比和比例(沪教版六年级第三章知识点)
小学六年级_比和比例知识点梳理(最新整理)
复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
(完整版)小学六年级_比和比例知识点梳理
复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为X,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
(5)检验并写出答语。
精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。
第三章比和比例知识点整理
第三章 比和比例 知识点整理1、比、分数和除法的表达式:比: 前项:后项 = 比值 分数:=分母分子分数值 除法:被除数÷除数 = 商2、求两个同类量的比值时,如果单位不同,先统一单位。
3、求比值的结果是不带单位的。
4、比值是一个数,它的形式可以是整数、分数,也可以是小数。
5、比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
分数的基本性质:分数的分子和分母同时乘以或除以一个相同的数(0除外),分数值不变。
除法的商不变性质:被除数和除数同时乘以或除以一个相同的数(0除外),商不变。
6、最简整数比:是指比的前项和后项都是整数,且它们互素。
7、化简比的结果还是一个比。
8、比有两种形式:比号形式和分数形式9、知三求一:即已知四个数能组成比例,求其中x 的值。
用内项积等于外项积、三个数分别与x 相乘等于另外两个数的乘积,列出三个不同的方程,解得三个答案。
若四个数成比例,如:2,3,4,x 成比例,则只有一种可能:2:3=4:x,直接列比例式即可。
10、把百分数化成最简分数,先将百分数写成分母是100的分数,再进行约分。
若不能直接进行约分,则先将分子分母利用分数的基本性质扩大相同的倍数后再进行约分。
11、小数化成百分数:添加百分号并将小数点往右移两位。
位数不够时用零补足。
12、百分数化成小数:去除百分号并将小数点往左移两位。
位数不够时用零补足。
13、分数化成百分数:一般把分数先化成小数,再把小数化成百分数。
14、分数化成小数,若除不尽,一般保留小数点后三位,即确保百分号前保留1位小数。
15、及格率=及格人数÷总人数成活率=成活棵树÷总棵树出勤率=实到人数÷应到人数,依此类推有合格率、优秀率等。
注:最后结果化成百分数形式。
16、盈亏问题:盈利率=成本盈利×100%=成本成本售价-×100% 亏损率=成本亏损×100%=成本售价成本-×100% 盈利=售价-成本=成本×盈利率注:一般要求成本时,将成本设为x ,再列方程求解。
03-第三章-比和比例-六年级(上)-知识点汇总-沪教版
第三章比和比例3.1比的意义1、将a与b相除叫a与b的比,记作a:b,读作a比b2、求a与b的比,b不能为零3、a叫做比例前项,b叫做比例后项,前项a除以后项b的商叫做比值4、求两个同类量的比值时,如果单位不同,先统一单位再做比5、比值可以用整数、分数或小数表示3.2 比的基本性质1、比的基本性质是比的前项和后项同时乘以或除以相同的数(0除外),比值不变2、利用比的基本性质,可以把比华为最简整数比3、两个数的比,可以用比号的形式表示,也可以用分数的形式表示4、三项连比性质是:如果a:b=m:n,b:c=n:k,那么a:b:c=m:n:k如果k≠0,那么a:b:c=ak:bk:ck=ak:bk:ck5、将三个整数比化为最简整数比,就是给每项除以最大公约数;将三个分数化为最简整数比,先求分母的最小公倍数,再给各项乘以分母的最小公倍数;将三个小数比化为最简整数比先给各项同乘以10,100,1000等,化为整数比,再化为最简整数比6、求三项连比的一般步骤是:(1)寻找关联量,求关联量对应的两个数的最小公倍数(2)根据毕的基本性质,把两个比中关联量化成相同的数(3)对应写出三项连比3.3 比例1、a(第一比例项):b(第二比例项)= c(第三比例项):d(第四比例项);其中a、d叫做比例外项,b、c叫做比例内项2、如果两个比例内项(外项)相同,即a:b=b:c,那么b叫做a、c的比例中项3、利用比例的基本性质,可以把比例方程转化化为我们常见的形式ad=bc,简单的说,就是内项之积等于外项之积4、列方程解应用题的一般书写步骤分四步:(1)设未知数(2)列方程(3)解方程(4)答5、列比例方程时,一定要注意对应关系,一定要注意同类量的单位要对应统一3.4 百分比的意义1、表示一个数是另一个数的百分之几的数叫做百分数,表示n %,读作百分之……2、把百分数化为小数3、 把小数化为百分数3.5 百分比的应用1、 三个关键词:是,占,的2、 一条主线:求部分占全体的百分数;3、 三类情景:一般文字题,统计图和统计表,恩格尔系数4、 赢利问题的两个基本公式: 售价-成本=赢利 赢利率=赢利/成本×100%;在售价、成本和赢利三个量中,只要知道其中的两个量,就可以计算出赢利率5、 打折问题的一个基本公式:原(售)价×折数=现(售)价;在原价、现价和折数三个量中,只要知道其中两个量,就可以计算出第三个量6、 亏损时赢利意义相对的量:赢利=售价-成本,亏损=成本-售价7、 银行利息的结算和本金、利率和期数有关(注意:贷款利息不纳税)利息=本金×利率×期数;利息税=利息×20%;税后本息和=本金+税后利息=本金+利息-利息税=本金+利息×(1-20%)增长率=增长的量/原来的基数×100%3.6 等可能事件1、 从实际生活中感悟那些事件是可能事件,哪些事件是不可能事件2、 可能性的大小可以用一个真分数或百分数表示第三章 比和比例(90分钟, 100分)一、 填空题 (每题3分,共36分)1.求比值:15∶151=. 2.求比值:0.2kg ∶120g=..3.化简:54∶65=. 4.化简:117∶78∶51=.5.2+0.25%= .6.已知:x ∶y =2∶3,y ∶z =6∶5,则x ∶y ∶z =.7.一幅地图,图上20厘米表示实际距离10千米,这幅地图的比例尺是8.某人看书,看了全书20%,还剩240页没看,这本书共有页.9.如果6a =5b,那么a :b=_____: ____.10.一件衣服打八折后便宜32元,这件衣服原价是元.11. 已知:,5135.7:=x 那么x = . 12. 12个型号相同的杯子,其中一等品有7个,二等品有3个,三等品有2个.从中任意取1个,取到二等品的可能性的大小是 .二、选择题 (3分×4=12分)13.下列各比中,能与12∶6组成比例的是 ( )(A )1∶2; (B )2∶1; (C )0.4∶2; (D )0.1∶0.5.14.把4.5、7.5、21 、 103这四个数组成比例,其内项的积是 ( ). (A )1.35 (B )3.75 (C )33.75 (D )2.2515.在一幅地图上,量得A 、B 两城市距离是7厘米,这幅地图的比例尺是1∶500000,那么A 、B 两城市之间的实际距离是 ( )(A )3.5千米 (B )150千米 (C )35千米 (D )350千米16.某商品打九折后,价格是a 元,则原价是 ( )(A )0.9a 元 (B )a (1-0.9)元 (C )9.0a 元 (D )9.01-a 元 三、化简连比(3分×3=9)17.已知x ∶y =2∶3,x ∶z =21∶32,求x ∶y ∶z 的最简整数比.18.解比例(1)x =54∶215 (2)x ∶∶153121=四、解答题(6分×6+7分=43分)19.飞机每小时飞行480千米,汽车每小时行驶60千米,飞机飞行214小时的路程,汽车要行使多少小时?(用解比例的方法)20.小红读一本书,第一天读完后,已读的和未读的页数比是1∶5,第二天又读了30页, 已读的和未读的页数比变为3∶5,问这本书有多少页?21.某工厂去年计划生产小轿车320辆,实际生产360辆,求该厂去年的增产率。
沪教版六年级预初-比和比例的意义及应用
基本内容 比和比例的意义及应用知识精要(一) 比的意义比的意义:a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 和b 相除,叫做a 与b 的比。
记作b a :,或写成ba,其中0≠b ;读作a 比b ,或a 与b 的比。
(其中a 叫做比得前项,b 叫做比的后项。
前项a 除以后项b 所得的商叫做比值) 比的基本性质:比得前项和后项同时乘以或除以相同的数(0除外),比值不变。
三项连比的性质:(1) 如果n m b a ::=,k n c b ::=,那么k n m c b a ::::=。
(2) 如果0≠k ,那么kck b k a ck bk ak c b a ::::::==。
例1. 从学校到上海书城,甲走了12小时,乙走了36分钟,则甲与乙平均速度的比值是多少?例2. 已知4:3:=b a ,6:5:=c b ,求c b a ::例3. 某仓库储存有粮食225顿,已知大米:面粉:杂粮=1:4:10,求大米、面粉、杂粮各有多少吨?例4. 甲、乙、丙三人从昆山同坐一辆出租车回家。
当行到全程的52时,甲下了车;当行到全程的53时,乙下了车;丙到终点才下车。
他们三人共付车费290元。
甲、乙、丙三人按路程的远近各付款多少元?(二) 比例的意义(1)表示两个比相等的式子叫比例。
组成比例的四个数都不能是0。
(3)比例的基本性质:在比例中,两个内项的乘积,等于两个外项的乘积 例如:180∶3=240∶4 两个内项相乘:3×240=720 两个外项相乘:180×4=720这两个乘积有相等的关系,如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘,积也有这种关系,(4)如何判断两个比能否成比例:根据比例的意义和性质可以判断两个比能否组成比例 例5. 已知6是4和x 的比例中项,求x例6. 一个比例的两个内项互为倒数,一个外项是81,另一个外项是( ) (5) 比例尺=图距:实际距离例7. 在比例尺是1:50000的地图上,A 、B 两地的图上距离是3厘米,那么A 、B 两地的实际距离是多少千米?例8. 将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到______个,乙分配到例9. 两个类别A、B,元素的数量比为:a b(这里a b),数量差为x,那么A的元素数量为______,B的元素数量为________拓展:例1. 已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半,这三个数的比为多少?例2. 如下图所示,圆B与圆C的面积之和等于圆A面积的45,且圆A中的阴影部分面积占圆A面积的16,圆B的阴影部分面积占圆B面积的15,圆C的阴影部分面积占圆C面积的13.求圆A、圆B、圆C的面积之比.一、 填空题1. 2=()()183=2. 求比值,1.5小时:40分钟=3. 化成最简整数比,2:13:0.5= 4. 已知y x :=11:23,z y :=2:3,则z y x ::=5. 已知4:x =12:3,则x =_________6. 已知长方形的长和宽之比是4:3,长为16厘米,则宽为 厘米7. 已知8是23和x的比例中项,则x =____________ 8.25:36= :15 9. 已知x 是y 的_______,则x y :=5:210. 100米赛跑中小明用了14秒,小杰用了16秒,则小明与小杰的速度之比是__________11. 若a 的3倍是的b 的13,则a :b =________ 12. 若2:3=(4-x ):5,则x =_________13. 如果,235x y z x yz x+===-那么___________ 14. 若整数x 能与3、4、6这三个数组成比例,那么x =__________二、 选择题15. 将一个比的前项扩大2倍,后项缩小2倍后,这个比的比值与原比值相比( ) A.扩大了 B.缩小了 C.不变 D.无法确定 16. 下列四组数中,不能组成比例的是( ) A.2,3,4,6 B.1,2,2,4 C.0.1,0.3,0.5,1.5 D.1111,,,234517. 10克盐完全溶解在100克水中,则盐与盐水的重量比是( ) A.1:10 B.10:1 C.1:11 D.11:118. 若a :b=3:2,且b 2=ac ,则b :c=( )A.3:4B.2:3C.3:2D.4:319. 如图所示,阴影部分的面积占大圆面积的15,占小圆面积的13,则大、小圆面积之比是()A.5:3B.3:5C.3:2D.4:3三、简答题20. 已知35yx y=+,求x:y21. 已知x:y=1.5:1,y:z=25:36,求x:y:z四、解答题22. 在一张比例尺是1:6000000的地图上,量得上海到北京的距离是18厘米,那么上海到北京的实际距离是多少千米?23. 用比例方法求解:小明父亲工作3天可以得到450元,他工作一个月可以得到多少报酬?(一个月按22个工作日计)24. 用一根长120厘米的铁丝围成一个长方体(不计接头损耗)。
沪教版数学六年级上册 第三章《比和比例》 复习课件(共34张PPT)
2-0.9 2
-5
1 8 :x=0.5:16
综合练习
填空:
1)一个比例有两个( )项,两个( )项。
2)判断两个比是否能组成比例,可以看它们的(
)
也可以用(
进行判断。
3)写出比值是2.5的比,并组成比例(
)
4)在比例中,如果两个内项的分别是4和5,那么组成
两个外项的两个数的积一定是( )
5比)值甲是数(是乙数的1-)21 ,。甲数和乙数的比是(
3、一个筑路队修一条公路,原计划 每天修3.2千米,15天完成,实际每 天比原计划多修了25%,实际多少天 可以完成?(20)
学习检测
1)一个比例有两个( 内 )项,两个( 外 )项。 2)写出比值是2.5的比,并组成比例( 5:2=10:4 ) 3)在比例中,如果两个内项的分别是4和5,那么组成 两个外项的两个数的积一定是( 20)
你会吗?
化简下列各比并求比值:
3.6:1.4
2 —1 :0.8 7
1—81
:—4
5
500千克:2—21 吨 1米10厘米:15分米
你明白了吗?
—7 日 :12时 8
化简比是根据比的基本性质,把比的前项和后项都乘上或 者除以相同的数(0除外),求比值是根据比例的意义, 用前项除以后项。化简比的结果是一个前项和后项互质数 的整数比,而求比值的结果是一个数,可以是整数,也可 以是分数或者小数。
( ),周长的比是(
)。
A:1:3 B: 3:5 C:1:25 D:9:25
2)把100克白糖放如1000克水中,糖和水的比是( )
a: 1:12 b: 1:11 c : 1:10 d: 1:9
3)比的前项扩大2倍,后项缩小2倍,比值( )
六年级数学《比和比例》知识点
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
小学六年级--比和比例知识点梳理
复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法 1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。
(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)",再用“一份的量⨯各部分量所对应的份数”,求出各部分的量.用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例.(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为x,并代入等量关系式,得正比例式或反比例式.(4)解比例。
(5)检验并写出答语.精讲典型题例题1(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是():()(2)把2米:4厘米化成最简单的整数比是(),比值是()。
2021年上海市六年级数学期末复习-第3章《比和比例》知识清单
沪教版六年级上册第3章《比和比例》知识清单比和比例:1.a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除,叫做a 与b 的比,记作:a b 或写成a b,其中0b ≠读作a 比b ,或a 与b 的比。
其中a 叫做比的前项,b 叫做比的后项,前项a 除以后项b 所得的商叫做比值 2. 比、分数和除法三者之间的关系:3.求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位。
4.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
最简整数比是指比的前项与后项都是整数,且他们互素。
5.三项连比的性质:1)如果::,::a b m n b c n k ==,那么::::a b c m n k = 2)如果0k ≠,那么::::::a b c a b c ak bk ck k k k==6.比例:a b c d 、、、四个量中,如果::a b c d =,那么就说a b c d 、、、成比例,也就是表示两个比相等的式子叫做比例.其中a b c d 、、、分别叫做第一、二、三、四比例项,第一比例项a 和第四比例项d 叫做比例外项,第二比例项b 和第三比例项c 叫做比例内项。
如果两个比例内向相同,即::a b b c =,那么把b 叫做a 和c 的比例中项。
7.比例的基本性质:如果::a b c d =或a c b d =,那么ad bc =.反之,如果,,,a b c d 都不为零,且ad bc =,那么::a b c d =或a cb d =. 备注:当::,::a b p q b c s t ==时,要将a ,b ,c 写成三联比的形式,那么首先要将两个式子 中b 所对应的比值进行调整,调整到一致:①::,::a b p s q s b c s q t q =⨯⨯=⨯⨯::::a b c p s q s t q =⨯⨯⨯,最后在得出的结果中约去他们的最大公因数即可②或者直接寻找q 和s 的最小公倍数,将q 和s 直接调整到这个数值,那么根据q 的变化,对p 进行相同的变化,根据s 的变化对t 进行相同的变化。
上海市六年级(上)数学 第10讲 比和比例
比和比例是六年级数学上学期第三章第一节的内容,基础概念方面,同学们需要理解比、比值以及比例的相关概念、并能理清比和比值、比和比例的区别,同时也要清楚比与除法、分数等概念之间的联系和区别;性质理解方面,需掌握比的基本性质和比例的基本性质;计算方面,需熟练比和比值求法,熟练运用比的基本性质进行最简整数比的化简和连比的求解,以及根据比例的基本性质正确地进行比例的有关运算,为之后学习利用比例的基本性质解决相关的实际问题做好准备.比和比例内容分析知识结构2 / 141、 比和比值a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除,叫做a 与b 的比.记作a : b ,或写成a b ,其中0b ≠;读作a 比b ,或a 与b 的比. a 叫做比的前项,b 叫做比的后项.前项a 除以后项b 所得的商叫做比值.2、 比、分数和除法的关系比:前项:后项 = 比值;分数:分子分母= 分数值;除法:被除数÷除数 = 商. 比的前项相当于分数的分子和除式中的被除数;比的后项相当于分数的分母和除式中的除数;比值相当于分数的分数值和除式的商.3、 比、分数和除法的区别比是表示两个数关系的式子,分数是一个数,除法是一种运算.【例1】 (1)把除法69÷写成比是______;(2)求比值:12:43=______; (3)已知:12:35x =,则x =______.【例2】 一个比的前项是最小的素数,后项是最小的合数,这个比的比值是______.【例3】模块一:比的意义 知识精讲例题解析A B C DM 【例4】 判断题:(1)3与2的比值是32;( ) (2)除法中被除数相当于比的前项、分数中的分子( );(3)因为4:747=÷,所以比就是除法;( )(4)5米 : 20厘米的比值是14.( )【例5】 一个比的前项是15,比值是114,则这个比的后项是______.【例6】 求比值:(1)13:24;(2)21:0.55;(3)40分钟 : 1.5小时;(4)20 cm : 0.6 cm .【例7】 如右图,点M 是正方形ABCD 的边BC 的中点,图中阴影部分的面积与正方形的面积之比是______.4 / 141、 比的基本性质比的前项和后项同时乘以或者除以相同的数(0除外),比值不变.2、 最简整数比比的前项和后项都是整数且互素,这样的比叫做最简整数比.注:题目中比的结果都必须化成最简整数比.3、 三连比的性质1、如果::a b m n =,::b c n k =,那么::::a b c m n k =;2、如果0k ≠,那么::::a b c ak bk ck =.【例8】 比的前项扩大3倍,比的后项缩小3倍,这个比的比值( )A .扩大9倍B .缩小9倍C .不变D .以上说法都不对【例9】 某班春游时,有2人请病假,1人请事假,实际参加45人,缺勤人数与全班人数的比是( )A .1 : 15B .3 : 45C .1 : 16D .3 : 48【例10】 213=______3÷=______ : 15. 【例11】【例12】 下列说法正确的个数是( )模块二:比的基本性质 知识精讲 例题解析○17与3的比是123;○2如果a : b = 13 : 5,那么有a = 13,b = 5;○33 : 9的比值是1 : 3;○4比的前项是0.55,比值是122,则比的后项是0.22;○5比的前项和后项同时乘以一个相同的自然数,比值不变.A.1个B.2个C.3个D.4个【例13】一根绳子长132厘米,若按3 : 4分成两段,其中长的一段的长度是______厘米.【例14】某班有学生40人,其中男女人数比是2 : 3,则女生比男生多______人.【例15】化成最简整数比:136.8:8:1224=_____________.【例16】(1)若a : b = 2 : 3,b : c = 3 : 5,求a : b : c;(2)若a : b = 2 : 3,b : c = 2 : 5,求a : b : c;【例17】如果a + b + c = 108,且a : b : c = 3 : 4 : 5,则a + c的值是()A.72 B.36 C.18 D.9【例18】已知13:4:2.52a b=,111::345b c=,则a : b :c =_____________.6 / 14【例19】 若: 4.5:7.5a b =,1:0.5:3b c =,则a 比c 少几分之几?【例20】()()()::2:3:4ab bc ca =,则()()()::b c a c a b +++=__________________.1、 比例a 、b 、c 、d 四个量中,如果a : b = c : d ,那么就说a 、b 、c 、d 成比例,也就是表示两个比相等的式子叫做比例.比例a : b = c : d 也可以表示为a c b d =. 其中a 、b 、c 、d 分别叫做第一、二、三、四比例项.2、 比例外项和比例内项如果a : b = c : d ,那么第一比例项a 和第四比例项d 叫做比例外项,第二比例项b 和第三比例项c 叫做比例内项.3、 比例中项对于一个比例而言,如果两个比例内项相同,即a : b = b : c ,那么把b 叫做a 和c 的比例中项.4、 比例的基本性质如果::a b c d =或a c b d=,那么ad bc =. 反之,如果a 、b 、c 、d 都不为零,且ad bc =,那么::a b c d =或a cb d =. 两个外项的积等于两个内项的积.【例21】 下列各比中,能与6 : 3组成比例的是( )A .2 : 4B .0.8 : 0.4C .0.2 : 0.04D .0.1 : 0.5例题解析 模块三:比例及其性质 知识精讲【例22】下列各组数,不能成比例的是()A.2、3、4、5 B.1、2、3、6C.0.02、0.6、4、120 D.12、13、14、16【例23】若b是a、c的比例中项,且b : c = 3 : 2,那么a : b =______.【例24】如果x、y都不为零,且2x = 3y,那么下列各比例式中正确的是()A.x : y = 4 : 3 B.x : 3 = y : 2 C.x : 2 = 3 : y D.x : 3 = 2 : y【例25】(1)在比例a : b = c : d中,如果35b=,47c=,那么ad = ______;(2)5是4和______的比例中项.【例26】把4.5,7.5,12,310这四个数组成比例,其外项的积是()A.1.35 B.3.75 C.33.75 D.2.25【例27】如果a的13等于b的14(a、b都不等于0),则a、b的比值是______.8/ 14【例28】2,5,7的第四比例项是______.【例29】 已知():1:2x y x -=,则x : y =__________.【例30】 已知3a = 4b = 5c ,求a : b : c .【例31】 将a 添加入2,4,5后,这四个数可以组成比例,那么a =______.【例32】 在一个比例式中,若两个外项都是质数,且这两个外项的和是21,一个内项是385,则另一个内项是______.【习题1】下列说法正确的是()A.3比4的比值是4 3B.两个比组成的式子叫做比例C.若a : b = 7 : 9,则a = 7,b = 9D.一个正方形的周长与边长一定成比例【习题2】某班有男生26人,女生22人,女生人数与全班人数的比是______.【习题3】甲数是乙数的8倍,乙数是丙数的12倍,甲数与丙数的比值是______.【习题4】已知45mn=,则m nm+=______.【习题5】如果a : b = 2 : 3,b : c = 4 : 5,那么a : b : c为()A.8 : 12 : 15 B.4 : 6 : 15 C.8 : 10 : 15 D.6 : 8 : 18【习题6】已知:11:16:254x=,求x的值.【习题7】两个数的比值是35,比的前项和后项同时扩大3倍,那么比值的倒数是______.随堂检测10/ 14【习题8】a比b小12,b比c大13,用最简整数比表示a : b : c = ____________.【习题9】若x与12、13、18这三个数可以组成比例式,则x可能是______.【习题10】若正整数x、y满足111182x y-=,且x : y = 7 : 13,则x + y =______.【作业1】求比值:1.4小时:40分钟=__________;71:584=__________.【作业2】已知62:473x=,则x =______.【作业3】如果x、y都不为零,且2x = 3y,那么下列正确的是()A.23xy=B.32x y=C.32xy=D.23xy=【作业4】下列各组数中,能组成比例的是()A.2,3,4,5 B.12,13,16,15C.0.5,0.25,0.2,0.1 D.3,5,12,10【作业5】某班男生人数比女生多14,男生和全班人数的比是___________.课后作业12/ 14【作业6】 若2:5a b =,且2b ac =,则b : c =__________.【作业7】 化最简整数比:52656::3272211=________________.【作业8】 (1)若12::53a b =,:0.2:0.7b c =,求::a b c . (2)已知22::34a b =,:2:3a c =,求::a b c .【作业9】 任何一个正整数n 都可以进行这样的分解:n s t =⨯(s ,t 是正整数,且s t ≤),如果p q ⨯(p q ≤)在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p F n q =.例如18可以分解成118⨯,29⨯,36⨯这三种,这时就有()311862F ==.给出下列关于()F n 的说法:(1)()122F =;(2)()3248F =;(3)()273F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是( )A .1个B .2个C .3个D .4个14 / 14【作业10】 若x 、y 、z 满足x : y : z = 3 : 4 : 5,且222x y z xyz ++=,则x + y + z =______.。
小学六年级比和比例知识点
小学六年级比和比例知识点1、比和比例的联系与区别:比与比例的区别1、意义不同比的意义两个数相除又叫做两个数的比。
比例的意义表示两个比相等的式子叫做比例。
2、名称不同比的名称两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比例的名称组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。
3、性质不同比的性质比的前项和后项同时乘或者除以相同的数(0除外),比值不变。
比例的性质在比例里,两个外项的积等于两个内项的积。
4、应用不同应用比的意义求比值。
应用比的性质化简比。
应用比例的意义判断两个不能否组成比例。
应用比例的性质不但可以判断两个比能否组成比例,还可以解比例。
2、比同分数、除法的联系与区别:比分数除法联系前项分子被除数比号分数线除号后项分母除数比值分数值商比的基本性质分数的基本性质除法的商不变性质区别比表示两个数之间的关系。
分数表示一个数。
除法表示一种运算。
3、求比值与化简比的区别:一般方法结果求比值根据比值的意义,用前项除以后项。
是一个数。
可以是整数、小数或分数。
化简比根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外)。
是一个比。
它的前项和后项都是整数,并且是互质数。
4、化简比:(1)整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。
(2)小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。
(3)分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。
5、比例尺:图上距离和实际距离的比叫做这幅图的比例尺。
6、比例尺=图上距离︰实际距离7、正比例和反比例(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
(2)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
比和比例(沪教版六年级第三章知识点)
比和比例(沪教版六年级第三章知识点)比的概念:a,b 是两个数或者两个同类的量,为了把b 和a 相比较,将a 和b 相除,叫做a和b 的比,记作a:b 或写成b a,其中b ≠0;读作a 比b 或a 与b 的比。
比值:在a :b 中,a 叫做比的前项,b 叫做比的后项,前项a 除以后项b 所得的商叫做比值。
(比值是一个数,可以用分数、小数或整数表示。
)比和比值的区别:从意义上看,比表示两个数的运算,而比值是结果;从写法上看,比必须有前、后项,且都是数,可以是整数、小数或分数;而比值本身就是一个数,可以是整数、小数或分数,若写成分数一定要是最简分数。
用比的方法,可以知道a 是b 的几倍(几分之几)注意:1、比表示两个量的关系,比值是数值,不含比号。
(注意区分比和比值)2、求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位。
3、比是有序的,比的前项、后项不能颠倒。
4、比值可以是整数、小数,也可以是分数。
5、如果把比写成分数形式,在约分时,分母中出现“1”表示比的后项,不可省略不写。
6、小数比化为最简整数比,先把比的前项和后项化成整数,再来化简。
比、分数和除法三者之间的关系是:即:比的前项相当于分数的分子和除法中的被除数;比的后项相当于分数的分母和除法中的除数; 比值相当于分数的分数值和除法中的商。
除法商不变性质:被除数和除数同时乘以或者除以相同的数(0除外)它们的商不变。
分数的基本性质:分数的分子与分母都乘以或者都除以同一个不为零的数,所得的分数与原分数的大小相等。
比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),比值不变。
可以化为最简整数比。
注意:1、整数比的化简就是用比的前项和后项同时除以它们的最大公因数,直至两个前项和后项互素;2、分数比的化简可以把比式看成除式,直接进行分数除法运算(如果用除法化简的结果是整数,那么分母1不能省略,把商化成比的形式);3、小数比的化简先把比的前项和后项化成整数,再来化简;4、带有单位的比的化简,先把单位统一后在化简。
小学六年级--比和比例知识点梳理
复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。
(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题 1、 按比例分配问题 (1) 按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2) 解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x 的比例式,再解比例求出x 。
2、 用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为x ,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
小学六年级--比和比例知识点梳理
复习(fùxí)课:比和比例知识(zhī shi)点一: 比和比例(bǐlì)的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
化简比的依据。
解比例的依据。
知识点二:比和分数(fēnshù)、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)除数商知识点三:求比值(bǐzhí)和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系名称不同点相同点意义不相同变化方向不相同关系式不同正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
kxy=(一定)两种相关联的量,一种量变化另一种量也随着变化反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
沪教版六年级-比和比例及圆和扇形的复习-带答案
基本内容比和比例及圆和扇形的复习知识精要一.比和比例1、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
2、比例的应用(1)比例尺①比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
比例尺表示的是图上距离和实际距离的倍比关系,不能带计量单位,可以写成带比号的形式,也可以写成分数形式。
②比例尺的分类:根据表现形式的不同,把比例尺分为数值比例尺和线段比例尺;根据图上距离是将实际距离缩小或者放大,把比例尺分为缩小比例尺和放大比例尺。
为了方便,一般把缩小比例尺写成前项为“1”的形式,而把放大比例尺写成后项为“'1”的形式。
③根据“图上距离:实际距离=比例尺”可以列比例求出图上距离或实际距离,也可以利用“图上距离=实际距离x比例尺”‘“实际距离=图上距离+比例尺”直接列式求出图上距离或实际距离。
④应用比例尺画图:先根据实际距离和纸张的大小,确定合适的比例尺,再根据确定的比例尺求出图上距离,然后根据求出的图上距离画出相应的平面图,并标出平面图的名称及比例尺。
(2)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
(3)比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点:①题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位解:25%⨯(100%-80%)=5%三、求下列图形的面积 解:16π-16精解名题例1、六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。
上海市沪教版(五四制)六年级第一学期第三章比和比例:比的意义和性质讲义
上海市沪教版(五四制)六年级第一学期第三章比和比例:比的意义和性质讲义【知识要点】1. 比的概念:a ,b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除叫做a 与b 的比;记作a:b 或写成)0(≠b b a ,读作a 比b 或a 与b 的比。
2. 比值:在a:b 中,a 叫做比的前项,b 叫做比的后项。
前项a 除以后项b 所得的商叫做比值。
比值是一个数,能够用分数、小数或整数表示。
3. 比、分数、除法三者之间的关系:4. 比的差不多性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变,即a:b=am:bm=)0)((:)(≠÷÷m m b m a .5. 三项连比的性质:(1)假如k n m c b a k n c b n m b a ::::,::,::===那么(2)假如k c k b k a ck bk ak c b a k ::::::,0==≠那么 【典型例题】例1. 求下列各式的比值:(1)15.0:9.0(2)吨千克:327200(3)5.0:311(4)小时分钟4.0:48(5)200毫升:1升(6)平方米平方厘米3:450 例2. 自行车2小时行了16千米,飞机2秒钟行了1200米,自行车与飞机的速度之比是多少?例3把下列各连比化成最简整数比:(1)40:15:25 (2)2.8:2:0.8 (3)212:2.1:45 例4. 依照下列条件,求a:b:c.(1)已知a:b=3:5 b:c=5:8 (2) 已知a:b=3:5 b:c=7:8【小试锋芒】1. 比值相当于分数的_______,前项相当于分数的_________,后项相当于分数的_______.2. 比的前项是32,比的后项是23,他们的比值是________.3. 20cm :1.2m 的比值是_________.4. 27与8之比为_________.5. 假如比的前项与后项相等,那么比值是_______.6.81:0.125化成最简整数比是________. 7. 假如x:y=4:5,x:z=4:7,那么x:y:z=_________.假如x:y=0.2:1.2, y:z=1.5:0.4, 那么x:y:z=__________.8. 假如两个数的比值为31,比的前项和后项同时缩小3倍,那么比值等于________.9. 填空:30:25=_____:5 0.75:4.5 = 1:______ 81 = 9:5 76厘米:57厘米=______:310. 判定题:(1)比的前项和后项同时乘以相同的数,比值不变.()(2)甲数:乙数=7:3,确实是甲数是7,乙数是3.()(3)0.25:41化简后的比是1.()(4)35厘米和25米的比值是57厘米.()(5)51:41:3能够化简为3:5:4.()11.假如比的后项是53,比值是212,那么比的前项是()A. 23B. 32C. 256D. 625 12.假如a 是b 的107,那么b 和a 的比为() A.7:10 B.10:7 C.3:7 D. 731 13.依照下列条件,求x:y:z(1)x:y=3:7, x:z=4:1 (2) x:y=0.2:0.3, y:z=31:41 14. 把下列各连比化为最简整数比:(1)12:20:28 (2)0.3:0.45:0.6 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
比和比例的知识点总结
比和比例的知识点总结一、比的知识点。
1. 比的意义。
- 两个数相除又叫做两个数的比。
例如:3÷2,可以写成3:2。
其中“:”是比号,比号前面的数叫做比的前项(如3),比号后面的数叫做比的后项(如2),比的前项除以后项所得的商叫做比值(如3÷2 = 1.5,1.5就是比值)。
- 比表示两个数的关系,比值是一个数,可以是整数、小数或分数。
2. 比的基本性质。
- 比的前项和后项同时乘或除以相同的数(0除外),比值不变。
例如:2:3=(2×2):(3×2)=4:6;6:9=(6÷3):(9÷3)=2:3。
- 利用比的基本性质可以化简比。
3. 化简比。
- 整数比化简:把比的前项和后项同时除以它们的最大公因数。
例如:12:18=(12÷6):(18÷6)=2:3。
- 分数比化简:先把比的前项和后项同时乘它们分母的最小公倍数,转化成整数比,再化简。
例如:(2)/(3):(4)/(5)=((2)/(3)×15):((4)/(5)×15)=10:12 = 5:6。
- 小数比化简:先把比的前项和后项的小数点同时向右移动相同的位数,转化成整数比,再化简。
例如:0.6:0.9=(0.6×10):(0.9×10)=6:9 = 2:3。
4. 求比值与化简比的区别。
- 求比值是用比的前项除以后项,结果是一个数。
例如:3:4 = 3÷4=(3)/(4)。
- 化简比是把一个比化成最简形式,结果是一个比,即前项和后项互质。
例如:6:8化简后为3:4。
二、比例的知识点。
1. 比例的意义。
- 表示两个比相等的式子叫做比例。
例如:2:3 = 4:6,2、3、4、6这四个数组成了一个比例,组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项(如2和6),中间的两项叫做比例的内项(如3和4)。
2. 比例的基本性质。
精选第三章比和比例知识点及易错易混点小结
第三章比和比例知识点部分:一、比的意义区分两个易混点:练习1:化简下列比:(1)5.7:0.19;(2)1.25时:1时25分.(3)1.25米:1米25厘米;(4)2.45时:2小时45分;(5)2.45平方米:2平方米45平方厘米练习2:(1)已知a:b=:3.6, b:c=:4%,求a:b:c.(2)已知111::0.3,::,求::.543==x y y z x y z(3)已知1:1:0.25,:75%:0.125,求::.4==a b b c a b c(4)已知11:2:5,:25%:0.4,求::.24==a b b c a b c总结化简三连比的步骤及注意点:三、比例:若____________,则a、b、c、d成比例,若________,即___________,那么就把b叫做a和c的比例中项.比例的基本性质(比例式与等积式的互换):若________,那么________;反之若________,那么________.四、百分数、分数、小数的互化练习:1.将下列百分数化为最简分数72%55% % 110%1.82.将下列小数或者整数化为百分数0.66 0.0075 8.28 13.将下列百分数化成小数或整数62.5%125.8% % 600%0.554.将下列分数化为百分数119281450157五、优秀率及一类率的问题1、预备(1)班有44名学生,在上次数学双周测中有11名学生成绩达到优秀(90分以上).优秀率是多少?2、预备(2)班有40名学生,优秀率是30%,那么优秀人数有几名?3、预备(3)班的优秀人数是10名,优秀率是25%,那么你能知道他们班的人数吗?得到公式:优秀率=_____________________.公式变形1:优秀人数=_____________________..公式变形2:总人数=_____________________.归纳:已知两个量就能求第三个量.六、增长率问题练习:某厂去年产值200万元,今年产值估计240万元,估计今年产值的增长率是多少?变式1:某厂去年产值200万元,估计今年产值的增长率是10%,今年产值是多少万元?变式2:某厂今年产值220万元,比去年产值的增长10%,求去年产值是多少万元?公式:增长率=_____________________.公式变形1:增长的数=_____________________.公式变形2:新数=_____________________..此处一定要强调原来的基数是哪个数.七、盈亏问题练习:一件服装的成本价是80元.(1)如果这件衣服的售价为100元,盈利是__________元,盈利率_________.(2)如果商家期望此服装的盈利率定为20%,则这件服装的售价为________.(3)如果因为急于回笼资金,导致这款服装的亏损率为20%,求此时服装的售价为______.补充成数:增产“一成”就是增产_______,增产“一成五”就是增产_____.八、利税问题:1.李先生以2.5%的年利率将钱存入银行,存期五年,到期时银行支付他1.5万元利息.问李先生存款是多少元?(不计利息税)2.李先生将100000元钱存入银行,存了两年后得到本利和104500元,你能求出银行的年利率么?(不计利息税)3.李先生按照年利率3.25%将20000元存入银行,若干年后去取得税后本利和共22600元,你可以算出李先生这笔钱在银行存了几年么?4.小明将2000元存入银行,存两年,月利率为0.14%,到期需按20%的税率支付利息税,小明到期实际获得多少利息?九、等可能事件练习:把这个圆盘平均分成16个区域编号分别为1、2……16,求指针落在2的倍数区域的可能性大小;求指针落在3的倍数区域的可能性大小.补充:a比b多(少)百分之几的问题.练习:(1)一件衣服原件100元,先降价10%,再提价10%后是多少钱?(1)一件商品原价是450元,先提价10%,再降价10%后是多少钱?(2)一件商品先涨价5%,后降价5%,则现价是原价的百分之几?(3)一件商品先提价10%再降价10%后买198元,则这件商品原价多少钱?(4)某商品先涨价25%,欲恢复原价,必须降价百分之几?(5)440比_________多10%. 120比_________多20%,_________比120多20%,160比_________少20%,_________比160少20%。
上海市六年级第一学期第三章比和比例:比例讲义
上海市六年级第一学期第三章比和比例:比例讲义【知识要点】1.比例:a,b,c,d 四个量,假设a:b=c:d 或dc b a =,那么久说a,b,c,d 成比例,其中a,b,c,d 区分叫做第一、二、三、四比例项,第一比例项a 和第四比例项d 叫做比例外项,第二比例项b 和第三比例项c 叫做比例内项.假设两个比例内项相反,即a:b=b:c 或c b b a =时,那么把b 叫做a 和c 的比例中项. 2.比例的基本性质:内项之积等于外项之积.即假设a:b=c:d 或dc b a =,那么ad=bc,反之,假设a,b,c,d 都不为零,且ad=bc ,那么a:b=c:d 或dc b a =. 3.比例性质的运用: 假定d c b a =,可对其停止如下变形: 〔1〕交流两内项得:db c a = 〔2〕交流两外项得:ac bd = 〔3〕同时交流两内、外项得:a b c d = 【典型例题】例1.下面每组的两个比能否能组成比例?假设能组成比例,那么把组成的比例式写出来: 〔1〕20:5和1:4 ;〔2〕0.6:0.2和41:43;〔3〕假定dc b a =,那么2a:b 和2c:d 例2.求以下各式中的x. 〔1〕3176x =〔2〕5:〔x+1〕=4:(2x-1) 〔3〕813025.6=+x 〔4〕x :5341:23= 例3. 依据以下各式,求a:b.〔1〕3a=4b (2)75b a = (3)7b=2a (4) ab 82= 例4. 一架飞机4秒飞了1400米,两地相距210千米,飞机飞过这段距离共需时间多少分?例5. 小杰1小时可用电脑输入中文字2400个,那么他12分钟可输入多少字?【小试矛头】1. 以下语句正确的选项是〔〕A. 1.2小时:1小时20分=1:1B.假设a:b=11:12,那么a=11,b=12C.3厘米:3米的比值是0.01D.0.4:52化为最简整数比是12. :ab=cd(a,b,c,d 为正整数),以下各式错误的选项是〔〕A. b dc a= B. b c d a = C. d b a c = D. d cb a =3. 以下四组数中,能组成比例的是〔〕A.0.6,5,1.4,2.1B.2,3,1,4C.5,4,3,2D.214,721,32,214 4. 5.2535.431⨯=⨯,下面哪个比例式不成立〔〕A. 5.2:5.453:31= B. 5.4:5.253:31=C. 31:5.253:5.4= D. 53:5.431:5.2=5.假设==a b b a :,74那么〔〕 A.47:1 B. 1:74C. 7:4D. 4:76. 27与3的比例中项可以是________.7. 等积式65.05.12⨯=⨯化成比例式是_______.8. 4.8:0.6=_______:2; 3:18=5:________.9. 假定m 是2,3,6的第四比例项,那么m=________.10.依据44.187.0⨯=⨯,用1.4和4作内项,写出两个不同的比例.11. 9与x 的比例中项是6,求x.12. 求以下各式中的x.〔1〕432321:=x 〔2〕54:75.0x=〔3〕0.65:x=2.6:2 (4)2:3=(x+4):2x13. 假设20元钱可以买3个西瓜,如今要买15个这样的西瓜,一共需求多少钱?〔用比例方法求解〕14. 小王任务3天失掉432元的报酬,假设他任务20天,可以失掉多少报酬?15. 一个食堂有大米和面粉假定干千克,大米和面粉的比是7:9,其中面粉比大米多200千克,求大米和面粉各多少千克?【大显神通】1.化简比:〔1〕1:875.1:1211〔2〕0.35:0.49:1.4 2.假定x 与2、3、4这三个数可以组成比例式,那么x=________.3.写出四个用2、4、5、10这四个数组成的比例.4.815吨大豆可榨油23吨,请问1吨大豆可榨油几吨?要榨1吨油需求大豆几吨? 5. 养鸡场里共有191只鸡,其中公鸡数的91和11只母鸡都因患禽流感而需求深埋,剩下的母鸡与公鸡数量之比为3:4,请问养鸡场里原有多少只公鸡,多少只母鸡?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比
比的概念:a ,b 是两个数或者两个同类的量,为了把b 和a 相比较,将a 和b 相除,叫
做a 和b 的比,记作a:b 或写成b
a
,其中b ≠0;读作a 比b 或a 与b 的比。
比值:在a :b 中,a 叫做比的前项,b 叫做比的后项,前项a 除以后项b 所得的商叫做比
值。
(比值是一个数,可以用分数、小数或整数表示。
)
即:比的前项相当于分数的分子和除法中的被除数;
比的后项相当于分数的分母和除法中的除数; 比值相当于分数的分数值和除法中的商。
除法商不变性质:被除数和除数同时乘以或者除以相同的数(0除外)它们的商不变。
分数的基本性质:分数的分子与分母都乘以或者都除以同一个不为零的数,所得的分数与
原分数的大小相等。
比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),比值不变。
可以化为最简整数比。
注意:
1、整数比的化简就是用比的前项和后项同时除以它们的最大公因数,直至两个前项和后项互素;
2、分数比的化简可以把比式看成除式,直接进行分数除法运算(如果用除法化简的结果是整数,那么分母1不能省略,把商化成比的形式);
3、小数比的化简先把比的前项和后项化成整数,再来化简;
4、带有单位的比的化简,先把单位统一后在化简。
1
2
互素),
然后再比例尺=图上距离:实际距离
比例
比例:a、b、c、d四个量中,如果a:b=c:d,那么就说a、b、c、d成比例,也就是表示两个比相等的式子叫做比例。
(其中a、b、c、d分别叫做第一、二、三、四比例项,第一比例项a和第四比例项d叫做
比例外项;第二比例项b 和第三比例项c 叫做比例内项。
)
如果两个比例内项相同,即a :b=b :c ,那么把b 叫做a 和c 的比例中项。
比例的基本性质:(内项之积等于外项之积)
即,如果a :b=c :d 或d c
b a =,那么ad=b
c ,反之,如果a 、b 、c 、
d 都不为零,且ad=bc ,
那么a :b=c :d 或d
c
b a =。
比例的基本性质可进行比例变形,常用的变形有:d
c
b a =
1、交换两内项得:b
a
23
作n%
小数化成百分数:小数化成百分数,将小数点向右移两位,同时在右面添加百分号。
百分数化成小数:将百分号前的数字的小数点向左移两位,同时去掉后面的百分号。
(分数化成小数不能除尽用“≈”,小数化成百分数用“=”。
)
百分比的实际应用
100⨯=
总人数
及格人数
及格率%
100⨯=
产品总数合格产品数
合格率%
100⨯=
原来的产量
增加的产量
增产率%
100⨯=
应该出勤人数实际出勤人数
出勤率%
100⨯=
得票数
得票率%
利息
等可能事件
概率:对于一个随机事件A 我们把表示其发生可能性大小的数值称为随机事件A 发生的
概率,记为P (A ) P=
所有等可能的结果数发生的结果数
(P 是概率的英文单词probability 首字母)。