设将代入解析式,得解得当时,设将、分别代入解析式得解得综上, (2)解:①当时;②此时随x 的增大而减小 当时,w 最小,最小值为: 故购买A 种200本,B 种100本时总费用最少,最少总费用为5800元19.18.(1)解:将点()2P a ,代入124l y x =-+:,得224a =-+ 解得1a = 设2l y kx b =+:∴203k bk b =+⎧⎨=-+⎩解得1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴2l 的表达式为1322y x =+ (2)解:①根据题意3931242N M ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,∴95144MN =-=. ②m 的值为139 13。
人教版八年级数学一次函数章检测卷
第1页 共8页 ◎ 第2页 共8页人教版八年级数学一次函数章检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.一次函数()0y kx b k =+<的图像过点()2,0,则不等式()10k x b ++<的解集是( ) A .2x >B .1x <C .3x >D .1x >2.下图中表示一次函数y =ax +b 与正比例函数y =abx (a ,b 是常数,且ab <0)图像的是( ).A .B .C .D .3.如图,在平面直角坐标系中,点()3,A a 是直线2y x =与直线y x b =+的交点,点B 是直线y x b =+与y 轴的交点,点P 是x 轴上的一个动点,连接P A ,PB ,则PA PB +的最小值是( )A .6B.C .9D.4.在同一坐标系中,函数y =2kx 与y =x ﹣k 的图象大致是( )A .B .C .D .5.若点()1,1A x -,()2,2B x -,()3,3C x 在一次函数2y x m =-+(m 是常数)的图象上,则1x ,2x ,3x 的大小关系是( ) A .123x x x >>B .213x x x >>C .132x x x >>D .321x x x >>6.直线y kx k =+(k 为正整数)与坐标轴所构成的直角三角形的面积为k S ,当k 分别为1,2,3,…,199,200时,则123199200S S S S S +++++=( )A .10000B .10050C .10100D .101507.如果一次函数y =﹣2x +1的图象经过点(﹣1,m ),则m 的值是( ) A .﹣3B .﹣1C .1D .38.将直线22y x =--向右平移1个单位长度,可得直线的表达式为( ) A .2y x =B .y x =--24C .2y x =-D .24y x =-+9.在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为(8,0)、(9,6)、(0,6),若一次函数y =kx ﹣8k 的图象将△ABC 分成面积为1△2的两个部分,则k 的值为( )A .﹣3B .﹣2C .﹣3或65-D .﹣2或﹣310.某学校用100元钱买乒乓球,所购买球的个数w 与单价n (元)之间的关系是w =100n,其中( ) A .100是常量,w ,n 是变量 B .100,w 是常量,n 是变量C .100,n 是常量,w 是变量D .无法确定哪个是常量,哪个是变量二、填空题11.已知函数f (x )=5x+x ,则f_____.12.如图,在平面直角坐标系中,一次函数y=-2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(-8,0).(1)k的值为___;(2)点M为直线BC上一点,若△MAB=△ABO,则点M的坐标是___.13.一个有进水管与出水管的容器已装水10L,开始4min内只进水不出水,在随后的时间内既进水又出水,其出水的速度为154L/min.容器内的水量(单位:L)与时间x(单位:min)之间的关系如图所示,若一开始同时开进水管和出水管,则比原来多_____min将该容器灌满30L.14.已知A,B两地相距80km,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲、乙离开A地的路程s(km)与时间(h)的函数关系的图象,则甲与乙的速度之差为______,甲出发后经过______小时追上乙.15.甲、乙两车从A地出发,沿同一条笔直的公路匀速驶向B地,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.已知两车到A地的距离y()km与甲车出发的时间t()h之间的函数关系分别如图中线段OC和折线D E F C---所示,则图中点C的坐标为_______________.16.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y (微克)随时间x(小时)而变化的情况如图所示.研究表明,当血液中含药量5y≥(微克)时,对治疗疾病有效,则有效时间是__________小时.17.快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离()kms与行驶时间()ht之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是______km/h.18⻆坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为____.第3页共8页◎第4页共8页三、解答题19.某试验室在0:00﹣10:00保持20△的恒温,在10:00﹣20:00匀速升温,每小时升高1△.(1)写出试验室温度T(单位:△)关于时间t(单位:h)的函数解析式;(2)在题给坐标系中画出函数图象.20.如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB =6.(1)请直接写出点C的坐标;(2)如图△,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB上一点C′重合,求线段CF的长度;(3)如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的的解析式;若不存在,请说明理由.21.已知直线3y kx=+与x轴、y轴分别交于点E、F,点E的坐标为()4,0-,点A的坐标为()3,0-,点(),P x y是第二象限内直线上的一个动点.(1)求k的值,并在坐标系中直接作出该直线图象;(2)若点(),P x y是第二象限内直线上的一个动点,当点P运动过程中,试写出OPA∆的面积S与x的函数关系式,并根据已知条件写出自变量x的取值范围;(3)探究:当点P运动到什么位置时,OPA∆的面积为3?求出此时点P的坐标.22.若y与2x+1成正比例,且函数图像经过A(-3,1),求y与x的函数解析式.23.如图,在平面直角坐标系中,直线AB的解析式为132y x=+,它与x轴交于点B,与y轴交于点A,直线y=-x与直线AB交于点C.动点P从点C出发,以每秒1个单位长度的速度沿射线CO运动,运动时间为t秒.第5页共8页◎第6页共8页(1)求△AOC的面积;(2)设△P AO的面积为S,求S与t的函数关系式,并写出自变量的取值范围;(3)M是直线OC上一点,在平面内是否存在点N,使以A,O,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.24.如图,直线y=kx+4(k≠0)与x轴、y轴分别交于点B,A,直线y=-2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积是3 2 .(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,求出点E的坐标.25.如图,直线:l122y x=+与y轴交于点A,与x轴于点B.(1)求AOB的面积;(2)若直线1l经过点A,且与x轴相交于点C,并将ABO的面积分成相等的两部分,求直线1l的解析式.26.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价)(1)销售单价x=元时,日销售利润w最大,最大值是元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?第7页共8页◎第8页共8页参考答案:1.D【分析】根据平移的性质得出一次函数y=k(x+1)+b过点(1,0),然后根据一次函数的性质即可求得.【详解】解:△一次函数y=kx+b(k<0)的图像过点(2,0),△一次函数y=kx+b向左平移一个单位过(1,0),即一次函数y=k(x+1)+b图像经过点(1,0),△k<0,△y随x的增大而减小,△一次函数y=k(x+1)+b(k<0)的图像过点(1,0),△当x>1时,y<0,△不等式k(x+1)+b>0的解集是x>1,故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,平移的性质,根据平移的性质求得一次函数y=k(x+1)+b(k<0)的图像过点(1,0)是解题的关键.2.A【分析】根据每个一次函数及正比例函数的图像依次分析a及b的符号,然后再确定其所在的象限即可解答.=+中a<0,b>0,正比例函数y=abx中ab<0,故该项符合【详解】解:A、一次函数y ax b题意;=+中a>0,b<0,正比例函数y=abx中ab>0,故该项不符合题意;B、一次函数y ax b=+中a>0,b>0,正比例函数y=abx中ab<0,故该项不符合题意;C、一次函数y ax b=+中a<0,b>0,正比例函数y=abx中ab>0,故该项不符合题意;D、一次函数y ax b故选:A.【点睛】本题主要考查一次函数与正比例函数的图像,熟记一次函数与正比例函数图像与各字母系数的关系是解题的关键.3.D【分析】作点A关于x轴的对称点A',连接A'B,则P A+PB的最小值即为A'B的长,先求出点A坐标,再待定系数法求出b的值,根据轴对称的性质可得点A'的坐标,进一步求出A'B 的长,即可确定P A+PB的最小值.【详解】解:作点A 关于x 轴的对称点A ',连接A B ',如图所示:则P A +PB 的最小值即为A B '的长, 将点A (3,a )代入y =2x , 得a =2×3=6,△点A 坐标为(3,6), 将点A (3,6)代入y =x +b , 得3+b =6, 解得b =3,△点B 坐标为(0,3),根据轴对称的性质,可得点A '坐标为(3,-6)△A B '=△P A +PB 的最小值为 故选:D .【点睛】本题考查了一次函数的综合应用,涉及两直线的交点问题,一次函数的性质,利用轴对称解决最短路径问题,熟练掌握轴对称的性质以及一次函数的性质是解题的关键. 4.C【分析】根据正比例函数和一次函数的图象与性质逐项判断即可得.【详解】解:A 、由函数2y kx =的图象可知0k <,由函数y x k =-的图象可知0k >,两者不一致,则此项不符合题意;B 、函数y x k =-的函数值y 随x 的增大而增大,函数2y kx =的图象经过原点,则此项不符合题意;C 、由函数2y kx =的图象可知0k <,由函数y x k =-的图象可知0k <,且y 随x 的增大而增大,两者一致,则此项符合题意;D 、函数2y kx =的图象经过原点,则此项不符合题意; 故选:C .【点睛】本题考查了正比例函数和一次函数的图象与性质,熟练掌握正比例函数和一次函数的图象与性质是解题关键. 5.B【分析】利用一次函数的增减性判定即可.【详解】解:由2y x m =-+知,函数值y 随x 的增大而减小, △3>-1>-2,()1,1A x -,()2,2B x -,()3,3C x , △213x x x >>. 故选:B .【点睛】本题考查了一次函数的增减性,解题的关键是通过k =-2<0得知函数值y 随x 的增大而减小,反之x 随y 的增大也减小. 6.B【分析】画出直线y kx k =+,然后求出该直线与x 轴、y 轴的交点坐标,即可求出k S ,从而求出123200S S S S 、、,然后代入即可.【详解】解:如下图所示:直线AB 即为直线y kx k =+当x=0时,解得y=k ;当y=0时,解得x=-1△点A 的坐标为(-1,0),点B 的坐标为(0,k ) △k 为正整数 △OA=11-=,OB=k△直线y kx k =+(k 为正整数)与坐标轴所构成的直角三角形的面积为122k k S OA OB =•=()12319920012319920022222123200212002002210050S S S S S ∴+++++=+++++++++=+⨯÷== 故选B.【点睛】此题考查的是求一次函数图象与坐标轴围成的三角形的面积,根据一次函数解析式求出与坐标轴的交点坐标,探索出一次函数图象与坐标轴围成的三角形的面积公式是解决此题的关键. 7.D【分析】将点(1,)m -代入函数解析式,列出关于m 的一元一次方程,再解方程即可求出m 的值.【详解】解:一次函数21y x =-+的图象经过点(1,)m -,1(2)1m ∴-⨯-+=, 3m ∴=.故选:D .【点评】本题考查了一次函数图象上点的坐标特征,经过函数图象上所有点的坐标均满足该函数解析式. 8.C【分析】根据平移性质可由已知的解析式写出新的解析式. 【详解】解:△直线向右平移1个单位,△根据“左加右减,上加下减”可得解析式是2(1)2y x =---. △2y x =-; 故选C .【点睛】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式;牢记函数平移口诀“左加右减,上加下减”是解题关键.9.C【分析】先找出一次函数经过顶点,再根据题意将△ABC分成面积为1:2的两个部分,求出E、F两点的坐标,用待定系数法代入一次函数解析式即可.【详解】解:△一次函数y=kx-8k,当x=8时,y=0,△一次函数y=kx-8k过定点(8,0),由题意可知,如图,直线AE或AF将△ABC分成面积之比为1:2的两个部分,△B、C三点的坐标分别为(9,6)、(0,6),△BC//OA,△此时两三角形的高相等,面积之比等于底之比,即CE:BE=1:2或CF:BF=2:1,△119333CE BC==⨯=或2963CF=⨯=,△E(3,6),F(6,6),将E(3,6)代入y=kx-8k得,3k-8k=6,△k=-65;将F(6,6)代入y=kx-8k得,6k-8k=6,△k=-3;综上可知:k=-3或k=-65.故选:C.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题关键是发现直线过顶点,并用待定系数法解决问题.10.A【详解】试题解析:根据函数的意义可知:变量是改变的量,常量是不变的量,据此得: 学校计划用100元钱买乒乓球,所购买球的个数W (个)与单价n (元)的关系式W=100n, 100是常量,W ,n 是变量. 故选A . 11.【分析】根据题意直接把x【详解】解:△函数f (x )=5x+x ,△f故答案为:【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式. 12.12(-2,3),(2,5)【分析】(1)由y =-2x +4求得点,A B 的坐标,根据,B C 的坐标待定系数法求解析式即可求解;(2)根据题意画出图形,分M 在B 点左边与右边两种情况分类讨论即可求解. 【详解】(1)解:△一次函数y =-2x +4的图象与x 轴、y 轴分别交于点A 和点B , 令0y =,得2x =,则()2,0A ,令0x =,得4y =,则()0,4B , 将()0,4B ,()8,0C -代入y =kx +b ,得480b k b =⎧⎨-+=⎩, 解得124k b ⎧=⎪⎨⎪=⎩, △直线BC 得到解析式为142y x =+, 故答案为:12;(2)△()2,0A ,()0,4B ,()8,0C -,△10 AB BC AC==,△222AB BC AC+=,△90ABC∠=︒,如图,△MAB=△ABO,点M为直线BC上△当M在B点右侧时,△△MAB=△ABO,点M为直线BC上∴AM OB∥,所以M的横坐标为2,代入142y x=+,得5y=,所以M()2,5,△当M在B点左侧时,如果,设AM交y轴于点N,△△MAB=△ABO,△AN NB=,设()0,N n,所以4BN n AN=-=,在Rt AON△中,222AN AO ON=+,△()22242n n-=+,解得32n=,△30,2N⎛⎫⎪⎝⎭,设AN解析式为y sx t=+,2032s tt+=⎧⎪⎨=⎪⎩,解得3432s t ⎧=-⎪⎪⎨⎪=⎪⎩, △AN 的解析式为3342y x =-+, 联立,AB BC 解析式得1423342y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得:23x y =-⎧⎨=⎩, △M ()2,3-,综上,M ()2,5,()2,3-,故答案为:M ()2,5或()2,3-【点睛】本题考查了一次函数综合问题,求一次函数解析式,等角对等边,勾股定理及其逆定理,待定系数法求解析式是解题的关键.13.12【分析】由图象可知进水的速度为:(30﹣10)÷4=5(L/min ),根据“蓄水量=(进水速度﹣出水速度)×时间”列式计算即可.【详解】解:水的速度为:(30﹣10)÷4=5(L/min ),(30﹣10)÷(5﹣154)﹣4=12(min ), 所以,若一开始同时开进水管和出水管,则比原来多12min 将该容器灌满.故答案为:12.【点睛】本题主要考查了利用函数图像解决实际问题,解题的关键在于能够熟练掌握相关知识进行求解.14. 1003km /h 1.8 【分析】根据题意和函数图象中的数据可以计算出甲乙的速度,从而可以解答本题.【详解】解:由题意和图象可得,乙到达B 地时甲距A 地120km ,甲的速度是:120÷(3-1)=60km /h ,乙的速度是:80÷3=803km /h ,△甲与乙的速度之差为60-803=1003km /h , 设乙出发后被甲追上的时间为x h ,△60(x -1)=803x ,解得x =1.8, 故答案为:1003km /h ,1.8. 【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.()8.4,672【分析】根据函数图象,先求出甲乙车的速度以及A ,B 两地之间的距离,进而求出乙从B 地返回与甲相遇所花的时间,进而即可得到答案.【详解】根据图象得:甲车的速度为:240÷3=80(km/h ),乙车的速度为:240÷2=120(km/h ),A ,B 两地之间的距离为:120×(7-1)=720(km ),乙从B 地返回与甲相遇所花的时间为:(720-8×80)÷(80+120)=0.4(h ),此时,距A 地的距离为:(8+0.4)×80=672(km ),△点C 的坐标为:()8.4,672.【点睛】本题主要考查一次函数的图象与行程问题的综合,通过函数图象,得到速度,时间,距离之间的联系,是解题的关键.16.3【分析】当2x ≤时,设1y k x =,把(2,6)代入计算即可得3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入计算即可得82734y x =-+,把5y =代入3y x =中得53x =,把5y =代入82734y x =-+中得143x =,进行计算即可得. 【详解】解:当2x ≤时,设1y k x =,把(2,6)代入得,162k =,解得,13k =,△当2x ≤,3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入得,2226103k b k b +=⎧⎨+=⎩ 解得,283274k b ⎧=-⎪⎪⎨⎪=⎪⎩, △当2x >时,82734y x =-+, 把5y =代入3y x =中,得53x =, 把5y =代入82734y x =-+中,得143x =, 则145333-=(小时), 即该药治疗的有效时间是3小时,故答案为:3.【点睛】本题考查了一次函数的应用,解题的关键是掌握一次函数的性质.17.35【分析】根据图象求出快递员往返的时间为2(0.35﹣0.2)h ,然后再根据速度=路程÷时间.【详解】解:△快递员始终匀速行驶,△快递员的行驶速度是()8.750.5520.350.2=--35(km /h ). 故答案为:35.【点睛】本题考查一次函数的应用,关键是结合图象掌握快递员往返的时间.18.58y x = 【分析】过P 作PB △OB 于B ,过P 作PC △OC 于C ,易知OB=式和已知条件求出D 的坐标即可得到该直线l 的解析式.【详解】解: 过P 作PB △OB 于B ,设直线l 与y 轴的交点为D△△OBPB =△(P△经过P 点的一条直线l 将这8个正方形分成面积相等的两部分,△两边面积都为分别是8,△△PBA的面积为10,△1102BP AB⋅=,△AB=△OA OB AB=-==△A⎛⎝⎭设直线l的解析式为y kx b=+△bb⎧+=⎪⎨=⎪⎩,解得58kb⎧=⎪⎪⎨⎪=⎪⎩△直线l的解析式为58y x=故答案为:58y x=+.【点睛】此题考查的是用待定系数法求一次函数的解析式,坐标与图形,正方形的性质,解题的关键是作PB△y轴,利用三角形的面积公式求出BD的长.19.(1)T=()()20010201020tt t⎧≤≤⎪⎨+<≤⎪⎩;(2)见解析【分析】(1)根据试验室温度T=20+每小时升高的温度×时间即可得到函数解析式;(2)根据函数图象的画法画出图象即可.【详解】解:(1)试验室温度T(单位:△)关于时间t(单位:h)的函数解析式为:当0≤t≤10时,T=20;当10<t ≤20时,T =t +20,△T =()()20010201020t t t ⎧≤≤⎪⎨+<≤⎪⎩; (2)函数图象如图所示:【点睛】本题考查列一次函数关系式及画函数图象;注意此题的函数图象为两条线段. 20.(1)(8,6)(2)CF =3(3)存在,y =-3x+26【分析】(1)根据矩形性质和坐标与图形性质可求解;(2)由折叠性质得CF C F '=,AC AC '=,90C AC F '∠=∠=,利用勾股定理求解AB 、CF 即可;(3)分两种情况:点P 在BC 上方和点P 在BC 下方两种情况,利用全等三角形的判定与性质求得PF =BE ,EP =DF 即可求解.【详解】(1)解:△四边形OACB 是矩形,OA =8,OB =6,△AC =OB =6,BC =OA =8,△OAC =90°,△点C 坐标为(8,6);(2)解:由折叠性质得:CF C F '=,6AC AC '==,90C AC F BC F ''∠=∠=∠=, △OA =8,OB =6,△AOB =90°,△AB =10,则BC '=10-6=4,在Rt△BC F '中,BF =8-CF ,由勾股定理得()22248CF CF +=-,解得:CF =3;(3)解:存在,设P(a,2a-4),当点P在BC上方时,如图,过点P作EF BC交y轴于E,交DC延长线于F,则△BEP=△PFD=90°,EF=BC=8,△△BPE+△EBP=90°,△BPE+△DPF=90°,△△EBP=△DPF,又BP=PD,△△BEP△△PFD(AAS),△BE=PF=2a-4-6=2a-10,DF=PE=a,△EF=PE+PF=3a-10=8,解得:a=6,△P(6,8),D(8,2),设直线PD的解析式为y=kx+b,则6882k bk b+=⎧⎨+=⎩,解得:326kb=-⎧⎨=⎩,△直线PD的解析式为y=-3x+26;当点P在BC下方时,如图,过点P作EF BC交y轴于E,交AC于F,则△BEP=△PFD=90°,EF=BC=8,同理可得△BEP△△PFD(AAS),△BE=6-(2a-4)=10-2a,DF=PE=a,△EF=PE+PF=10-a=8,解得:a=2,△P(2,0),这与点P在第一象限不符,故舍去,综上,直线PD的解析式为y=-3x+26.【点睛】本题考查求一次函数的解析式、矩形的性质、全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形、勾股定理等知识,熟练掌握相关知识的联系与运用,利用数形结合和分类讨论思想解决问题是解答的关键.21.(1)34k =,见解析;(2)9982OPA S x ∆=+()40x -<<;(3)当点P 运动到点423,⎛⎫- ⎪⎝⎭时,OPA ∆的面积为3【分析】(1)将点E 坐标()4,0-代入直线3y kx =+就可以求出k 值,从而求出直线的解析式;(2)由点A 的坐标为()3,0-可以求出3OA =,求OPA 的面积时,可看作以OA 为底边,高是P 点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出OPA .从而求出其关系式;根据P 点的移动范围就可以求出x 的取值范围.(3)OPA ∆的面积为3代(2)的解析式求出x 的值,再求出y 的值就可以求出P 点的位置.【详解】解:(1)△点()4,0E -在直线3y kx =+上,△430k -+=.△34k =. 作图:(2)由(1)得334y x =+,3OA =,点P 到OA 的距离是334x + △133324OPA S x ∆⎛⎫=⨯⨯+ ⎪⎝⎭ 9982x =+()40x -<< (3)由题意得,OPA ∆的面积为3得99382x +=, 解得43x =-, 则343243y ⎛⎫=⨯-+= ⎪⎝⎭, △4,23P ⎛⎫- ⎪⎝⎭. △当点P 运动到点423,⎛⎫- ⎪⎝⎭时,OPA ∆的面积为3. 【点睛】本题考查的是一次函数综合题,解题关键在于对面积的表达式得求法.22.2155y x =-- 【分析】先根据y 与2x+1成正比例,假设函数解析式,再根据已知的一对对应值,求得系数k 即可.【详解】设()()210y k x k =+≠,把A(-3,1)代入()()210y k x k =+≠左右两边,得:()1-61k =+, 解得15k =-, 故y 与x 的函数解析式是()12121555y x x =-+=--. 【点睛】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.23.(1)△AOC 的面积=3(2)3,03,t S t ⎧≤≤⎪⎪=-> (3)存在,133,22N ⎛⎫ ⎪⎝⎭,()23,0N -,3N ⎝⎭,4N ⎛+ ⎝⎭【分析】(1)由y =12x +3可求得A (0,3),联立y =﹣x 得C (﹣2,2),根据三角形的面积公式即可得△AOC 的面积;(2)设点P 的坐标为(m ,﹣m ),由题意得CP =t ,根据两点的距离公式可得m﹣2,根据三角形的面积公式得出S =12OA •PE ,根据t 的取值范围即可求解;(3)分两种情况:①当OA 为菱形的边时,②当OA 为菱形的对角线时,分别根据菱形的性质即可求得答案.(1)解:把x =0代入132y x =+中,y =3, △ 点A 的坐标为(0,3),即OA =3. 联立132y x y x =-⎧⎪⎨=+⎪⎩解得22x y =-⎧⎨=⎩ △点C 的坐标为(-2,2).△△AOC 的面积1=23=32⨯⨯; (2)解:如图,过点C 作CF △y 轴于点F ,过点P 作PE △y 轴于点E .△点C 的坐标为(-2,2),△△AOC =45°.△CO =由题意,得CP =t .当0t ≤≤OP t =,sin PE AOC OP ∠==△2PE =.△132S AO PE =⋅=;同理可得当t >132S AO PE =⋅-.综上,3,03,4t S t ⎧≤≤⎪⎪=⎨⎪-⎪⎩>(3)解:∵A (0,3),∴AO =3,①当OA 为菱形的边时,如图,∵四边形AOMN 是菱形,∴MN ∥OA ,MN =OA =OM =3,∵直线OC :y =﹣x ,∴∠MOB =45°,∴M,∴N);同理N′3;②当OA为菱形边时,如图AM MN此时菱形AMNO是正方形,△OA=ON,点N的坐标为(-3,0);③当OA为菱形的对角线时,如图,连接MN,∵四边形AOMN是菱形,∴MN⊥OA,MN、OA互相平分,∴MN∥x轴,∴点M、N的纵坐标为32,∵直线OC:y=﹣x,M是直线OC上一点,∴M(﹣32,32),∴N(32,32),综上所述,存在点N,使以A,O,M,N为顶点的四边形是菱形,点N的坐标为+3332,32)或(-3,0).【点睛】本题是一次函数综合题,考查了一次函数与坐标轴的交点,三角形的面积公式,菱形的性质等,解本题的关键是用分类讨论的思想解决问题.24.(1)y=x+4;(2)点E的坐标为(-3,1)或(-32,52).【分析】(1)将x=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D的横坐标,利用一次函数图象上点的坐标特即可求出点D的坐标,由点D的坐标利用待定系数法即可求出直线AB的表达式;(2)由直线AB的表达式即可得出△ACE为等腰直角三角形,分△ACE=90°和△AEC=90°两种情况考虑,根据点A、C的坐标利用等腰直角三角形的性质即可得出点E的坐标,此题得解.【详解】解:(1)当x=0时,y=kx+4=4,y=-2x+1=1,△A(0,4),C(0,1),△AC=3.△S△ACD=13 22DAC x•=,△1Dx=,△点D在第二象限,点D的横坐标为1-.当x=1-时,y=-2x+1=3,△D(-1,3).将D(-1,3)代入y=kx+4,-k+4=3,解得:k=1.△直线AB的表达式为:y=x+4.(2)△直线AB的表达式为y=x+4,△△ACE为等腰直角三角形.当△ACE=90°时,△A (0,4),C (0,1),AC=3,△E 1(-3,1);当△AEC=90°时,△A (0,4),C (0,1),AC=3,△E 2(-32,52). 综上所述:当△ACE 是直角三角形时,点E 的坐标为(-3,1)或(-32,52). 【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及等腰直角三角形的性质,解题的关键是:(1)根据△ACD 的面积找出点D 的坐标;(2)分△ACE=90°和△AEC=90°两种情况,利用等腰直角三角形的性质找出点E 的坐标.25.(1)4;(2)2y x =+【分析】(1)求得AB 、两点坐标,即可求得AOB 的面积; (2)由题意可得点C 为线段OB 的中点,因此可求得点C 坐标,直线1l 经过点A 、点C ,即可求解.【详解】解:(1)令0x =,求得2y =,即(0,2)A ,△2OA =令0y =,求得4x =-,即(4,0)B -,△4OB =142OAB S OA OB =⨯=△ (2)由题意可知点C 为线段OB 的中点,则点(2,0)C -设直线1l 的解析式为y kx b =+将(0,2)A ,(2,0)C -代入得,220b k b =⎧⎨-+=⎩,解得21b k =⎧⎨=⎩直线1l 的解析式为2y x =+【点睛】此题考查了一次函数与几何的综合问题问题,涉及了三角形面积的求解和待定系数法求解直线解析式,熟练掌握一次函数的有关性质是解题的关键.26.(1)100,2000;(2)该产品的成本单价应不超过65元【分析】(1)根据题意列出有关利润w与销售单价x之间的二次函数,配方后即可确定最值;(2)根据销售利润不低于3750元列出不等式即可确定正确的答案.【详解】解:(1)w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,△﹣5<0,△当x=100时,w取得最大值,最大值是2000;故答案为:100,2000;(2)设成本单价为a圆,当x=100时,w=(﹣5×90+600)(90﹣a)≥3750,解得,a≤65,答:该产品的成本单价应不超过65元.【点睛】此题主要考查一次函数的应用,解题的关键是熟知一次函数的性质特点.。
一次函数单元测试卷
一次函数单元测试卷新人教版八年级下册《第19章一次函数》单元测试卷一、选择题(每小题3分,共24分)1.下列各图给出了变量x与y之间的函数是(B)。
2.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有(B)m>,n<0.3.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是(C)y1<y2.4.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为(B)y=﹣x﹣6.5.一次函数y=﹣5x+3的图象经过的象限是(B)二,三,四。
6.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠)的图象的是(D)。
7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为(A)。
8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是(B)甲,乙两人中先到达终点的是乙。
二、填空题(每小题3分,共24分)9.函数的自变量的取值范围是(未给出)。
10.已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为(y=3x+3)。
11.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b=(0)。
12.据如图的程序,计算当输入x=3时,输出的结果y=(11)。
13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是(m>﹣2)。
14.如图,若直线y=kx+b经过A,B两点,直线y=mx经过A点,则关于x的不等式kx+b>mx的解集是(x<b/(m﹣k))。
15.已知函数 $y=2x+b$ 和 $y=ax-3$ 的图象交于点 $P(-2,-5)$,根据图象可得方程$2x+b=ax-3$ 的解是$\frac{1}{2}x-1$。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
新人教版八年级数学第十九章《一次函数》测试题
试卷第1页,总4页2013-2014学年《一次函数》单元测试命题人:永新中学 罗日材 廖敏华姚成广邓艳萍刘玉兰欧阳素熙 郭子兰本试卷分选择题和非选择题两部分, 共三大题21小题,满分100分,考试用时40分钟.第一部分选择题(共30 分)、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的 四个选项中只有一项是符合题目要求的.)下列函数中为一次函数的是() 1A . 1A. 1B. y -2 xC. 1D. y kxb ( k 、b 是常数) 函数y= , 2x 4中自变量 x 的取值范围为(A .3 .点 m ) B . x 在函数 >—2 y=2x 的图象上,贝U m 的值是( x w — 2 )4 .已知一次函数2x 3经过哪几个象限( ) A. 一、二、三5.—次函数三、四 6 .不在函数A . (0, 1) 二、四 B. y=— 2x + 4的图象与x 轴的交点坐标是 B. C. D. 二、三、四 (0, 2) C. ( 0, 4) 1 x 1的图象上的点是( 3 .(3, 2) C . (6, 3)(4, 0) D. D 解集是(试卷第2页,总4页 9 .点P i (x i , y i ),点P2 (x 2, y 2)是一次函数 y = — 4x + 3图象上的两个点, 且x i v x 2,贝y y i 与y 2的大小关系是(). A . y i >y 2 B. y i >y 2>0 C. y i V y 2 D . y i = y 2iO .如图i0,函数y=2x 和y=ax+4的图象相交于点 A (m 3),则不等式2x V ax+4的解集为() 3 .x V 3 C 3 A . x V - B .x >— D . x > 32 2 、填空题(每题 3分,共i8 分)上2 3 ii .若函数y (k 2)x k 是一次函数,则k= .12 .如果正比例函数y kx 的图象经过点(一2 , i ),那么k 的值等于 _______________ .13 .把直线y = 2x 向上平移5个单位得到直线I ,则直线I 的解析式为 _.i4.写出一个过点(0, 3),且函数值y 随自变量x 的增大而减小的一次函数 关系式: •( 填上一个答案即可)i5 .某练习本每个 0.5元,买x 个练习本付费y 元,则y 与x 的函数关系式是 i6 .如图,一次函数 y k i X bi 的图象l i 与y k ?x b ?的图象l 2相交于点C x > 1D 、 x V 1(第 i6题)y k i x b.p,则方程组y i的解是____________________________ .y k2x b2试卷第3页,总4页试卷第4页,总4页20. (12分)如图,直线PA是一次函数y X 1的图象,直线PB是一次函数y 2x 2的图象.(1 )求A、B、P三点的坐标;(2)求四边形PQOB勺面积;21. (12分)某校为了实施大课间”活动,计划购买篮球、排球共60个,跳绳120根•已知一个篮球70元,一个排球50元,一根跳绳10元•设购买篮球x 个,购买篮球、排球和跳绳的总费用为y元.(1 )求y与x之间的函数关系式;(2)若购买上述体育用品的总费用为 4 700元,问篮球、排球各买多少个?试卷第5页,总4页参考答案3,- 2)代人 y=kx+4中,得. 2分k=2 ................ 4 分•••这个函数表达式为: y=2x+4(2 )当 x=-5 时,y=2 X( -5 ) +4=-6 .....................•/ -6 工 3 ................. 8 分•••(— 5, 3)不在此函数的图象上. ...........18. (1)令 y=0,则 2x+3=0,解得:x=-1.5令 x=0,则 y=3 . ................. 4 分 所以,直线与 x 轴,y 轴的交点坐标坐标分别是 (2)把(a ,1)代入 y=2x+3,得到 2a+3=1, 即 a=-1 .................................. 9 分19. 当 x=0 时,y=4,当 y=0 时,x=-2,• A ( 0, 4),B (-2,0),作直线AB:2. A.3. B.4. B.5. A6. B7. C8. D9. A10. A.11 . -2.12. 1213. y=2x+5.14.y x 3 15. y 0.5x16. x 2y 317. (1) 把(— -2=-3k+4 -1.5 , 0)、(0, 3);........ 7分1. B(答案不唯一)(1 )由图象得:方程 2x+4=0的解为:x=-2 ; .............. 6分(2) .................................................................................................. 由图象得:不等式 2x+4 V 0的解为:x V -2 ; ............................................... 8分(3) ................................................................................................................ 由图象得:-2 < y < 6 , x 的取值范围为:-3 < x < 1. ................................................................................ 10分20. 解:(1)••一次函数 y=x+1的图象与x 轴交于点A ,二 A (-1 , 0), ......... 1 分••一次函数y=-2x+2的图象与x 轴交于点B ,二 B (1, 0), ........... 2 分••一次函数 y=x+1的图象与一次函数 y=-2x+2的图象交与点 P1 X =- n 54 3 =-解得:•••点P 的坐标是:-- ................ 6分(2)••直线PA 与y 轴交于点 Q,则Q( 0, 1), ................ 7分设直线PB 与y 轴交于点 M,贝U M( 0, 2), ............. 8分叱心=、站曲一 *卿 2 21.解:(1 )依题意,得 y=70x+50 (60 - x ) +10 X 120=20x+4200 ......................... 6 分(2 )当 y=4700 时,4700=20x+4200,解得:x=25•排球购买:60 - 25=35 (个)。
人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)
一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。
【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)
【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)第十九章《一次函数》检测题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.以下函数中,就是一次函数的存有( )①y=x;②y=3x+1;③y=;④y=kx-2.a.1个b.2个c.3个d.4个2.在函数y=√x/(x-1)中,自变量x的取值范围是()a.x≥1b.x≤1且x≠0c.x≥0且x≠1d.x≠0且x≠13.下列图象中,y不是x的函数的是()a.b.c.d.4.下面关于函数的三种表示方法叙述错误的是()a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值c.用公式法则表示函数关系,可以便利地排序函数值d.任何函数关系都可以用上述三种方法来表示5.甲、乙两车从a地驶往b地,并以各自的速度匀速高速行驶,甲车比乙车早高速行驶2h,并且甲车途中歇息了0.5h,例如图就是甲乙两车高速行驶的距离y(km)与时间x(h)的函数图象.则以下结论:(1)a=40,m=1;(2)乙的速度就是80km/h;(3)甲比乙迟h到达b地;(4)乙车高速行驶小时或小时,两车恰好距离50km.正确的个数是()a.1b.2c.3d.46.若函数y=(k+1)x+k^2-1是正比例函数,则k的值为()a.1b.0c.±1d.-17.一次函数y=2x-6的图象经过()a.第一、二、三象限b.第二、三、四象限c.第一、二、四象限d.第一、三、四象限8.例如图,函数y=2x和y=ax+4的图象平行于点a(m,3),则不等式2x<ax+4的边值问题为【】a.x<3/2b.x<3c.x>-3/2d.x>39.若直线y=x+2k+1与直线y=1/2x+2的交点在第一象限,则k的值域范围就是()a.-5/2<k<1/2b.-1/6<k<5/2c.k>5/2d.k>-5/210.体育课上,20人一组展开足球比赛,每人箭点球5次,未知某一组的进球总数为49个,进球情况记录如下表中,其中入2个球的存有x人,入3个球的存有y人,若(x,y)恰好就是两条直线的交点座标,则这两条直线的解析式就是()a.y=x+9与y=2/3x+22/3b.y=-x+9与y=2/3x+22/3c.y=-x+9与y=-2/3x+22/3d.y=x+9与y=-2/3x+22/3二、填空题(每小题3分,共15分)11.未知函数y=?x+3,当x=_____时,函数值0.12.已知,一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.则2k+b的值是______.13.未知函数y=kx+b的部分函数值如表中右图,则关于x的方程kx+b+3=0的解法_____.x…?2?101…y…531?1…14.一次函数y=x+b(b<0)与y=x?1图象之间的距离等于3,则b的值为_____.15.例如图,在平面直角坐标系则中,直线y=x+2交x轴于点a,交y轴于点a1,若图中阴影部分的三角形都就是全等直角三角形,则从左往右第4个阴影三角形的面积就是_____,第2021个阴影三角形的面积就是_____.三、解答题(共55分)16.(本题10分后)未知一次函数.(1)若函数图象经过原点,求的值;(2)若随其的减小而减小,谋的值域范围.17.(本题10分)已知y+4与x成正比例,且x=6时,y=8.(1)算出y与x之间的函数关系式;(2)在所给的直角坐标系(如图)中画出函数的图象;(3)轻易写下当-4≤y≤0时,自变量x的值域范围.18.(本题11分)某商场计划销售a,b两种型号的商品,经调查,用1500元采购a 型商品的件数是用600元采购b型商品的件数的2倍,一件a型商品的进价比一件b型商品的进价多30元.(1)谋一件a,b型商品的市场价分别为多少元?(2)若该商场购进a,b型商品共100件进行试销,其中a型商品的件数不大于b型的件数,已知a型商品的售价为200元/件,b型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?19.(本题12分后)例如图,直线l1:y1=?x+m与y轴处设点a(0,6),直线l2:y=kx+1分别与x轴处设点b(?2,0),与y轴处设点c,两条直线交点记作d.(1)m= ,k= ;(2)谋两直线交点d的座标;(3)根据图象直接写出y1<y2时自变量x的取值范围.20.(本题12分后)某农产品生产基地斩获红薯192吨,准备工作运给甲、乙两地的承包商展开分销.该基地用大、大两种货车共18辆恰好能够一次性运完这批红薯,未知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表中:车型运费运往甲地/(元/辆)运往乙地/(元/辆)大货车720800大货车500650(1)求这两种货车各用多少辆;(2)如果精心安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,谋w关于a的函数关系式;(2)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案1.b【解析】①②属一次函数;③自变量x在分母上,故不是一次函数;④当k=0时,就不是一次函数,故一共存有2个一次函数.故选b.2.c【解析】分析:根据分式和二次根式有意义的条件进行计算即可.揭秘:由题意得:x≥0且x?1≠0.Champsaur:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故挑选c.3.b【解析】【分析】函数存有两个变量x与y,对于x的每一个确认的值,y都存有唯一的值与其对应,融合选项即可做出推论.【详解】a、c、d对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有b选项对于x的每一个确认的值,存有两个y与之对应,不合乎函数的定义,故选b.4.d【解析】分析:根据函数的表示方法的优缺点分析解答即可.揭秘:a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化,恰当;b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值,正确;c.用公式法则表示函数关系,可以便利地排序函数值,恰当;d.并不是任何函数关系都可以用上述三种方法来表示,错误.故挑选d.5.c【解析】(1)由题意,得m=1.5?0.5=1.120÷(3.5?0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5?2)=80km/h(千米/小时),故(2)恰当;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得Champsaur:∴y=40x?20,根据图形获知:甲、乙两车中先抵达b地的就是乙车,把y=260代入y=40x?20得,x=7,∵乙车的高速行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7?(2+3.25)=h,∴甲比乙迟h到达b地,故(3)正确;(4)当1.5<x≤7时,y=40x?20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得Champsaur:∴y=80x?160.当40x?20?50=80x?160时,解得:x=.当40x?20+50=80x?160时,解得:x=.∴?2=,?2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故挑选c.6.a【解析】分析:先根据正比例函数的定义列举关于k的方程组,算出k的值即可.详解:∵函数y=(k+1)x+k2?1是正比例函数,∴{?(&k+1≠0@&k^2-1=0),解得:k=1.故挑选a.7.d【解析】分析:先根据一次函数的性质推论出来此函数图象所经过的象限,再展开答疑即可.详解:∵一次函数y=2x?6中,k=2>0,∴此函数图象经过一、三象限.∵b=?6<0,∴此函数图象与y轴正数半轴平行,∴此一次函数的图象经过一、三、四象限.故挑选d.8.a【解析】分析:先根据函数y=2x和y=ax+4的图象平行于点a(m,3),算出m的值,从而得出结论点a的座标,再根据函数的图象即可得出结论不等式2x<ax+4的边值问题.详解:∵函数y=2x和y=ax+4的图象相交于点a(m,3),∴3=2m,m=3/2,∴点a的座标就是(3/2,3),∴不等式2x<ax+4的解集为x<3/2;故挑选a.9.a【解析】分析:由两直线的解析式共同组成方程组,求出方程组的求解即为交点座标,再根据交点在第一象限确认k的值域范围.详解:由函数的解析式共同组成方程组可以得:{?(y=[emailprotected]=-1/2x+2)求解方程组得:{?(x=-4/3[emailprotected]=2/3k+5/3)又因为它们的交点在第一象限,所以{?(-4/3k+2/3>[emailprotected]/3k+5/3>0)Champsaur-5/2<k<1/2.故选a.10.c【解析】根据进球总数为49个得:2x+3y=49-5-3×4-2×5=22,整理得:y=-2/3x+22/3,∵20人一组展开足球比赛,∴1+5+x+y+3+2=20,整理得:y=-x+9,故挑选c.11.3【解析】分析:令y=0获得关于x的方程,从而可以求出x的值.详解:当y=0时,x+3=0,Champsaur:x=3.故答案为:3.12.?3或6.【解析】解:因为一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.①当k>0,把(2,?3)和(5,6)代入函数解析式y=kx+b,可以得:{?(&2k+b=-3@&5k+b=6),Champsaur:{?(&k=3@&b=-9),所以2k+b=6?9=?3;②当k<0,把(2,6)和(5,?3)代入函数解析式y=kx+b。
人教版八年级下册数学第十九章 一次函数 含答案
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是A. B. C. D.2、设正比例函数y=mx的图象经过点A(m,4),且y的值随x的增大而增大,则m=()A.2B.-2C.4D.-43、下列函数中,是一次函数的有()(1)y=πx (2)y=2x-1 (3)y= (4)y=2-3x (5)y=x2﹣1.A.4个B.3个C.2个D.1个4、如图,直线y=x+1分别与x轴、y轴交于点M,N,一组线段A1C1,A 2C2, A3C3,…AnCn的端点A1, A2, A3,…An依次是直线MN上的点,这组线段分别垂直平分线段OB1, B1B2, B2, B3,…,Bn﹣1Bn,若OB1=B1B2=B2B3=…=Bn﹣1Bn=4,则点An到x轴的距离为()A.4n﹣4B.4n﹣2C.2nD. 2n﹣25、某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为张,购票总价为元).方案一:购票总价由图中的折线所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,的值为()A.80B.120C.160D.2006、一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A. B. C. D.7、把直线y=-x+3向上平移m个单位长度后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<48、如图直线l1:y=ax+b,与直线l2:y=mx+a交于点A(1,3),那么不等式ax+b<mx+n的解集是()A.x>3B.x<3C.x>1D.x<19、下列函数,y随x增大而减小的是()A.y=10xB.y=x﹣1C.y=﹣3+11xD.y=﹣2x+110、函数的自变量的取值范围是()A. x≥ 2B. x< 2C. x> 2D. x≤ 211、如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A. B. C. D.12、已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是8,则k 的值为()A. 或-4B.- 或4C. 或-2D.2或-213、如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x 秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A. B. C. D.14、下列函数中,自变量的取值范围是的是( )A. B. C. D.15、将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x-1B.y=2x-2C.y=2x+1D.y=2x+2二、填空题(共10题,共计30分)16、将正比例函数y=﹣3x的图象向上平移5个单位,得到函数________的图象.17、函数y= 中自变量x的取值范围是________.18、若一次函数的图象如图所示,则此一次函数的解析式为________.19、如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组> > -2的解集是________20、已知函数y=(a+1)x+a2﹣1,当a________时,它是一次函数;当a________时,它是正比例函数.21、如图所示,购买一种苹果,所付款金额y(元)与购买量x(kg)之间的函数图象由线段OA和射线AB组成,则一次购买3kg这种苹果比分三次每次购买1kg这种苹果可节省________ 元.22、请写出一个一次函数的表达式,它的图象过点(0,﹣2),且y的值随x 值增大而减小,这表达式为:________.23、如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),不等式2x<kx+b<0的解集为________.24、一名老师带领x名学生到动物园参现,已知成人票每张30元,学生票每张10元,设门票的总费用为y元,则y与x的函数关系式为 ________ .25、若y与x的函数关系式为y=3x-2,当x=2时,y的值为________.三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.28、某地教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?29、说出直线y=3x+2与;y=5x﹣1与y=5x﹣4的相同之处.30、某服装专卖店销售的甲品牌西服去年销售总额为50000元,今年每件西服售价比去年便宜400元,若售出的西服件数相同,则销售总额将比去年降低20%.(1)求今年甲品牌西服的每件售价.(2)若该服装店计划需要增进一批乙品牌西服,且甲、乙两种品牌西服共60件,而且乙品牌西服的进货件数不超过甲品牌件数的2倍,请设计出获利最多的进货方案.附:今年乙品牌和甲品牌西服的进货和售价如表:甲品牌乙品牌进价(元/件)1100 1400售价(元/件)﹣2000参考答案一、单选题(共15题,共计45分)1、C2、A3、B5、D6、A7、C8、D9、D10、A11、A12、A13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
新版人教版八年级数学下册第十九章-一次函数测试卷(含答案)
24t/天S/t八年级第十九章测试题姓名 班级一、选择题1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是( ) A.正方形的面积S 随着边长x 的变化而变化.B.正方形的周长C 随着边长x 的变化而变化C.水箱以0.5L/min 的流量往外放水,水箱中的剩水量V L 随着放水时间t min 的变化而变化D.面积为20的三角形的一边a 随着这边上的高h 的变化而变化 2.如果某函数的图象如图所示,那么y 随x 的增大而( ) A.增大 B.减小 C.不变 D.有时增大有时减小 3.一次函数y=kx+b 中,y 随x 的正大而减小,b <0, 则这个函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 4.如果P (2,m ),A (1,1),B (4,0)三点在同一直线上,则m 的值为( ) A.2 B.32-C.32D.15.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了41.如果加满汽油后汽车行驶的路程为xkm ,油箱中的剩油量为yL ,则y 与x 之间的函数关系式和自变量取值范围分别是( ) A.x y 0625.0=,x >0 B.x y 0625.050-=,x >0 C. x y 0625.0=,8000≤≤x D. x y 0625.050-=,8000≤≤x6.食用油沸点的温度远高于水的沸点温度(1000C ).小明为了用刻度不超过1000C 的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s 测量一次A.2000CB.2300CC.2600CD.2900C 二、填空题(每小题5分,共20分)7.某电梯从1层(地面)直达3层用了20s ,若电梯运行时匀速的,则乘坐该电梯从2层直达8层所需要的时间是___________________s8.直线62-=x y 与y 轴的交点坐标为__________,与x 轴的交点坐标是_____________9.函数kx y =与x y -=6的图象如图所示,则=k ________________10.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数保持不变,这个门市部的化肥存量S (单位:t )与时间t (单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是_______________三、解答题(第11,12题每题10分,第13题14分,第14题16分,共50分) 11.一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式;(2)当x=3时,求y 的值.12.如图是小明散步过程中所走的路程S (单位:m )与步行时间t (单位:min )的函数图象. (1)小明在散步过程中停留了多少时间?(2)求小明散步过程步行的平均速度.(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?13.直线a:和直线b:相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E. (1)求△ABC的面积;(2)求四边形ADOC的面积14.某景点的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张及以上),每张门票价格在散客门票价格的基础上打8折.某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元.(1)如果每人分别买门票,求y与x之间的函数关系式;(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方案.。
八年级数学下册《一次函数》练习题及答案(人教版)
第 1 页 共 4 页八年级数学下册《一次函数》练习题及答案(人教版)一、单选题 1.下列函数:①y =-2x ;②21y x =+;③y =-0.5x -1.其中是一次函数的个数有( )A .0个B .1个C .2个D .3个2.若正比例函数的图象经过点(2,4),则这个图象也必经过点( )A .(2,1)B .(﹣1,﹣2)C .(1,﹣2)D .(4,2)3.一次函数y=x+3的图像与y 轴的交点坐标是( )A .(0,3)B .(0,-3)C .(3,0)D .(-3,0)4.一次函数(0)y kx b k =+≠的图象过点(2,1)-和点(0,4),那么k 、b 的值为( )A .23k =-,4b =B .4k =,32b =- C .32k =-,4b = D .32k ,4b = 5.已知A (﹣1,a ),B (2,b )两点都在关于x 的一次函数y =﹣x +m 的图像上,则a ,b 的大小关系为( )A .a ≥bB .a >bC .a <bD .无法确定6.已知不等式ax+b >0的解集是x <-2,则函数y=ax+b 的图象可能是( )A .B .C .D .7.一次函数()13y k x =++的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标不可能为( )A .()5,4B .1,2C .()2,2--D .()5,1-8.若点P 在一次函数42y x =-+的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B ,能表示这个一次函数图象的方程二、填空题11.若点(),m n在一次函数31y x的图象上,则31n m-+的值为______.12.将直线y=x向右平移1个单位长度,再向上平移3个单位长度得到的直线解析式为________.13.一次函数1y kx k=+-的图象经过第一、三、四象限,则k的取值范围是___________.14.一个函数的图象经过点()1,2,且y随x的增大而增大,则这个函数的解析式可能是______.(答案不唯一,只需写一个)15.直线y=(2﹣a)x+3﹣a在直角坐标系中的图象如图所示,化简|3﹣a|+|2﹣a|=______.三、解答题16.已知直线:l y kx b=+与直线2y x=平行,且直线l过点(2,8),求直线l与x轴的交点坐标17.已知函数y=(2-m)x+2n-3.求当m为何值时.第2页共4页第 3 页 共 4 页 (1)此函数为一次函数?(2)此函数为正比例函数?18.已知2y +与4x -成正比例,且3x =时,1y =.(1)求y 与x 之间的函数表达式;(2)当21y -<<时,求x 的取值范围.19.已知一次函数的图像平行于直线y 12=x ,且经过点A (2,3). (1)求这个一次函数的解析式;(2)当x =4时,求这个一次函数的函数值.第4页共4页。
人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)(含答案)
第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。
【带答案】新人教版八年级数学下册《一次函数》章节测试题及答案
新人教版八年级数学下册《一次函数》章节测试题及答案班级____姓名_____得分_____一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
1.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是().A.(0,) B.(,0) C.(8,20) D.(,)2.变量x,y有如下关系:①x+y=10②y=③y=|x-3④y=8x.其中y是x的函数的是A. ①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示是的函数是().A. B. C. D.4.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A. 4 B. 5 C. 6 D. 75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位 B.向下平移5个单位C.向上平移个单位 D.向下平移个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D. ±211.根据如图的程序,计算当输入时,输出的结果.12.已知直线y=2x与直线y= -2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y<y④直线y=2x与直线y=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学一次函数测试题
考试时间120分钟 满分100分 班级 姓名 总分 一、选择题:(每题3分,满分30分)
1. 下列各点中在函数y=x 2
1+3的图象上的是( ) (A)(3,-2) (B)(32,3) (C)(-4,1) (D)(5, 2
5) 2.已知直线y=2x 与直线y=kx+5互相平行,则k 的值为 ( )
A 、k=-2
B 、k=2
C 、k=±2
D 、无法确定
3. 如图,直线与y 轴的交点是(0,-3),则当
x<0时,( )
A. y<0
B. y<-3
C. y>0
D. y>-3
4. 已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且此函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是( )
A. m >-2
B. m <1
C. m <-2
D. -2<m <1
5. 已知两点M (3,5),N (1,-1),点P 是x 轴上一动点,若使PM +PN 最短,则点P 的坐标应为
A. (21,-4)
B. (32,0)
C. (34,0)
D.(2
3,0) 6. 下列函数中,y 随x 的增大而减小的有 ( )
A. 1个
B. 2个
C. 3个
D. 4个
7. 一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的高度(cm)与燃烧时间(小时)的函数关系用图象表示为( )
8. 下列各图表示的函数中
是x 的函数的 ( ) 9.已知直线y=kx+b 不经过第三象限则下列结论正确的是( )
A .k >0, b >0;
B .k <0, b >0;
C .k <0, b <0;
D .k <0, b ≥0; x y O A x y O B x
y O D x y O C y 4 20
o x A
y 4 20 o x B y 4 20 o x C y 4 20 o
x D
10. 已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
(A) (B) (C )
A .
B .
C .
D .
二.填空题:(每空3分,共30分)
1. 已知正比例函数y =(m -1)2
5m x -的图象在第二、四象限,则m 的
值为_________,函数的解析式为__________
2. 已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.
3. 已知y 是x 的一次函数,下表中列出了部分对应值,则m=
_。
4.函数y=x -2
自变量x 的取值范围是
5.如图,一次函数y=kx+b 的图象经过A 、B 两
点,与x 轴交于点C ,则此一次函数的解析式
为__________,△AOC 的面积为 , 6. 函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 。
7. 若点(3,a )在一次函数13+=x y 的图像上,则=a 。
8.一次函数y =kx +3与y =3x +6的图像的交点在x 轴上,则k = 。
9. 种储蓄的月利率为%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .
10.若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限.
三、解答题:(共40分)
1、 已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB
(1)求两个函数的解析式;(2)求△AOB 的面积;(8分)
2. 一农民带上若干千克自产的土豆进城出售,为了方便,
他带了一些零钱备用,按市场价售出一些后,又降价出售,
售出的土豆千克数x 与他手中持有的钱数y(含备用零钱)
的关系如图所示,结合图象回答下列问题.(12分)
(1)农民自带的零钱是多少?
(2)试求降价前y 与x 之间的关系式
(3)由表达式你能求出降价前每千克的
土豆价格是多少?
(4)降价后他按每千克元将剩余土豆
售完,这时他手中的钱(含备用零钱)是26元,试问
他一共带了多少千克土豆?
3. 若一次函数y=kx+b 的自变量x 的取值范围是-2
≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。
(8分)
4、A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(14分)
(1)设B 市运往C 市机器x(台),求总运费Y(元)关于x 的函数关系
式.
(2)若要求总运费不超过9000元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少? B A 123404321。