人工智能算法综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能算法综述

人工智能算法大概包括五大搜索技术,包括一些早期的搜索技术或用于解决比较简单问题的搜索原理和一些比较新的能够求解比较复杂问题的搜索原理,如遗传算法和模拟退火算法等。

1、盲目搜索

盲目搜索又叫做无信息搜索,一般只适用于求解比较简单的问题。包括图搜索策略,宽度优先搜索和深度优先搜素。

1、图搜索(GRAPH SERCH)策略是一种在图中寻找路径的方法。在有关图的表示方法中,节点对应于状态,而连线对应于操作符。

2、如果搜素是以接近其实节点的程度依次扩展节点的,那么这种搜素就叫做宽度优先搜素(breadth-first search 。

3、深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。

二、启发式搜索

盲目搜索的不足之处是效率低,耗费过多的时间和空间。启发信息是进行搜索技术所需要的一些有关具体问题的特性的信息。利用启发信息的搜索方法叫做启发式搜索方法。

启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。

3、博弈树搜索

诸如下棋、打牌、竞技、战争等一类竞争性智能活动称为博弈。博弈有很多种,我们讨论最简单的"二人零和、全信息、非偶然"博弈,其特征如下:

(1 对垒的MAX、MIN双方轮流采取行动,博弈的结果只有三种情况:MAX方胜,MIN方败;MIN方胜,MAX方败;和局。

(2 在对垒过程中,任何一方都了解当前的格局及过去的历史。

(3 任何一方在采取行动前都要根据当前的实际情况,进行得失分析,选取对自已为最有利而对对方最为不利的对策,不存在掷骰子之类的"碰运气"因素。即双方都是很理智地决定自己的行动。

在博弈过程中,任何一方都希望自己取得胜利。因此,当某一方当前有多个行动方案可供选择时,他总是挑选对自己最为有利而对对方最为不利的那个行动方案。此时,如果我们站在MAX方的立场上,则可供MAX方选择的若干行动方案之间是"或"关系,因为主动权操在MAX方手里,他或者选择这个行动方案,或者选择另一个行动方案,完全由MAX方自已决定。当MAX方选取任一方案走了一步后,MIN方也有若干个可供选择的行动方案,此时这些行动方案对MAX方来说它们之间则是"与"关系,因为这时主动权操在MIN方手里,这些可供选择的行动方案中的任何一个都可能被MIN方选中,MAX方必须应付每一种情况的发生。

这样,如果站在某一方(如MAX方,即MAX要取胜,把上述博弈过程用图表示出来,则得到的是一棵"与或树"。描述博弈过程的与或树称为博弈树,它有如下特点:

(1 博弈的初始格局是初始节点。

(2 在博弈树中,"或"节点和"与"节点是逐层交替出现的。自己一方扩展的节点之间是"或"关系,对方扩展的节点之间是"与"关系。双方轮流地扩展节点。

(3 所有自己一方获胜的终局都是本原问题,相应的节点是可解节点;所有使对方获胜的终局都认为是不可解节点。

四、遗传算法

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual组成。每个个体实际上是染色体(chromosome带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的

工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

5、模拟退火算法

模拟退火算法(Simulated Annealing,SA最早由Kirkpatrick等应用于组合优化领域,它是基于Mente-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。

相关文档
最新文档