中南大学材料力学练习册答案全集
《材料力学》练习册答案
《材料力学》练习册答案习题一一、填空题1.对于长度远大于横向尺寸的构件称为(杆件)。
2.强度是指构件(抵抗破坏)的能力。
3.刚度是指构件(抵抗变形)的能力。
二、简答题1.试叙述材料力学中,对可变形固体所作的几个基本假设。
答:(1)均匀连续假设:组成物体的物质充满整个物体豪无空隙,且物体各点处力学性质相同(2)各向同性假设:即认为材料沿不同的方向具有相同的力学性质。
(3)小变形假设:由于大多数工程构件变形微小,所以杆件受力变形后平衡时,可略去力作用点位置及有关尺寸的微小改变,而来用原始尺寸静力平衡方程求反力和内力。
2.杆件的基本变形形式有哪几种?答:1)轴向拉伸与压缩;2)剪切;3)扭转;4)弯曲3.试说明材料力学中所说“内力”的含义。
答:材料力学中所说的内力是杆件在外力作用下所引起的“附加内力”。
4.什么是弹性变形?什么是塑性变形?答:杆件在外力作用下产生变形,当撤掉引起变形的因素后,如果杆件的变形完全消失而恢复到原来状态,这种变形称为是完全弹性的即弹性变形。
而撤掉引起变形的因素后,如果杆件的变形没有完全恢复而保留了一部分,被保留的这部分变形称为弹性变形又叫永久变形。
三、判断题1.材料单元体是无限微小的长方体(X )习题二一、填空题1.通过一点的所有截面上(应力情况的总和),称为该点的应力状态。
45的条纹,条纹是材料沿(最2.材料屈服时,在试件表面上可看到与轴线大致成ο大剪应力面)发生滑移而产生的,通常称为滑移线。
3.低碳钢的静拉伸试验中,相同尺寸的不同试件“颈缩”的部位不同,是因为(不同试件的薄弱部位不同)4.对于没有明显屈服阶段的塑性材料,通常规定以产生塑性应变(εs=0.2% 时的应用定为名义屈服极限,用δρ2表示)5.拉,压杆的横截面上的内力只有(轴力)。
6.工程中,如不作特殊申明,延伸率δ是指(L=10 d)标准试件的延伸率二、简答题1.试叙述低碳钢的静拉伸试验分几个阶段?各处于什么样的变形阶段。
材料力学习题册参考答案
材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
中南大学材料力学练习题答案1
轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;ssn σ;b σ;bbn σ二、计算题1.2.解:横截面上应力 M P a Pa A F N 10010100102010200643=⨯=⨯⨯==-σAB 斜截面(︒=50α):M P aM P aAB AB2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσBC 斜截面(︒-=40α):MPaMPaBC BC2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ杆内最大正应力和最大切应力分别为:M P aM P a502100max max ====στσσ3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ M P a p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ M P a p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 N A B AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa AF NAB AB93.7310058.421060243所以斜杆AB 是安全的。
5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===d AEF ENt t πσεmm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ(2)mmm ll l ll l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C 8.AP 25(压);)(27←EAPa9.[]τπ≤dhP;[]bs d D Pσπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。
材料力学完整课后习题答案
习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。
解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。
荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7 图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。
材料力学习题册1-14概念答案.
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 1.2 内力只作用在杆件截面的形心处。
( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( × ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ∨ ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( × ) 1.9 同一截面上各点的切应力τ必相互平行。
( × ) 1.10 应变分为正应变ε和切应变γ。
( ∨ ) 1.11 应变为无量纲量。
( ∨ ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ∨ ) 1.13 若物体内各点的应变均为零,则物体无位移。
( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ∨ )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( × )二、填空题1.1 材料力学主要研究 受力后发生的以及由此产生1.2 拉伸或压缩的受力特征是 ,变形特征是 。
B题1.15图题1.16图外力的合力作用线通过杆轴线 杆件1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
材力习题册参考答案1
材力习题册参考答案(1第一章绪论一、选择题1.根据均匀性假设,可认为构件的在各处相同。
A.应力B.应变 C.材料的弹性系数D.位移2.构件的强度是指,刚度是指,稳定性是指。
A.在外力作用下构件抵抗变形的能力 B.在外力作用下构件保持原有平衡状态的能力 C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) ,图(b),图(c) 。
A.0 B.2r C.r D. 4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等。
A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指。
A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。
2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件- 1 -提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。
4.度量一点处变形程度的两个基本量是应变ε和切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
2.外力就是构件所承受的载荷。
3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
4.应力是横截面上的平均内力。
5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
6.材料力学只限于研究等截面杆。
四、计算题1.图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为,但AB和BC仍保持为直线。
材料力学习题及参考答案
答案:
5.对于拉伸曲线上没有屈服平台的合金塑性材料,
工程上规定 0.2 作为名义屈服极限,此时相对应的
应变量为 0.2%。
()
答案:
四、计算
1.矿井起重机钢绳如图(a)所示,AB段截面积 A1 300mm2, BC段截面积 A2 400mm2,钢绳的单位体积重量 28kN / m3, 长度l 50m,起吊重物的重量 P 12kN,求:1)钢绳内的最大 应力;2)作轴力图。
2P
P
P
1 23 4
P
1
m Pa
23
4
2a
a
2a
(a)
(b)
2a
2
a/2
1
a
1
c
4R
A 4
R 3
3
C R
P
1 45o2
B
2
R
D 1
d
解: 各截面上内力分量的方向从略,仅记大小。
a 2P拉伸,N2 P拉伸;
bQ1 P,M1 2Pa;
Y 2N cos P 0,得
N=
P
2cos
a
y
N
C
x
P
c
(2)求杆的变形 AC、BC杆的伸长变形相同,即
l Nl Pl b
NAC 和P拉 伸
NCB P。 ( )
答案:
C
A
P
B
ll 2.图示结构由两根尺寸完全相同的杆件组成。AC杆为铜 合金,BC杆为低碳钢杆,则此两杆在力P作用下具有相 同的拉应力。 ( )
答案:
A
B
C P
3.正应变的定义为 / E。
中南大学材料力学练习册答案全集
轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;s s n σ;b σ;bb n σ 二、计算题1.2.解:横截面上应力 MPa Pa A F N 10010100102010200643=⨯=⨯⨯==-σ AB 斜截面(︒=50α):MPaMPaAB AB 2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσ BC 斜截面(︒-=40α):MPaMPaBC BC 2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ 杆内最大正应力和最大切应力分别为:MPaMPa502100max max ====στσσ 3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ MPa p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ MPa p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 NAB AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa A F NAB AB93.7310058.421060243 所以斜杆AB 是安全的。
5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===dAE F ENt t πσε mm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ (2)mmm l l l l l l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C8.A P 25(压);)(27←EAPa9.[]τπ≤dh P ;[]bs d D P σπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。
中南大学材料力学答案
静 不 定 结 构一. 概念题1静不定结构与静定结构的区别是什么?答:静不定结构有多余约束,只用静力学平衡方程不能求出全部的约束力或内力。
2与静定结构相比,静不定结构有哪些特性 答:静不定结构的强度、刚度、稳定性更好。
静不定结构的某个约束失效,整个结构的平衡不会破坏。
3什么是力法的基本体系和基本未知量,为什么首先要计算基本未知量答:静不定结构中,解除多余约束后得到的静定结构称为原静不定结构的基本体系或称静定基。
解除多余约束并以多余约束力代替,多余约束力又称原静不定结构的基本未知量。
一般多余约束处的变形量已知。
所以由该处的变形条件方程首先求出基本未知量。
4对称结构在对称力或反对称力的作用下,结构的内力各有何特点?答:对称结构在正对称力的作用下,沿结构对称轴切开,则两对称截面上的内力对称,反对称内力为0。
对称结构在反对称力的作用下,沿结构的对称轴切开,两对称截面上的内力反对称,正对称内力为零。
5去除多余约束的方式有哪几种?二计算题1 如图示ABC 梁,已知力P F ,长度a l ,,弯曲刚度EI 。
以固定端外力偶A M 作为多余约束力,分别用卡氏定理和单位力法求梁的约束力,作梁的弯矩图,求C 点的挠度。
解 1)以固定端外力偶A M 作为多余约束力,则静定基本结构如图示 由平衡方程0=∑Bm0=--a F Ml F P AA得:la F MF P AA += (向下)2)用卡氏定理求梁的约束力 a) AB 段弯矩方程 111x la F MMx F M M P AAA A+-=-=, )0(1l x ≤≤1111x lMM A-=∂∂CB 段弯矩方程 22x F M P = )0(2a x ≤≤02=∂∂AMMb) A 端的变形条件 0=A θc) 用卡氏定理 00221011=∂∂+∂∂=⎰⎰aAlAA MEI M M dx MEI M M θ即:0)11)((1110=-+-⎰dx x lx la F MMP AlA03121312121=+-+--al F al F l M l M l M l M P P A A A A 得 2aF MP A=得:la F la F MF P P AA 23=+=3)用单位力法求梁的约束力a) 在静定基本结构的A 端加单位力偶10=M 。
材料力学练习册答案
第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
GPa E 200=钢。
解:轴力图如图。
杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
(完整版)材料力学习题集(有答案)汇总,推荐文档
(B) 杆内最大轴力 FNmax ql ;
答:A
பைடு நூலகம்
(B)几何关系导出的; (D)强度条件导出的。
d
h d
F b a
F
b F
b
4. 销钉接头如图所示。销钉的剪切面面积
为 ,挤压面面积
。
答: 2bh ; bd
5. 木榫接头的剪切面面积为 和 ,挤压面面积为
。 F
a c
答: ab ; bd ; bc
d
6. 图示厚度为 的基础上有一方柱,柱受轴向压力F 作
F
后截面长边和短边的比值为
。另一轴向拉杆,横截面是
长半轴和短半轴分别为 a 和 b 的椭圆形,受轴向载荷作用变形后横
截面的形状为
。
13. 一长为 l,横截面面积为 A 的等截面直杆,质量密度为 ,弹性模量为 E,该杆铅垂悬
挂时由自重引起的最大应力 max
,杆的总伸长l
。
14. 图示杆 1 和杆 2 的材料和长度都相同,但横截面面积 1
(A)bh ;
(B)bh tan ;
(C) bh ; (D) bh
。
h
cos
cos sin
答:C
2. 图示铆钉连接,铆钉的挤压应力 bs有如下四个答案
(A) 2F ; (B) F ;
π d2
2d
F
(C) F ; (D) 4F 。
材料力学习题大全及答案
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
材料力学习题及参考答案
2.工程构件在实际工作环境下所能承受的应力称 为( ),工件中最大工作应力不能超过此应力, 超过此应力时称为( )。
答案: 许用应力 ,失效 。
3.金属拉伸标准试件有( )和( )两种。
答案: 圆柱形,平板形 。
4.在低碳钢拉伸曲线中,其变形破坏全过程可分为( ) 个变形阶段,它们依次是 ( )、( )、( )、和 ( )。
答案: 连续性、均匀性、各向同性。
3 .构件所受的外力可以是各式各样的,有时是很复杂的。 材料力学根据构件的典型受力情况及截面上的内力分量 可分为( )、( )、( )、( )四种基本变形。
答案: 拉伸或压缩、剪切、扭转、弯曲。
二、计算
1. 试求下列杆件中指定截面上内力分量,并指出相应的
变形形式。
I
P
P
I
解: 根据轴向拉伸杆件斜截面上正应力和剪力公式,
各自的容许条件为
x cos2
P cos2
A
0a
x sin cos
P sin cos
A
0b
式(b)除以式(a),得
C
NC A2
12.98103 4 104
36.8MPa
所以
max B 41.4MPa
C l2 2
B l1 1
A P
aБайду номын сангаас
x
N2
22
x2
N1
11
x1 A1
A2 B A1
o
A
A
PP
b
2)作轴力图 取1-1截面(AB段,见图(b))
材料力学习题册_参考答案(1-9章)
(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。
材料力学习题及参考答案
工程上规定 0.2 作为名义屈服极限,此时相对应的
应变量为 0.2%。
()
答案:
四、计算
1.矿井起重机钢绳如图(a)所示,AB段截面积 A1 300mm2, BC段截面积 A2 400mm2,钢绳的单位体积重量 28kN / m3, 长度l 50m,起吊重物的重量 P 12kN,求:1)钢绳内的最大 应力;2)作轴力图。
C
l2 2
B
l1 1
A P
a
解:1)在可能危险的1段B面,2段C面截开(图b),有
NB P A1l 12 28 3104 50 12.42kN
B
NB A1
12.42 103 3104
41.4MPa
NC P A1l A2l 12.42 28 4104 50 12.98kN
A B
C
o
答案: A,B,C,C
3.两端固定的阶梯杆如图所示,横截面面积A2 2 A1 , 受轴向载荷P后,其轴力图是( )。
A2
A1 B
AP
x
ll
N
P
N
2
P
x
2
x
P
A
B
N
P
3
2P
x
3
C
答案: C
N
P
x
D
三、判断题
1.两端固定的等截面直杆受轴向载荷P作用,则图示AC、
CB段分别受压缩
NAC 和P拉 伸
y
II
x Iz
答案: B
(A)
cQ1
P,M1
1 2
Pa;
弯曲
2 P,M2 Pa; 拉伸+弯曲
弯曲
d Q1 P,M1 PR BD段:弯曲;
材料力学习题及参考答案
答案:
5.对于拉伸曲线上没有屈服平台的合金塑性材料,
工程上规定 0.2 作为名义屈服极限,此时相对应的
应变量为 0.2%。
()
答案:
四、计算
1.矿井起重机钢绳如图(a)所示,AB段截面积 A1 300mm2, BC段截面积 A2 400mm2,钢绳的单位体积重量 28kN / m3, 长度l 50m,起吊重物的重量 P 12kN,求:1)钢绳内的最大 应力;2)作轴力图。
2
100MPa,
试求此结构许可载荷P。
A
B
1 45o 30o 2
C
P
a
解: 1)结构中各杆应满足平衡条件
y
N1
N2
对节点C取图(b)所示研究对象,有
45o 30o
Cx
X
N1 sin 45o
N2
sin 30o
0 a
答案: 四,弹性、屈服、强化和颈缩、断裂。
5.用塑性材料的低碳钢标准试件在做拉伸实验过程中,将 会出现四个重要的极限应力;其中保持材料中应力与应变 成线性关系的最大应力为( );使材料保持纯弹性变形 的最大应力为( );应力只作微小波动而变形迅速增加 时的应力为( );材料达到所能承受的最大载荷时的应 力为( )。
起重杆(杆1)为钢管,外径D=400mm,内径d=20mm,
许用应力 80MPa。钢丝绳2的横截面积 1
A2
500mm,2 许
用应力 60MPa。若最大起重量P=55kN,试校核此起
2
重机的强度是否安全。
B
45o 2
C
15o 1
AP
a
y
解:1)确定杆件受力
(完整版)材料力学习题册答案..
练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4)应力是内力分布集度。
(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6)若物体产生位移,则必定同时产生变形。
(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。
(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。
(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。
(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。
(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。
变形。
(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。
(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
中南大学材料力学习题答案共35页
谢谢!
35
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
▪
中南大学材料力学习题答案
11、战争满足了,或曾经满足过人的 好斗的 本能,残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
材料力学_中南大学中国大学mooc课后章节答案期末考试题库2023年
材料力学_中南大学中国大学mooc课后章节答案期末考试题库2023年1.如图所示接头,已知:载荷F=60kN,板宽b=80mm,板厚δ=10mm,铆钉直径d=12mm,许用应力[σ]=160MPa,许用切应力[τ]=120MPa,许用挤压应力[σbs]=240MPa,板件与铆钉的材料相同,下列说法正确的是()。
【图片】答案:铆钉剪切强度不符合要求2.对于图示静不定梁,解除多余约束得相应静定基,错误的是()【图片】答案:解除A处水平方向上的约束3.解除图示结构中的链杆得相应静定基,解除约束的个数是()【图片】答案:14.图示结构的静不定次数()【图片】答案:35.线弹性材料变截面梁如图所示,弹性模量为E,不计剪力的影响,跨中截面C处的挠度为( )【图片】答案:6.莫尔积分法计算梁的位移时,应分别建立载荷和单位力引起的弯矩方程,此时要求()答案:选取的坐标x和划分的梁段都必须完全—致7.关于卡氏第二定理的陈述中,正确的是( )答案:卡氏第二定理不仅可以用来计算结构的线位移,还可计算截面转角8.图示悬臂梁,当单独作用力F,截面B的转角为θ。
若先加力偶M,后加F,则在加F的过程中,力偶M( )【图片】答案:做负功,其值为Mθ9.一线弹性材料梁在集中力F作用时,其应变能为Vε,若将力改为2F,其他条件不变,则其应变能为( )答案:4Vε10.线弹性材料拉杆,在截面B、C上分别作用有集中力F和2F。
下列关于该杆应变能的说法正确的是()【图片】答案:按不同次序加F和2F时,杆的应变能一样大11.任意图形,若对某一对正交坐标轴的惯性积为零,则这一对坐标轴一定是该图形的()答案:主轴12.整根承受均布载荷的简支梁,在跨度中间处()答案:剪力等于零,弯矩最大13.梁上作用集中力,下列说法正确的是()答案:集中力作用处剪力图有突变,弯矩图无突变14.某材料的弹性模量E=200GPa,泊松比μ=0.30,则材料的剪切弹性模量G=()答案:76.915.材料不同的两根受扭实心圆轴,其直径和长度均相同,在扭矩相同的情况下,它们的最大切应力之间和扭转角之间的关系正确的是()答案:最大切应力相等,扭转角不相等16.阶梯圆轴受力如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;s s n σ;b σ;bb n σ 二、计算题1.2.解:横截面上应力 MPa Pa A F N 10010100102010200643=⨯=⨯⨯==-σ AB 斜截面(︒=50α):MPaMPaAB AB 2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσ BC 斜截面(︒-=40α):MPaMPaBC BC 2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ 杆内最大正应力和最大切应力分别为:MPaMPa502100max max ====στσσ 3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ MPa p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ MPa p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 NAB AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa A F NAB AB93.7310058.421060243 所以斜杆AB 是安全的。
5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===dAE F ENt t πσε mm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ (2)mmm l l l l l l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C8.A P 25(压);)(27←EAPa9.[]τπ≤dh P ;[]bs d D P σπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。
最大轴力、最大应力都发生在杆件顶部截面。
[]σγσ≤+==APl A A F N max max 所以 []γσA PA l -≤2.在x 处截取微段dx ,如图示,则微段的变形为dx EAPx A EA dx x F l d N +==∆γ)()(所以 ⎰⎰+=+=∆=∆llEAPl l A dx EA P x A l d l 0222)(γγ 2. 解:设每个角钢的轴力为1N F ,木柱的轴力为2N F ,则 静力关系: P N N F F F =+214 变形几何关系: 21l l ∆=∆ 物理关系: 22221111,A E lF l A E l F l N N =∆=∆ 查型钢表得角钢的截面面积24110086.3m A -⨯=。
链解上述三关系得:P N P N F F F F 72.0,07.021==根据角钢的强度条件[]111σ≤A F N 即 641016010086.307.0⨯≤⨯-P F ,得kN F P 698≤ 根据木柱的强度条件[]222σ≤A F N 即 66210121025072.0⨯≤⨯-P F ,得kN F P 1042≤ 所以许可载荷kN F P 698=3. 解:此为一静不定问题。
杆AD 、AG 及ABC 的BC 段为拉伸变形,ABC 的AB 段为压缩变形。
AB 段的轴力为AB F ,BC 段的轴力为AB P F F - 静力关系(见图):AG AD F F =︒=45cos 2AD AB F F 变形几何关系: AD AB BC l l l ∆=︒∆-∆45cos )( 物理关系:EA lF F l AB P BC )(-=∆EAlF l AB AB =∆ EAlF l AD AD 2=∆ 联解得: P P AG AD F F F F 212)12(2-=+==(拉) P AB F F 222-=(压); P BC F F 22=(拉) 4. 解:这是一个有温度应力的拉压静不定问题。
设上下两固定端的约束力分别为A F 、B F静力关系: B A F F = 变形几何关系: T l l ∆=∆ 物理关系: 21EA aF EA a F l A A +=∆ )(212t t a l T -=∆α 联解得 kN F A 35=所以杆件上部分内的温度应力为MPa A F A T 7010510354311=⨯⨯==-σ 下部分内的温度应力为MPa A F A T 35101010354322=⨯⨯==-σ5. F N1= F N3=25F ,F N2=5F 6. F N1sin2β= F N2 sin2α 7. 2σ/1σ=18.解:(1)挤压面积ab A bs =,由挤压强度条件:6331010102501050⨯≤⨯⨯⨯==-a A F bs bs bsσ 所以 mm m a 2010203=⨯≥- (2)剪切面面积bl A =,由剪切强度条件:633101102501050⨯≤⨯⨯⨯==-lA F Qτ 所以 mm m l 200102003=⨯≥- 9. 解:单个铆钉受力如图: (1)剪切强度校核:kN F Q 6200=[]τπτ>=⨯=⨯⨯==MPa Pa A F Q2.106102.106402.0106200623(2)挤压强度校核: kN F bs 3200=[]bs bs bs bsMPa A F σσ<=⨯=⨯⨯⨯==-7.166107.166102020103200663(3)拉伸强度校核钢板:有两个铆钉孔的截面P F N 32=[]σδσ<=⨯=⨯⨯-⨯⨯⨯=-==-MPa Pa d b P A F N 6.60106.6010)202150(201020032)2(326632 有一个铆钉孔的截面P F N =[]σδσ<=⨯=⨯-⨯⨯=-==-MPa Pa d b P A F N 9.76109.7610)20150(2010200)(6632盖板:有两个铆钉孔的截面P F N 21=[]σδσ<=⨯=⨯⨯-⨯⨯⨯=-==-MPa Pa d b P A F N 9.90109.9010)202150(101020021)2(216631有一个铆钉孔的截面P F N 61=[]σδσ<=⨯=⨯-⨯⨯⨯=-==-MPa Pa d b P A F N 6.25106.2510)20150(101020061)(616631 所以该接头剪切强度不够,不安全。
扭 转一、概念题1.B ;2. B ;3. D ;4.A ;5.D ;6.C 6. 二、计算题1.2.解:圆轴的扭矩图如土示。
33max 1616dmd m W M P T BC ππτ===33max 416)2(2d md m W M P T AC ππτ===所以轴内 3max max 16dmBCπττ==4442832)2(232d G mld Gml d G ml CA BC BA πππφφφ-=+⨯-=+= 3. 解:计算作用在各轮上的外力偶矩: m N M A .70245005007024== m N M B .6.28095002007024==m N M C .4.42145003007024==传动轴的扭矩图如图示。
(1)分别由强度和刚度条件确定两段的直径 AB 段:mmd d W M P T AB 0.80,10701670241631≥⨯≤==πτmm d dGI M P T AB 6.84,118032108070241801419≥︒≤︒⨯⨯⨯=︒⨯=πππθ所以AB 段的直径mm d 6.841= BC 段:mm d d W M P T BC 4.67,1070164.42142632≥⨯≤==πτmm d d GI M P T BC 5.74,11803210804.42141802429≥︒≤︒⨯⨯⨯=︒⨯=πππθ所以BC 段的直径mm d 5.742=(2)若AB 、BC 两段设计为相同直径,则mm d 6.84=(3)主动轮A 置于从动轮B 、C 之间较合理,这样可降低轴内的最大扭矩。
4.解:由薄壁圆筒扭转切应力计算公式(20Dr =)得横截面上的应力为: MPa t r M e 713.59008.01.02103022320=⨯⨯⨯==ππτ 由切应力互等定理的薄壁圆筒纵向截面上的应力也是59.713MPa 。
则两铆钉间纵向截面上有切应力所引起的剪力为:ts F Q τ=。
由铆钉的剪切强度条件:[]τ≤AF Q ,即 []τπτ42d ts F Q ≤=代入数据:6261060402.0008.010713.59⨯⨯⨯≤⨯⨯⨯πs得 mm s 4.39≤ 由挤压强度条件(Q bs F F =):[]bs bsbsA F σ≤,即 []bs bs td ts F στ≤= 代入数据:661016002.0008.0008.010713.59⨯⨯⨯≤⨯⨯⨯s 得 mm s 38.53≤ 所以铆钉的间距mm s 4.39≤。
5. b /a6.解:由于AB 、CD 两杆的截面尺寸相同,故PCD PAB I I =,而CD AB G G 3=。
设F P 力分解为F AB 、F CD 分别作用在AB 、CD 两杆上,两杆发生扭矩变形,扭矩分别为: a F M a F M CD TCD AB TAB ==,此题为一静不定问题。
静力关系: P CD AB F F F =+ 变形几何关系: DC BA φφ= 物理关系: PAB AB AB PAB AB TAB BA I G alF IG l M ==φ PCDCD CD PCD CD TCD DC I G al F I G l M ==φ联解得: P CD P AB F F F F 41,43==弯 曲 内 力一、概念题1. A 。