七年级数学专题 规律探究题
七年级数学下学期末复习题(规律探究)与答案解析
一、数的规律1、观察一列有规律的数:4,8,16,32,…,它的第2010个数是( )A . 22009B . 22009=1C . 22010D .220112、观察下列等式:122=,224=,328=,4216=,5232=,6264=,72128=,…….通过观察,用你所发现的规律确定20062的个位数字是 .当输入数据是时,输出的数是( ) A.861B.865C.867D.8694、请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为( ) A.32 B.29 C.25 D.235、按一定规律排列的一列数依次为23,58,1015,1724,2635,,按此规律排列下去,这列数的第n 个数是(n 是正整数).6、观察规律并填空:111123248,,,…,第5个数是 ,第n 个数是 . 7、我们把分子为1的分数叫做单位分数.如111234,,,…,任何一个单位分数都可以拆分成两个不同单位分数的和,如11111111123634124520=+=+=+,,,…(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数; (2)进一步思考,单位分数1n(n 是不小于2的正整数)11=+△☆,请写出△,☆所表示的式子,并加以验证.二、式的规律1、观察下面的单项式:a ,22a -,34a ,48a -,.根据你发现的规律,第8个式子是 .2、观察下列单项式:x , -3x 2, 5x 3, -7x 4, 9x 5,…按此规律,可以得到第2010个单项式是______,第n 个单项式怎样表示________.3、观察下列一串单项式的特点:xy ,y x 22- ,y x 34 ,y x 48- ,y x 516 ,… 按此规律第9个单项式是______,第n 个单项式是______,它的系数是_____,次数是_ _.三、等式的规律1、观察下列等式:第1行 341=-第2行 594=-第3行 7169=- 第4行 92516=- … …按照上述规律,第n 行的等式为 .2、观察下列各式:21321⨯=- 22431⨯=-23541⨯=- 24651⨯=-…………请你根据发现的规律,写出第n 个等式: .3、已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,…,若299a a b b+=⨯(a b ,为正整数),则ab = . 4、观察下列等式:22(12)4114+-⨯=+ 22(22)4224+-⨯=+ 22(32)4334+-⨯=+ …则第n 个等式可以表示为 .5、观察算式:211=; 21342+==; 213593++==;21357164+++==; 213579255++++==;……用代数式表示这个规律(n 为正整数):13579(21)n ++++++-= .6、观察下列各式:22151(11)1005225=⨯+⨯+=, 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=, ……依此规律,第n 个等式(n 为正整数)为 .7、观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:(2)通过猜想,写出与第n 个图形相对应的等式_______________________. 8、观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+ .(2)直接写出下列各式的计算结果: ①111112233420062007++++=⨯⨯⨯⨯ ;②1111122334(1)n n ++++=⨯⨯⨯+ .四、图形的规律1、用M ,N ,P ,Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图-1—图-4是由M,N,P,Q 中的两种图形组合而成的(组合用“&”表示).M&P N&P N&Q M&Q 图-1图-2 图-3 图-4 ①401413⨯+=⨯-; ②411423⨯+=⨯-;421433⨯+=⨯-;③④ ⑤ _________________; _________________;那么,下列组合图形中,表示P&Q 的是( )2、如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .3、用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,,则搭n 条小鱼需要 根火柴棒.(用含n 的代数式表示)4、按如下规律摆放三角形:则第(4)堆三角形的个数为 ;第(n )堆三角形的个数为 .5、将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第n 个图形中,其有 个六边形.参考答案:一、数的规律1、C2、43、B4、B…… 图① 图② 图③ 图④3()2()1()… 图① 图② 图③A .B .C .D .5、nn n 2122++ 6、3215,n n 21+ 7、(1)6,30;(2)1+n ,)1(+n n二、式的规律1、8128a - 2、20104019x -,n n x n )12()1(1--+ 3、y x 9256,y x n n n 112)1(-+-三、等式的规律1、22)1(12n n n -+=+2、1)1()2(2-+=+n n n3、7204、44)2(22+=-+n n n5、2n 6、225100)1()510(+⨯+=+n n n 7、(1)344134-⨯=+⨯,354144-⨯=+⨯; (2)341)1(4-=+-n n8、(1)1+n n ;(2)①20072006,②1+n n四、图形的规律1、B2、25+n3、26+n4、(1)14, (2)23+n5、23-n。
数学规律探究题
初中数学规律探究题一、规律探究的知识点及分类: (一)条件探索型1、(2007呼和浩特市)在四边形ABCD 中,顺次连接四边中点E F G H ,,,,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH 成为一个菱形.这个条件是 __ .2、(2007荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:________________________.(2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:_________________________________________.(3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是____________________________.(图AB DEFGHC图4CADB 图3CADB 图2 D 1C 1B 1CADB图13、图4用于探究)3、(2006广东)如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC ∥OA ,OA =7,AB =4,∠ COA =60°,点P 为x 轴上的—个动点,点P 不及点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标.(二)结论探索型4、(2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形. (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个及A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.5、(07山东滨州)如图1所示,在ABC △中,2AB AC ==,90A =∠,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.(1)点E F ,的移动过程中,OEF △是否能成为45EOF =∠的等腰三角形?若能,请指出OEF △为等腰三角形时动点E F ,的位置.若不能,请说明理由.(2)当45EOF =∠时,设BE x =,CF y =,求y 及x 之间的函数解析式,写出x 的取值范围.(3)在满足(2)中的条件时,若以O 为圆心的圆及AB 相切(如图2),试探究直线EF 及⊙O 的位置关系,并证明你的结论.6、(2006年绵阳市)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、D 作BE ⊥PA 、DF ⊥PA ,垂足分别为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系.若点P 在DC •的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P 在CD •的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.BOADEC图1O图27、(2005年泰州)图1是边长分别为4 3 和3的两个等边三角形纸片ABC 和C ′D ′E ′叠放在一起(C 及C ′重合).(1)操作:固定△ABC ,将△C ′D ′E ′绕点C 顺时针旋转30°得到△CDE ,连结AD 、BE ,CE 的延长线交AB 于F (图2);探究:在图2中,线段BE 及AD 之间有怎样的大小关系?试证明你的结论.(2)操作:将图2中的△CDE ,在线段CF 上沿着CF 方向以每秒1个单位的速度平移,平移后的△CDE 设为△PQR (图3);探究:设△PQR 移动的时间为x 秒,△PQR 及△ABC 重叠部分的面积为y ,求y 及x 之间的函数解析式,并写出函数自变量x 的取值范围.(3)操作:图1中△C ′D ′E ′固定,将△ABC 移动,使顶点C 落在C ′E ′的中点,边BC 交D ′E ′于点M ,边AC 交D ′C ′于点N ,设∠AC C ′=α(30°<α<90°=(图4);探究:在图4中,线段C ′N ·E ′M 的值是否随α的变化而变化?如果没有变化,请你求出C ′N ·E ′M 的值,如果有变化,请你说明理由.E ′图1C BAD ′图2FED CA图2 Q PRA CF 图3图3D ′E ′图4MNBAGC C /(C /)(C /QEDAP(三)存在探索型8、(2006武汉市)已知:二次函数y =x 2(m +1)x +m 的图象交x 轴于A (x 1,0)、B (x 2,0)两点,交y 轴正半轴于点C ,且x 12 +x 22 =10.⑴求此二次函数的解析式; ⑵是否存在过点D (0,25)的直线及抛物线交于点M 、N ,及x 轴交于点E ,使得点M 、N 关于点E 对称?若存在,求直线MN 的解析式;若不存在,请说明理由.9、(2007乐山)如图(13),在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 及A D ,不重合),一直角边经过点C ,另一直角边AB 交于点E .我们知道,结论“Rt Rt AEP DPC △∽△”成立.(1)当30CPD =∠时,求AE 的长;(2)是否存在这样的点P ,使DPC △的周长等于AEP △周长的2倍?若存在,求出DP 的长;若不存在,请说明理由.10、(2007呼和浩特市)如图,在矩形ABCD 中,22AB =1AD =.点P 在AC 上,PQ BP ⊥,交CD 于Q ,PE CD ⊥,交于CD 于E .点P 从A 点(不含A )沿AC 方PA E BCD向移动,直到使点Q 及点C 重合..为止. (1)设AP x =,PQE △的面积为S .请写出S 关于x 的函数解析式,并确定x 的取值范围.(2)点P 在运动过程中,PQE △的面积是否有最大值,若有,请求出最大值及此时AP 的取值;若无,请说明理由.(四)规律探索型11、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后及原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=. 图 1 图 2 图 3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.(五)销售中的盈亏问题探究1:销售中的盈亏.第2层 第1层 …… 第n 层某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要解决这类问题必须理解并熟记下列式子: (1)商品利润=商品售价-商品进价. (2)=商品利润率.(3)打x 折的售价=原售价×10x . 对探究1提出的问题,你先大体估算盈亏,再通过准确计算检验你的判断.分析:卖这两件衣服总的是盈利还是亏损,取决于这两件衣服售价多少,•进价多少,若售价大于进价,就盈利,反之就亏损.现已知这两件衣服总售价为60×2=120(元),现在要求出这两件衣服的进价. 这里盈利25%=,亏损25%就是盈利-25%.本问题中,设盈利25%的那件衣服的进价是x 元,它的商品利润就是0.25x 元,根据进价+利润=售价,列方程得: x+0.25x=60 解得 x=48以下由学生自己填写.类似地,可以设另一件衣服的进价为y 元,它的利润是-0.25y 元;根据相等关系可列方程是y-0.25y=60解得y=80.两件衣服共进价128元,而两件衣服的售价和为120元,进价大于售价,•由此可知卖这两件衣服总的盈亏情况是亏损8元.解方程后得出的结论及你先前的估算一致吗?点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.例如盈利25%的一件进价为40元,那么这一件盈利40%×25%=10(•元)•,•亏损25%的一件进价为80元,那么这一件亏损了80×25%=20(元),总的还是亏损10元,这就是说,亏损25%的一件进价如果比盈利25%的一件进价高,那么总的是亏损,•反之才盈利.你知道这两件衣服哪一件进价高吗?一件是盈利25%后,才卖60元,那么这件衣服进价一定比60元低.另一件亏损25%后,还卖60元,说明这件衣服进价一定比60•元高,•由此可知亏损25%的这件进价高,所以卖这两件衣服总的还是亏损.(六)球赛积分问题例1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?例2、在一次数学竞赛中,共有60题选择题,答对一题得2分。
七年级数学人教课标(上册)38规律探索
规律探索一、选择题1.(5分)(2014•毕节地区,第18题5分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.个数是故答案为:2.(2014•武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()3. (2014•株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()二.填空题1. (2014•湘潭,16题,3分)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014.2. (2014•扬州,第18题,3分)设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是165.,得到方程组二.填空题1. (2014•珠海,第10题4分)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.OA,=;=2OA2.(2014年四川资阳,第16题3分)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是(,).考点:规律型:点的坐标;等边三角形的性质.菁优网分析:根据O(0,0)A(2,0)为顶点作△OAP1,再以P1和P1A的中B为顶点作△P1BP2,再P2和P2B的中C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.解答:解:由题意可得,每一个正三角形的边长都是上个三角形的边长的,第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是=,P6的纵坐标为,故答案为:(,).点评:本题考查了点的坐标,根据规律解题是解题关键.3.(2014年云南省,第14题3分)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=.(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.4.(2014•邵阳,第18题3分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动28 次后该点到原点的距离不小于41.≥5.(2014•孝感,第18题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).6.(2014•滨州,第18题4分)计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= 102014.先计算得到,=100=10=1000=10,=1000=10=100=10=1000=10=1000=107.(2014•德州,第17题4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).(((8.(2014•菏泽,第14题3分)下面是一个某种规律排列的数阵:根据数阵的规律,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是(用含n的代数式表示)故答案为:9.(2014年山东泰安,第24题4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.菁优网分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.。
(完整)七年级数学专题规律探究题
七年级数学专题-----规律探究题题型一:数字变化类问题1 •观察下列按顺序排列的等式:引二1-*,2誌-書,巧€ 一+,4冷一+ 试猜想第n个等式(n为正整数):a n= ______________________ .2. 下表中的数字是按一定规律填写的,表中a的值应是____ .1 2 3 5 8 13 a-2 3 5 8 13 21 34 …3. ___ 观察下面的单项式:a,- 2a2, 4a3,- 8a4, ••根据你发现的规律,第8个式子是.4. 有一组等式:1222 3232,22326272,32 42 122132,4252202212……请观察它们的构成规律,用你发现的规律写出第8个等式为__________5. 把奇数列成下表,13113213L59152333111725h-itn! ■ b ■2737—39——根据表中数的排列规律,则上起第8行,左起第6列的数是5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。
已知二进十进位制0123456• • •请将二进制数10101010(二)写成十进制数为_______ .6 •观察下列各数,它们是按定规律排列的,则第n个数是15 3116?眈'7.观察一列单项式:1x, 3x2, 5x2, 7x, 9x2, 11x2,…,则第2013个单项式是8•有这样一组数据a i, a2, a3, •• a,满足以下规律:且I三・❻尸—-—3 勒二 ~-—j …,且—-------- (n多且n为正整数),贝U宠。
1312 1 _ J1 _a2n1 - a n_ L的值为________ (结果用数字表示).9. 观察下列各式的计算过程:5X 5=0X 1 X 100+25,15X 15=1X 2X 100+25,25X 25=2X 3X 100+25,35X 35=3X 4X 100+25,请猜测,第n个算式(n为正整数)应表示为_____________________________ 10. 如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A. M=mnB. M=n(m+1)C. M=mn+1D. M=m(n+1)11. 观察下列等式:31=3, 32=9, 33=27, 34=81, 35=243, 36=729, 37=2187… 解答下列问题:3+32+33+3仃+32013的末位数字是()A. 0B. 1C. 3D. 712. ____________________________________________ 如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是_______________________________ .13. 将连续正整数按以下规律排列,则位于第 7行第7列的数x 是85篦一如邕二苑董三列策囚列篝三到邕七扪・・・第一行 136 10 1521 n 重二行 2 5 9 14 20 27 :第三行 413 15--- ■策四行712 1$25■・■11 17 2415 23 ■ ■•2215•电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个 方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数 字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的 区别),如图甲中的“ 3”表示它的周围八个方块中仅有 3个埋有雷.图乙第一行 从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 ___________________________ .(请填入方块上的字母)16. 如图,在△ ABC 中,/ A=m°,/ ABC 和/ACD 的平分线交于点 A,得/ A;/ ABC 和/ACD 的平分线交于点 A ,得/ A;…/A2012BC 和/A 2012CD 的平分线交于 点 A ?013,贝 A 2013= ______ 度。
初中数学规律探究题汇总(含解析)
初中数学规律探究题汇总(含解析)初中数学规律探究题汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n 位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
七年级数学上册专题第8讲规律探究重点、考点知识总结及练习
第8讲规律探究知识点1:规律探究之数字变化数字的变化问题一般有找循环周期、等差数列、等比数列、平方数等类型。
【典例】1.如图,是蜘蛛结网过程示意图,一只蜘蛛先以O 为起点结六条线OA ,OB ,OC ,OD ,OE ,OF 后,再从线OA 上某点开始按逆时针方向依次在OA ,OB ,OC ,OD ,OE ,OF ,OA ,OB…上结网,若将各线上的结点依次记为:1,2,3,4,5,6,7,8,…,那么第2016个结点在( )A. 线OA 上B. 线OB 上C. 线OC 上D. 线OF 上【方法总结】遇到循环节问题首先找到循环节(循环周期)是什么,循环节可以通过将图形中的元素一一列举得到;其次要找到所求元素所在的循环节;最后找到在循环节中的位置。
2.一组数23,45,67,89…按一定的规律排列着,请你根据排列规律,推测这组数的第10个数应为_____【方法总结】⎧⎨⎩数字类规律探究图形类等差数列问题首先找出公差,即后一项与前一项的差,其次用第一项与公差、序号来表示每一项;遇到分数数列,如果找不到公差,可以考虑将分子、分母作为两个不同的数列分别找出其中的规律,最后确定数字的正负与序号奇偶的关系。
3.下面是一组按规律排列的数:1,2,4,8,16,…,则第2008个数是_______【方法总结】等比数列问题首先找出后一项与前一项的比值;其次通过列举观察、用第一个数字和公比来表示每一个数字。
4.按一定的规律排列的一列数依次为:﹣2,5,﹣10,17,﹣26,…,按此规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是______【方法总结】平方数问题要找准数列的序数与每一个数字的平方关系。
解决这种问题首先将序数平方;其次对比序列中每一个数字的绝对值与序数平方的大小关系;最后确定数字的正负与序数奇偶的关系。
5.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为____【方法总结】规律表格问题首先找出表格内部各数字之间的关系,其次表示出相邻两个表格内相同位置的数字的关系,通常找最小数字之间的关系。
2023学年浙江七年级数学上学期专题训练专题02 运算思维之规律探究(解析版)
专题02运算思维之规律探究专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一列数1a ,2a ,3a ,…,具有如下规律:211n n n a a a ++=+,2n n a a =(n 是正整数).若11a =,则37a 的值为( )A .1B .5C .7D .11【答案】D【分析】 根据题干公式寻找规律,从而逐步推出结果.【详解】解:由a 2n +1=a n +a n +1,a 2n =a n (n 是正整数)可得:a 37=a 18+a 19=2a 9+a 10=2(a 4+a 5)+a 5=2a 4+3a 5=2a 2+3(a 2+a 3)=5a 2+3a 3=8a 1+3a 2=11a 1=11. 故选:D .【点睛】本题考查数字变化规律,解题关键是根据题中规律拆项.2.把一根起点为0的数轴弯折成如图所示的样子,虚线最下面第1个数字是0,往上第2个数字是6,第3个数字是21,…,则第5个数字是( )A .78B .80C .82D .89【答案】A【分析】 观察根据排列的规律得到第1个数字为0,第2个数字为0加6个数即为6,第3个数字为从6开始加15个数得到21,第4个数字为从21开始加24个数即45,…,由此得到后面加的数比前一个加的数多9,由此得到第5个数字为0+6+(6+9×1)+(6+9×2)+(6+9×3).【详解】解:∵第一个数字为0,第二个数字为0+6=6,第三个数字为0+6+15=21,第四个数字为0+6+15+24=45,第五个数字为0+6+15+24+33=78,故选:A .【点睛】此题主要考查了数字变化规律,发现数在变化过程中各边上点的数字的排列规律是解题关键.3.有一列数:123,,,,n a a a a …,若112a =-,从第2个数起,每一个数都等于“1与它前面的那个数的差的倒数”,那么2021a 的值为( )A .2-B .12-C .23D .3【答案】C【分析】根据每一个数都等于1与它前面那个数的差的倒数多列举几个数字,找出规律即可.【详解】解:a 1=12-,13122⎛⎫--= ⎪⎝⎭, a 2=23,21133-=, a 3=3,132-=-,a 4=12-, …,从上面的规律可以看出每三个数一循环,2021÷3=673......2,∵a 2021=a 2=23, 故选:C .【点睛】本题主要考查数字的变化规律,总结归纳数字的变化规律是解题的关键.4.定义一种对正整数n 的“F ”运算:∵当n 为奇数时,结果为35n +;∵当n 为偶数时,结果为2k n ;(其中k 是使2k n 为奇数的正整数),并且运算可以重复进行,例如,取26n =.则:26134411F F F −−−→−−−→−−−→①②③第一次第二次第三次若49n =,则第2020次“F 运算”的结果是( )A .152B .19C .62D .31【答案】D【分析】计算出n =49时第1、2、3、4、5、6、7次运算的结果,找出规律再进行解答即可求解.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F ∵运算,即3×49+5=152(偶数),需再进行F ∵运算,即152÷23=19(奇数),再进行F ∵运算,得到3×19+5=62(偶数),再进行F ∵运算,即62÷21=31(奇数),再进行F ∵运算,得到3×31+5=98(偶数),再进行F ∵运算,即98÷21=49(奇数),再进行F ∵运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2020÷6=336…4,则第2020次“F 运算”的结果是31.故选:D .【点睛】本题考查了有理数的混合运算,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.5.观察图形并判断照此规律从左到右第四个图形是() A.B.C.D.【答案】D【详解】观察图形可知:单独涂黑的角顺时针旋转,只有D符合.故选:D.6.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28B.29C.30D.31【答案】C【详解】分析:根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.详解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选C.点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.7.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是()A.429B.409C.408D.404【答案】C【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数.【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n个三角形需要(2n+1)根火柴棍,n个正方形需要(3n+1)根火柴棍,所以2n+1+3(n-4)+1=2030,解得n=408.故选:C.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律.8.将图∵所示的正六边形进行分割得到图∵,再将图∵中最小的某一个正六边形按同样的方式进行分割得到图∵,再将图∵中最小的某一个正六边形按同样的方式进行分割,…,则第2014个图形中,共有()个正六边形.A.4027B.6040C.6061D.10066【答案】B【分析】观察第二个图形,有1+3=4个;第三个图形,有1+3+3=7个;依此类推,发现规律即可解答.【详解】解:第二个图形中有1+3=4个;第三个图形中有1+3+3=7个;...∵第n个图形中有1+3(n-1)=3n-2个;∵第2014个图形中有1+3×(2014-1)=6040个;故选B.【点睛】本题考查了图形的变化规律:结合图形观察前几个具体数值,即可发现每一次总是多3个正六边形是关键.二、填空题9.如表是一组密码的一部分,目前已破译出“守初心”的对应口令是“担使命”,根据上述破译方法,破译出“找差距”的对应口令是_______.【答案】抓落实【分析】根据表格中汉字所在行及列的位置以及对应口令所在行和列的位置探索规律,从而求解.【详解】解:由题意“守”位于第3行第4列,其对应口令“担”位于第1行第3列“初”位于第5行第2列,其对应口令“使”位于第3行第1列“心”位于第4行第7列,其对应口令“命”位于第2行第6列∵位于第n行第m列的汉字,其对应口令位于第(n-2)行第(m-1)列,由此,“找”位于第7行第2列,其对应口令位于第5行第1列,即“抓”“差”位于第3行第2列,其对应口令位于第1行第1列,即“落”“距”位于第5行第7列,其对应口令位于第3行第6列,即“实”故答案为:抓落实.【点睛】本题考查规律探索,准确理解题意,分析汉字所在位置的规律是解题关键. 10.如图各网格中四个数之回都有相同的规律,则第9个网格中右下角的数为_________.【答案】119【分析】从图中观察出各个格子中的数据的规律,找出第九个格子的各个数字即可.【详解】解:由图中的数字可知,左上角的数字是一些连续的正整数,从1开始,左下角的数字是对应的左上角的数据加1,右上角的数字是对应的左下角的数字加2, 右下角的数字是左下角的数字与右上角的数字乘积再加左上角数字的和,故第9个正方形中的左上角的数字是9,左下角的数字是10,右上角的数字是11,右下角的数字是:10×11+9=119;故答案为:119.【点睛】本题考查数字变化的规律的相关内容,解题的关键是找出各个数字之间的规律. 11.观察下列各式:∵2204-=;∵22318-=;∵224212-=;∵225316-=;∵226420-=;……;用含自然数n 的等式表示你发现的规律:__________________.【答案】(n +2)2-n 2=4(n +1)【分析】分别列出n =0,1,2,3,4,5…的情况,再进行总结归纳即可.【详解】解:∵n =0,(0+2)2-02=4×1,∵n =1,(1+2)2-12=4×2,∵n =2,(2+2)2-22=4×3,∵n =3,(3+2)2-32=4×4,∵n =4,(4+2)2-42=4×5,…,所以n =n 时,(n +2)2-n 2=4(n +1),故答案为:(n +2)2-n 2=4(n +1).【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.设123,,a a a ,…是一列正整数,其中1a 表示第一个数,2a 表示第二个数,……,n a 表示第n 个数(n 是正整数).若12a =,()()221411n n n a a a +=---,则(1)2a =_______(2)2021a =______.【答案】4 4042【分析】先将4a n =(a n +1-1)2-(a n -1)2,变形,结合a 1=2,a 1,a 2,a 3……是一列正整数,得出递推公式a n +1=a n +2,进而可得a n =2n ,将n =2021代入即可求得答案.【详解】解:∵a 1=2,4a n =(a n +1-1)2-(a n -1)2,a 1,a 2,a 3……是一列正整数,∵a n -1≥0,(a n +1-1)2=(a n -1)2+4a n =(a n +1)2,∵a n +1-1=a n +1,∵a n +1=a n +2,∵a 1=2,∵a 2=4,a 3=6,a 4=8,a 5=10,…∵a n =2n ,∵a 2021=2×2021=4042.故答案为:4;4042.【点睛】本题考查了数字的变化规律,由已知条件推出递推关系式,进而得出含n 字母的各项的表达式,是解题的关键.13.观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________. 【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.14.数202020212022379⋅⋅的个位数字是____.【答案】7【分析】由3n 的个位数字是3,9,7,1四次一循环,7n 的个位数字是7,9,3,1四次一循环,9n 的个位数字是9,1,9,1四次一循环,继而可以求得32009×72010×132011的个位数字.【详解】解:∵3n (n 为从1开始的正整数)的个位数字是3,9,7,1四次一循环, 7n 的个位数字是7,9,3,1四次一循环,9n 的个位数字是9,1,9,1四次一循环,又∵2020÷4=505,2021÷4=505…1,2022÷4=505…2,∵32020的末尾数字为1,72021的末尾数字为7,92022的末尾数字为1,∵1×7×1=7,∵32020×72021×92022的个位数字是7.故答案为:7.【点睛】此题考查了尾数特征.此题难度适中,注意得到3,7,9为底数的整数幂的个位数字的规律是解此题的关键.15.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级…逐步增加时,楼梯的上法数依次为1,2,3,5,8,13,21,…(这就是著名的裴波那契数列),请你仔细观察这列数的规律后回答:(1)上10级台阶共有__________种上法.(2)这列数的前2020个数中共有________个偶数.【答案】89 673【分析】(1)认真观察不难发现,这列数中,任意相邻两个数的和都等于相邻的后一个数,也就是第10个数应该是第8个、9个的和;(2)观察发现,每3个数中必有一个偶数,且偶数在3个数中间,依此规律可求出问题答案.【详解】解:(1)∵1+2=3,2+3=5,3+5=8,5+8=13,8+13=21,13+21=34,21+34=55,34+55=89,∵上10级台阶共有89种上法;(2)∵2020÷3=673…1,∵偶数个数为673个.【点睛】本题考查了数字型规律,根据已知条件找寻数列中的规律是解题的关键.16.数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个数都是它前两个数的和,这个数列叫做斐波契数列,在斐波契数列前2020个数中共有_______个偶数.【答案】673【分析】由于数列1,1,2,3,5,8,13,21,34,55,…中是两个奇数然后一个偶数,接着又是两个奇数,一个偶数,由此即可确定斐波那契数列的前2020个数中共有多少个偶数.【详解】∵数列1,1,2,3,5,8,13,21,34,55,…,中是两个奇数然后一个偶数,而÷=⋅⋅⋅⋅⋅⋅;余数是1,那么这个数列的第2020个数是奇数,202036731∵斐波那契数列的前2020个数中共有673个偶数.故答案为:673.【点睛】此题主要考查了数字的变化规律,解题时首先正确理解题意,然后根据题意找出隐含的规律即可解决问题.17.如图,每一图中有若干个大小不同的菱形,第一幅图中有1个菱形,第二幅图中有3个菱形,第三幅图中有5个菱形,如果第n幅图中有2021个菱形,则n为____________.【答案】1011【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2-1=3个,第3幅图中有2×3-1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2021个菱形时,2n-1=2021,所以:n=1011,故答案为:1011.【点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.18.如图,边长为12320202021、、、、的正方形套在一起,形成一个庞大的回宫格,则阴影部分的面积是_______.【答案】2043231【分析】若只有1个阴影部分,则面积为20212-20202,有2个阴影部分,面积为(20212-20202)+(20192-20182),…【详解】解:阴影部分的面积为(20212-20202)+(20192-20182)+(20172-20162)+…+(32-22)+1=2021+2020+2019+2018+…+3+2+1=() 1202120212+⨯=1011×2021=2043231,故答案为:2043231.【点睛】本题考查图形的变化规律;得到阴影部分面积的组成是解决本题的难点;找到相应的计算方法是解决本题的突破点.19.如图,各网格中四个数之间都有相同的规律,则第9个网格中右下角的数为______.【答案】119【分析】观察序号与网格中上面最左边的数字的关系,第二个数字与序号的关系,左下角的数字与序号的关系,右下角数字与上面所说三个数字的关系,确定好计算即可【详解】根据题意,得网格中上面最左边的数字等于序号,第二个数字与序号+1,左下角的数字与序号+2,右下角数字等于对角线上的数字积加上序号,∵第n个网格中,右下角的数字=(n+1)(n+2)+n,当n=9时,(n+1)(n+2)+n=10×11+9=119,故答案为:119.【点睛】本题考查了数字中规律,仔细思考各数字与序号的关系是解题的关键.2,3,20.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为() 12,7对应的正整数是_______.则()【答案】138【分析】2,3,可得表示方法,观察出1行1根据表格中的数据,以及正整数6对应的位置记为()列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】2,3,解:∵正整数6对应的位置记为()即表示第2行第3列的数,12,7表示第12行第7列的数,∵()由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,∵第12行12列的数字是122-12+1=133,∵第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n 行n 列数的特点为(n 2-n +1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 21.数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,如果点n A 与原点的距离不小于20,那么n 的最小值是_______. 【答案】13 【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得到A 13表示的数为-17-3=-20,A 12表示的数为16+3=19,则可判断点A n 与原点的距离不小于20时,n 的最小值是13. 【详解】解:第一次点A 向左移动3个单位长度至点A 1,则A 1表示的数,1-3=-2; 第2次从点A 1向右移动6个单位长度至点A 2,则A 2表示的数为-2+6=4; 第3次从点A 2向左移动9个单位长度至点A 3,则A 3表示的数为4-9=-5; 第4次从点A 3向右移动12个单位长度至点A 4,则A 4表示的数为-5+12=7; 第5次从点A 4向左移动15个单位长度至点A 5,则A 5表示的数为7-15=-8; …则A 7表示的数为-8-3=-11,A 9表示的数为-11-3=-14,A 11表示的数为-14-3=-17,A 13表示的数为-17-3=-20,A 6表示的数为7+3=10,A 8表示的数为10+3=13,A 10表示的数为13+3=16,A 12表示的数为16+3=19,所以点A n 与原点的距离不小于20,那么n 的最小值是13. 故答案为13. 【点睛】本题考查了规律型问题,认真观察、仔细思考,找出点表示的数的变化规律是解决问题的关键.22.下列图形是由同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,每一个小正方形表示一块地砖,如果按图1、2、3 的次序铺设地砖,把第n 个图形用图n 表示,那么图100中的白色小正方形地砖的块数是_______.【答案】703 【分析】根据图象中地砖个数发现规律,图n 中有()32n +块黑色地砖,图n 中一共有()105n +块地砖,就可以得到白色地砖数,令100n =即可求出结果. 【详解】解:图1中有5块黑色地砖,图2中比图1中多3块黑色地砖,有8块黑色地砖, 图3中比图2中多3块黑色地砖,有11块黑色地砖, …图n 中有()53132n n +-=+块黑色地砖, 图1中一共有5315⨯=块地砖, 图2中一共有5525⨯=块地砖, 图3中一共有5735⨯=块地砖, …图n 中一共有()521105n n +=+块地砖,∵图100中白色小正方形地砖的块数是:()10100531002703⨯+-⨯+=(块). 故答案是:703. 【点睛】本题考查找规律,解题的关键是找出图形中的规律,并用n 将规律通过代数式表示出来. 23.2020年6日1日,湖州市政府发布了全新湖洲城市形象标识,小周同学对新形象标识很感兴趣,用电脑绘画软件绘制了如下图形,其中第(1)个图形有3个形象标识,第(2)个图形有7个形象标识,第(3)个图形有13个形象标识,按此规律绘制下去.(1)小周绘制的第(5)个图形中有_________个形象标识.(2)小周绘制的第(n)个图形中有_________个形象标识.【答案】31 (n2+n+1)【分析】观察图形可知,每个图形中形象标识的个数为序号数的平方+序号数+1,依此可求第5个和第n个图有多少个形象标识.【详解】解:由图形可知,第1个图形有12+1+1=3个形象标识,第2个图形有22+2+1=7个形象标识,第3个图形有32+3+1=13个形象标识,第4个图形有42+4+1=21个形象标识,(1)小周绘制的第(5)个图形中有52+5+1=31个形象标识.(2)小周绘制的第(n)个图形中有(n2+n+1)个形象标识.故答案为:31;(n2+n+1).【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.三、解答题24.探究:211112222122-=⨯-⨯=,32222-=⨯-⨯=,222212243333-=⨯-⨯=,2222122……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n个等式;(3)计算:12320192020++++-.22222【答案】(1)25-24=2×24-1×24=24;(2)2n+1-2n=2×2n-1×2n=2n;(3)-2【分析】(1)根据给出的内容,直接可以仿写25-24=2×24-1×24=24,(2)2n +1-2n =2×2n -1×2n =2n ,(3)将原式进行变形,即提出负号后,就转化为原题中的类型,利用(1)(2)的结论,直接得出结果. 【详解】解:(1)由题意可得: 25-24=2×24-1×24=24; (2)2n +1-2n =2×2n -1×2n =2n ; (3)1232019202022222++++-=()1232019202022222++++-=1232018201922222++++-... =2-22 =-2 【点睛】此题主要考查了数字变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n +1-2n =2n 成立. 25.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --.(1)求a 2,a 3的值;(2)求a 1+a 2+a 3+…+a 2021的值. 【答案】(1)212a =,32a =;(2)1009 【分析】(1)将11a =-代入2111a a =-计算可得2a ,再将2a 代入3211a a =-,可求出3a ;(2)根据规律可得出结果. 【详解】解:(1)把11a =-代入2111a a =-得, 2111(1)2a =--=,把212a =代入3211a a =-得,312112a ==-,∵212a =,32a =; (2)将32a =代入4311a a =-得, 41112a ==-- 同理5111(1)2a ==--, 62a =,71a =-,812a =, ⋯⋯12345678920172018201932a a a a a a a a a a a a ++==++=++=⋯=++, 所以1232021111112121212222a a a a +++⋯+=-++-++-++⋯⋯-+31673122=⨯-+ 1009=.【点睛】本题考查有理数的混合运算,探索数字的变化规律,正确的计算2a ,3a ,4a ,5a ⋯⋯进而得出变化规律是解决问题的关键. 26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:111122334++⨯⨯⨯11111122334=-+-+-13144=-=. (1)猜想并写出:1(1)n n =+________. (2)直接写出结果:111112233420182019++++=⨯⨯⨯⨯___________.(3)计算111124466820182020++++⨯⨯⨯⨯.【答案】(1)111n n -+;(2)20182019;(3)10094040【分析】(1)根据题目中的式子,可以写出相应的猜想; (2)先裂项,然后再计算即可;(3)根据题目中式子的特点,每项提取12,再裂项计算即可. 【详解】解:(1)由题意可得:111(1)1n n n n =-++;(2)111112233420182019++++⨯⨯⨯⨯=111111112233420182019-+-+-++- =112019- =20182019; (3)111124466820182020++++⨯⨯⨯⨯=111111111224466820182020⎛⎫-+-+-++- ⎪⎝⎭=111222020⎛⎫- ⎪⎝⎭ =1100922020=10094040【点睛】本题考查了规律型:数字的变化类:探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法. 27.阅读下列材料:11112(123012)23(234123)34(345234)333⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯;由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题: (1)计算:12233499100⨯+⨯+⨯++⨯(写出过程)(2)直接写出直接:122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_________. (3)计算:123234345181920⨯⨯+⨯⨯+⨯⨯++⨯⨯(写出过程)【答案】(1)333300;(2)()()1123n n n ++;(3)35910 【分析】根据给定等式的变化找出变化规律()()()()()1112113n n n n n n n n +=++--+⎡⎤⎣⎦;(1)根据变化规律将算式展开后即可得出原式=1991001013⨯⨯⨯,此题得解; (2)根据变化规律将算式展开后即可得出原式=()()1123n n n ++,此题得解;(3)通过类比找出变化规律“n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)]”,依此规律将算式展开后即可得出结论. 【详解】解:观察,发现规律:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,…,∵()()()()()1112113n n n n n n n n +=++--+⎡⎤⎣⎦; (1)12233499100⨯+⨯+⨯++⨯=()()()111123012234123 (9910010198991003)33⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯ =1991001013⨯⨯⨯ =333300;(2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=()()()()()()111230122341231121.13..33n n n n n n ++--+⎡⎤⎣⎦⨯⨯-⨯⨯+⨯⨯-⨯⨯++ =()()1123n n n ++;(3)123234345181920⨯⨯+⨯⨯+⨯⨯++⨯⨯=()()()1111234012323451234 (181920211718192044)4⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ =1181920214⨯⨯⨯⨯ =35910 【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中数字的变化特点,利用类比的数学思想解答.28.用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一系列图案,请仔细观察,并回答下列问题:(1)第4个图案中有白色纸片多少张?(2)第n个图案中有白色纸片多少张?(3)第几个图案有白色纸片有2011张?(写出必要的步骤)【答案】(1)13;(2)(3n+1)张(3)第670个图案有白色纸片有2011张,见解析【分析】(1)观察图形的变化可得第4个图案中有白色纸片有3×4+1=13张;(2)结合(1)即可得规律,第n个图案中有白色纸片(3n+1)张;(3)结合(2)发现的规律即可求得白色纸片有2011张是第几个图案.【详解】(1)观察图形的变化可知:第1个图案中有白色纸片张数为:3×1+1=4;第2个图案中有白色纸片张数为:3×2+1=7;第3个图案中有白色纸片张数为:3×3+1=10;第4个图案中有白色纸片张数为:3×4+1=13;(2)根据(1)发现规律:第n个图案中有白色纸片张数为:(3n+1)张.(3)根据(2)可知:3n+1=2011,解得n=670.答:第670个图案有白色纸片有2011张.【点睛】此题考查规律型-图形的变化类,解题的关键是根据图形的变化寻找规律.29.图1是用绳索织成的一片网的一部分,小明为了研究这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:V F E之间(1)表中“∵”处应填的数字为__________;根据上述探索过程,可能猜想,,满足的数量关系是__________.(2)如图2,若网眼形状为六边形,请仿照小明的探索方法,完成下面表格并猜想,,V F E 之间满足的数量关系.根据上述探索过程,可以猜想,,V F E 之间满足的数量关系是________. 【答案】(1)17,1V F E +-=;(2)表见解析,1V F E +-= 【分析】(1)根据表格中的数据可以得到表中“∵”处应填的数字并猜想出V ,F ,E 之间满足的等量关系;(2)根据(1)中的例子,可以猜想出若网眼形状为六边形,V ,F ,E 之间满足的等量关系. 【详解】解:(1)由表格可得, 表中“∵”处应填的数字为17,根据上述探索过程,可以猜想V ,F ,E 之间满足的等量关系为:V+F -E=1, 故答案为:17,V+F -E=1; (2)若网眼形状为六边形 当V=6时,F=1,E=6, 当V=10时,F=2,E=11, 当V=16时,F=4,E=19, 当V=22时,F=6,E=27,则V ,F ,E 之间满足的等量关系为V+F -E=1, 故答案为:V+F -E=1【点睛】30.先阅读下面文字,然后按要求解题.例:123100?+++⋅⋅⋅+=如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为11002993985051101+=+=+=⋅⋅⋅=+=,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果. (1)补全例题解题过程;123100(1100)(299)(398)(5051)101++++=++++++++=⨯_____=_____.(2)计算:2468100++++⋅⋅⋅+(3)计算:()(2)(3)(99)a a b a b a b a b +++++++⋅⋅⋅++. 【答案】(1)50,5050;(2)2550;(3)1004950a b + 【分析】(1)根据题干中的示例计算即可得解;(2)根据两数之和为102,再乘以数字的个数即可得;(3)将所有的a 相加、所有含b 的式子相加,含b 的代数式利用以上求和方法求解可得. 【详解】解:(1)123100+++⋯+(1100)(299)(398)(5051)++++++⋯++10150=⨯5050=,故答案为:50、5050; (2)2468100++++⋅⋅⋅+1(2100)22100=+⨯⨯10225=⨯ 2550=;(3)原式100(23499)a b b b b b =+++++⋯+99(199)1002a b ⨯+=+1004950a b =+.【点睛】本题主要考查数字的变化规律,解题的关键是熟练掌握(1)1232n n n ++++⋯+=.。
部编数学七年级上册专题04有理数运算中的规律探究(解析版)含答案
专题04 有理数运算中的规律探究1.观察下列等式:第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø……请解答下列问题:(1)按以上规律列出第5个等式:5a =________=_______(2)用含有n 的式子表示第n 个等式:(n 为正整数)n a =______=_______(3)求12341000a a a a a ++++¼+的值.【答案】(1)1911´,1112911æö´-ç÷èø(2)()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)100201【解析】【分析】(1)根据所给的等式的形式求解即可;(2)根据所给的等式,进行总结可得出规律;(3)利用(2)中的规律进行求解即可.(1)解:观察等式找到规律,第5个等式为: 511119112911a æö==´-ç÷´èø故答案为:1911´,1112911æö´-ç÷èø(2)解:Q 第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø第5个等式:511119112911a æö==´-ç÷´èø……第n 个等式:()()1111212122121n a n n n n æö==´-ç÷-´+-+èø故答案为:()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)解:12341000a a a a a ++++¼+=11123æö´-ç÷èø+111235æö´-ç÷èø+111257æö´-ç÷èø…+1992011112æö´-ç÷èø11111112335199201æö=-+-+×××+-ç÷èø1112201æö=-ç÷èø12002201=´100201=【点睛】本题主要考查数字的变化规律,解题的关键是由所给的等式总结出存在的规律并灵活运用.2.先阅读下列式子的变形规律:111122=-´;1112323=-´;1113434=-´;1111111113111223342233444++=-+-+-=-=´´´然后再解答下列问题:【注:第(1)小题直接写结果,不用写过程】(1)类比计算:1910=´______,120192020=´______,归纳猜想:若n 为正整数,那么猜想()11n n =+______.(2)知识运用,选用上面的知识计算111112233420192020++++´´´´LL 的结果.(3)知识拓展:试着写出111113355779+++´´´´的结果.【答案】(1)11910-;1120192020-;111n n -+(2)20192020(3)49【解析】【分析】(1)根据题意分解形式求解即可;(2)根据式子规律求解即可;(3)将113´分解成11123æö-ç÷èø的形式,其余各式比照该分解形式进行分解,然后求和计算即可.(1)解:由题意知111910910=-´1112019202020192020=-´()11111n n n n =-´++故答案为:11910-;1120192020-;111n n -+.(2)解:1111······+12233420192020+++´´´´1111111111 (223342018201920192020)=-+-+-++-+-211200=-20192020=(3)解:111113355779+++´´´´11111111111123235257279æöæöæöæö=-+-+-+-ç÷ç÷ç÷ç÷èøèøèøèø11111111123355779æö=-+-+-+-ç÷èø11129æö=´-ç÷èø49=【点睛】本题考查了数字类规律的探究.解题的关键在于概括出分解运算规律.3.(1)观察下列各式:123456733,39,327,381,3243,3729,32187,=======L1234561313,13169,132197,1328561,13371293,134826809,======L根据你发现的规律回答下列问题:①20223的个位数字是___________;9913的个位数字是___________;②9943的个位数字是___________;5543的个位数字是___________;(2)自主探究回答问题:①997的个位数字是___________,557的个位数字是___________;②9952的个位数字是___________,5552的个位数字是___________.(3)若n 是自然数,则9955n n -的个位上的数字( )A .恒为0B .有时为0,有时非0C .与n 的末位数字相同D .无法确定【答案】(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A【解析】【分析】(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知99n 与55n 个位上的数字相同即可得出答案.【详解】解:(1)①Q 123456733,39,327,381,3243,3729,32187,=======L\3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环20224505 (2)¸=Q \20223的个位数字是9;Q 1234561313,13169,132197,1328561,13371293,134826809,======L\13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424 (3)¸=Q \9913的个位数字是7;故答案为:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9943的个位数字是7,5543的个位数字是7;故答案为:7;7;(2)①123456777497343724017168077117649...======Q ,,,,,\7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\997的个位数字是3,557的个位数字是3故答案为:3;3②123456222428216232264...======Q ,,,,,\2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环\52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9952的个位数字是8,5552的个位数字是8故答案为:8;8(3)由(1)(2)中的结论可知99n 与55n 个位上的数字相同\9955n n -的个位上的数字恒为0故选A .【点睛】本题考查数字的变化规律,找出数字之间的规律是解题的关键.4.观察下列各式:3312189+=+=,而2332(12)9,12(12)+=\+=+;33312336++=,而23332(123)36,123(123)++=\++=++;33331234100+++=,而233332(1234)100,1234(1234)+++=\+++=+++;(1)猜想并填空:3333312345++++=_______2=_______;(2)根据以上规律填空:3333123n ++++=L _______2=_______;(3)求解:333331617181920++++.【答案】(1)(1+2+3+4+5),225(2)()123n ++++L ,()212n n +éùêúëû(3)29700【解析】【分析】观察题中一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,据些规律来求解.(1)根据上述规律填空即可求解;(2)根据上述规律填空,然后把123n ++++L 变为2n 个()1n +相乘来求解;(3)对所求的式子前面加上1到15的立方和,然后根据上述规律分别求出1到15的立方和与16到20的立方和,再求出两数相减即可求解.(1)解:由题意可知:()2333331234512345225++++=++++=.故答案为:(1+2+3+4+5),225;(2)解:()()()1121211222n n n n n n n n +éùæö+++=+++-++-+=éùç÷êúëûèøëûQ L L ()()22333311231232n n n n +éù\+++=++++=êúëûL L .故答案为:()123n ++++L ,()212n n +éùêúëû;(3)解:333331617181920++++()()333333331232012315=+++-+++L L()()221232012315=+++-+++L L 22210120=-29700=故答案为:29700.【点睛】本题考查了探究数字规律,主要要求学生综合运用观察、想象、归纳、推理概括等思维方式,运用总结的规律解决问题的能力.找出规律是解答关键.5.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方,三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3,4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=______;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,-5,3,9,-1,11,-3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】(1)-6(2)8(3)图形见解析(答案不唯一)【解析】【分析】(1)根据幻和等于九宫格中最中心数的3倍即可得答案;(2)根据b=4先求出第二行第三列的数字,根据c=6求出第一行第三列的数字,根据对角线求出第一行第一列的数字,最后根据第一行三个数字之和等于幻和即可求解;(3)根据九宫格中所有数字相加,其和为幻和的3倍先求出中心数为3,幻和为9,进一步将数据分成5与1一组,7与-1一组,-5与11一组,9与-3一组,按照此条件分组将数据填入九宫格中即可.(1)解:由题意可知:幻和等于九宫格中最中心数的3倍,∴图2中幻和=-2×3=-6.(2)解:由(1)知幻和为-6,当b=4,c=6时:第二行第三列的数字为:-6-b-(-2)=-6-4+2=-8,第一行第三列的数字为:-6-(-8)-c=-6+8-6=-4,根据对角线可知:第一行第一列的数字为:-6-(-2)-6=-10,∴a=-6-(-10)-(-4)=-6+10+4=8.(3)解:将图3中的九宫格分别标记为A~I,如下图所示:由于九宫格中横行、纵向的数字之和均相等,其和叫做幻和,∴九宫格中所有数字相加,其和为幻和的3倍,∴幻和=(5+7-5+3+9-1+11-3+1)÷3=9,又幻和为九宫格中最中心数的3倍,∴最中心的E代表的数为3,∵对角线、横行、纵向的数字之和是幻和的3倍,∴A+I=6,B+H=6,C+G=6,D+F=6,故5与1一组,7与-1一组,-5与11一组,9与-3一组,只需要满足此条件写出来九宫格必然满足题目要求,取A=5、B=7时,此时I=1,H=-1,G=9,C=-3,D=-5,F=11,如下图所示(答案不唯一):【点睛】本题主要考查数字的变化规律,读懂题意,解题的关键是掌握幻方的定义及幻和与中心数的关系即可.6.探究规律,完成相关题目.将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等.如图所示的三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到33´的方格中得到的,其每一行,每一列,每一条对角线上的三个数字之和都相等.(1)设下面的三阶幻方中间的数字是m (其中m 为正整数),请用含m 的代数式将下面的幻方填充完整;(2)若设(1)幻方中9个数的和为S ,则S 与中间的数字m 之间的数量关系为______;(3)现要用9个数:-40,-30,-20,-10,0,10,20,30,40构造一个三阶幻方,请将构造的幻方填写在下面33´的方格中.【答案】(1)答案见解析;(2)9m S =;(3)答案见解析【解析】【分析】(1)由第3列的三个代数式的和为3,m 再利用每行,每列,每一条对角线上的三个代数式之和相等逐一填好其余的空格,即可得到答案;(2)由每行,每列,每一条对角线上的三个代数式之和相等,可得()3123,S m m m =++++-从而可得答案;(3)由(2)的规律先确定最中间的数据0, 把-40,-30,-20,-10,0,10,20,30,40按从小到大的顺序排列,再把第2,4,6,8个数据放在四角的位置,再根据每行,每列,每一条对角线上的三个数之和相等,填好其余空格即可.【详解】解:(1)1m +4m -3m +2m +m 2m -3m -4m +1m -(2)由每行每列及对角线上的三个代数式的和相等可得:()31239,S m m m m =++++-=故答案为:9.S m =(3)幻方如图所示(答案不唯一):10-4030200-20-3040-10【点睛】本题考查的是数或代数式的排列的规律的探究,有理数的加减运算,整式的加减运算,掌握以上知识是解题的关键.7.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是 A .(+3)+(+2)=+5;B .(+3)+(﹣2)=+1;C .(﹣3)﹣(+2)=﹣5;D .(﹣3)+(+2)=﹣1②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为2018(A 在B 的左侧,且折痕与①折痕相同),且A 、B 两点经折叠后重合,则A 点表示 B 点表示 .③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为 .(用含有a ,b 的式子表示)【答案】(1)①D ; ②﹣1009(2)①﹣2015; ②﹣1008,1010;③2a b+【解析】【分析】(1)①根据有理数的加法法则即可判断;②探究规律,利用规律即可解决问题;(2)①根据对称中心是1,即可解决问题;②由对称中心是1,AB =2018,可知A 点是1左边距1为1009个单位的点表示的数,B 点是1右边距1为1009个单位的点表示的数,即可求出点A 、B 所表示的数;③利用中点坐标公式即可解决问题.(1)解:①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D .②一机器人从数轴原点处O 开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是(﹣1)+(+2)+(﹣3)+(+4)+…+(+2016)+(﹣2017)=1×1008+(﹣2017)=﹣1009,故答案为:﹣1009.(2)①若折叠纸条,表示﹣1的点与表示3的点重合, 132-+=1,∴对称中心为1,∴2017﹣1=2016,∴1﹣2016=﹣2015,∴表示2017的点与表示﹣2015的点重合,故答案为:﹣2015;②∵对称中心为1,AB =2018,∴点A 所表示的数为:1﹣20182=﹣1008,点B 所表示的数为:1+20182=1010,故答案为:﹣1008,1010;③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为2a b+;故答案为:2a b+.【点睛】本题考查了数轴、有理数的加减混合运算、折叠等知识,理解题意,灵活应用所学知识是解决问题的关键.8.观察下面三行数:2,4-,8,16-,32,64-,……; ①0,6-,6,18-,30,66-,……; ②1-,2,4-,8,16-,32,……; ③观察发现:每一行的数都是按一定的规律排列的.通过你发现的规律,解决下列问题.(1)第①行的第8个数是________,第n 个数是________;(2)第②行的第n 个数是________,第③行的第n 个数是________;(3)取每行数的第10个数,计算这三个数的和.【答案】(1)256-;1(1)2n n +- ;(2)1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)1538-【解析】【分析】(1)第①行有理数是按照1(1)2n n +-排列的;(2)第②行为第①行的数减2;第③行为第①行的数的一半的相反数,分别写出第n 个数的表达式即可;(3)根据各行的表达式求出第10个数,然后相加即可得解.【详解】解:(1)第①行的有理数分别是﹣1×2, ﹣1×22,23, ﹣1×24,…,故第8个数是861522´=-﹣,第n 个数为(﹣2)n (n 是正整数);故答案为:256-;1(1)2n n +- ;(2)第②行的数等于第①行相应的数减2,即第n 的数为1(1)22n n +--(n 是正整数),第③行的数等于第①行相应的数的一半的相反数,即第n 个数是11(1)2()2n n +-´-或1(1)2n n --(n 是正整数);故答案为:1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)∵第①行的第10个数为101011(1)22--=,第②行的第10个数为1022--,第③的第10个数为1099(1)22-=,所以,这三个数的和为:101092(22)2-+--+1024(10242)512=-+--+102410242512=---+1538=-【点睛】本题是对数字变化规律的考查,认真观察、仔细思考,善用联想是解决这类问题的方法,观察出第②③行的数与第①行的数的联系是解题的关键.9.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7-6|=7-6;|6-7|=-6+7;|-6-7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+2|=;②|-12+15|=;(2)用简单的方法计算:|13-12|+|14-13|+|15-14|+……+|12021-12020|.【答案】(1)①7+2;②1125-;(2)20194042【解析】【分析】(1)①②根据正数的绝对值等于本身,负数的绝对值是其相反数可得答案;(2)根据绝对值的性质化简,再相互抵消可得答案.【详解】解:(1)①∵7+20> ,∴|7+2|=7+2;②∵11025-+< ,∴|-12+15|=1125-;(2)原式=11111111+...+23344520202021-+-+-- ,1122021=- ,=20194042.【点睛】本题考查有理数的混合运算,熟练地掌握运算法则和绝对值的性质是解题关键.10.给定一列数,我们把这列数中的第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).例如下面这列数1,3,5,7,9中,11a =,23a =,35a =,47a =,59a =.规定运算1123(:)n n sum a a a a a a =+++¼¼+,即从这列数的第一个数开始依次加到第n 个数,如在上面这列数中:1312313(:)59sum a a a a a =++=++=.(1)已知一列数-1,2,-3,4,-5,6,-7,8,-9,10.则110(:)sum a a =______.(2)已知一列有规律的数:1(1)1-´,2(1)2-´,3(1)3-´,4(1)4-´,¼¼,按照规律,这列数可以无限的写下去.①求12021(:)sum a a 的值.②是否有正整数n 满足等式1(:)50n sum a a =-成立?如果有,请直接写出n 的值.如果没有,请说明理由.【答案】(1)5;(2)①-1011;②n =99.【解析】【分析】(1)直接根据题中所给定义运算进行求解即可;(2)①由题意可知()12341,2,3,4, (1)n a a a a a n =-==-==-×,由此可得20212021a =-,然后求解即可;②由题意易得()12345....150nn -+-+-++-×=-,进而求解即可.【详解】解:(1)由题意得:110(:)123456789105sum a a =-+-+-+-+-+=,故答案为5.(2)解:由题意得:()12341,2,3,4, (1)n a a a a a n =-==-==-×,∴12021(:)sum a a =-1+2-3+4···+2020-2021=1×1010-2021=-1011.②由题意得:()12345....150nn -+-+-++-×=-,∴当n 为奇数时,则有11502n n -´-=-,解得:n =99,当n 为偶数时,则有1502n ´=-,解得:100n =-,(不符合题意,舍去),∴综上所述:n =99.【点睛】本题主要考查含乘方的有理数混合运算及数字规律问题,熟练掌握含乘方的有理数混合运算及数字规律问题是解题的关键.11.细心观察下面三个图形,按下述方法找出规律.(1)分别写出前面三个图形四角中四个数的积分别是 、 、 ;(2)分别写出前面三个图形四角中四个数的和分别是、、;(3)请你说明你发现的规律找出第四个正方形中的数,并说明理由.【答案】(1)24,60,120;(2)-10,-13,-16;(3)191,理由见解析【解析】【分析】(1)根据有理数乘法的性质计算,即可得到答案;(2)根据有理数加法的性质计算,即可得到答案;(3)根据有理数乘法和加法的性质计算,并结合前三个图形的数字规律,即可完成求解.【详解】(1)(-1)×(-2)×(-3)×(-4)=24;(-1)×(-3)×(-5)×(-4)=60;(-1)×(-4)×(-5)×(-6)=120;故答案为:24,60,120;(2)(-1)+(-2)+(-3)+(-4)=-10;(-1)+(-3)+(-5)+(-4)=-13;(-1)+(-4)+(-5)+(-6)=-16;故答案为:-10,-13,-16;(3)(-1)×(-5)×(-6)×(-7)=210;(-1)+(-5)+(-6)+(-7)=-19;∵第1个正方形中的数()241014=+-= 第2个正方形中的数()601347=+-=第3个正方形中的数()12016104=+-=∴第四个正方形中的数()21019191=+-=.【点睛】本题考查了有理数加减法、乘法,以及数字规律的知识;解题的关键是熟练掌握有理数加减法和乘法的性质,结合数字规律,从而完成求解.12.一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位到达点A 2;第二次从点A 2向左移动3个单位,再向右移动4个单位到达点A 3;第三次从点A 3向左移动5个单位,再向右移动6个单位到达点A 4,…,点P 按此规律移动,那么:(1)第一次移动后这个点P 在数轴上表示的数是 ;(2)第二次移动后这个点P 在数轴上表示的数是 ;(3)第五次移动后这个点P 在数轴上表示的数是 ;(4)这个点P 移动到点An 时,点An 在数轴上表示的数是 .【答案】(1)﹣1;(2)0;(3)3;(4)﹣2+n .【解析】【分析】(1)根据题意可得第一次移动后这个点P 在数轴上表示的数是﹣1;(2)第二次移动后这个点P 在数轴上表示的数是2120-+´=;(3)第五次移动后这个点P 在数轴上表示的数是2153-+´=;(4)这个点P 移动到点An 时,点An 在数轴上表示的数212n n -+´=-+.【详解】解:(1)记某次向左移动m 个单位长度,则向右移动()1m +个单位长度,从而每次移动的实际量为:123411,m m -+=-+=-++=∵一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位∴211-+=-,即第一次移动后这个点P 在数轴上表示的数是﹣1故答案为﹣1(2)∵2120,-+´=∴第二次移动后这个点P 在数轴上表示的数是0故答案为0(3)∵2153,-+´=∴第五次移动后这个点P 在数轴上表示的数是3故答案为3(4)∵212n n -+´=-+,∴这个点P 移动到点An 时,点An 在数轴上表示的数是﹣2+n 故答案为﹣2+n ,【点睛】本题考查的是点在数轴上的移动规律的探究,有理数的加法运算,掌握数轴上点的移动后对应的数的变化规律是解题的关键.13.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请写出满足上述规律的第6行等式:__________;(2)请猜想1+3+5+7+9+…+39=_____;(写出具体数值)(3)请猜想1+3+5+7+9+…+(2n ﹣1)+(2n +1)=_____;(用含n 的式子表示)(4)请用上述规律计算:51+53+55+…+87+89.(写出计算过程)【答案】(1)1+3+5+7+9+11=62;(2)400;(3)(n +1)2;(4)1400【解析】(1)类比得出第6行等式为:1+3+5+7+9+11=62;(2)由图形可知,从1开始的连续奇数的和等于奇数的个数的平方,然后根据此规律求解即可;(3)利用(1)(2)的规律推出一般规律即可;(4)用从1到89的连续奇数的和减去从1到49的连续奇数的和,进行计算即可得解.【详解】解:(1)第6行等式:1+3+5+7+9+11=62;(2)1至39共有(39+1)÷2=20个奇数,∴1+3+5+7+9+…+39=202=400;(3)1+3+5+7+9+…+(2n -1)+(2n +1)=22112n ++æöç÷èø=(n +1)2;(4)51+53+55+…+87+89=1+3+5+7+…+87+89-(1+3+5+7+…+47+49)=2289149122++æöæö-ç÷ç÷èøèø=452-252=2025-625=1400.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,解决问题.14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,124,6K K ==,……按此规律排列下去,第n 个图形中实心圆的个数表示为Kn .(1)n K =______(用n 表示):100K =_______(2)我们在用“*”定义一种新运算:对于任意有理数a 和正整数n .规定*2n na K a K a n -++=,例如:223336|36|(3)*2322K K --+-+--+-+-===-.①计算:(26.6)*10-的值;②比较:3*n 与(3)*n -的大小.【答案】(1)2(n +1),202;(2)①-22;②3☆n >(-3)☆n 【解析】【分析】(1)由图形可知:第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,…由此得出第n 个图形中有2(n +1)个实心圆,进一步代入求得答案即可;(2)①根据规定的运算顺序与计算方法,转化为有理数的混合运算计算即可;②根据规定的运算顺序与计算方法分别计算得出结果比较得出结论即可.【详解】解:(1)Q 第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,¼2(1)n K n \=+;1002(1001)202K =´+=;(2)①(26.6)-*10101026.6|26.6|2K K --+-+=26.6(2102)|26.6(2102)|2--´++-+´+=22=-;②n Q 是正整数,224n K n \=+…;3\*n3|3|2n n K K -++=332n nK K -++=3=,(3)-*n3|3|2n n K K --+-+=332n nK K ---+=3=-.n>-*n.所以3*(3)【点睛】此题考查图形的变化规律,有理数的混合运算,找出图形的运算规律,理解规定的运算方法是解决问题的关键.。
初一数学培优专题---规律探究题的解题方法
七年级培优专题--规律探究题的解法指导一、数式规律探究1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+③ 1、3、7、15……2n -1 ④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 ⑥ 2+4+6+…+2n=n(n+1)⑦ 12+22+32….+n2=16n(n+1)(2n+1) ⑧ 13+23+33….+n3=14n2(n+1)2⑨2,4.8.16.32...... 2n4、初中阶段会考察的规律,大部分为等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。
通项公式为:a n=a1+(n-1)d。
首项a1=1,公差d=2。
前n项和公式为:S n=12[n×(a1+a n)]=n a1+12n(n-1)d。
注意:以上n均属于正整数。
数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:①.观察法:例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:①1×12=1-12观察相应位置上变化的数字与序列号②2×23=2-23的对应关系(注意分清正整数的奇偶)③ 3×34=3-34易观察出结果为:④ 4×45=4-45例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么32009的个位数字是。
七年级上册数学找规律题
七年级练找规律习题一、数字排列规律题1、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __2、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 213、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?4、有一串数字 3 6 10 15 21 ___ 第6个是什么数?5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .46、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.7、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .8、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102;…………由此规律知,第⑤个等式是 .9、观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
10、观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( )A .1B . 2C .3D .412、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
七年级数学探究题
七年级数学探究题一、有理数运算探究题1. 探究规律:- 计算:1 - (1)/(2)=(1)/(2);1-(1)/(2)-(1)/(4)=1 - ((1)/(2)+(1)/(4)) = 1-(3)/(4)=(1)/(4);1-(1)/(2)-(1)/(4)-(1)/(8)=1-((1)/(2)+(1)/(4)+(1)/(8)) = 1 - (7)/(8)=(1)/(8)。
- 猜想:1-(1)/(2)-(1)/(4)-(1)/(8)-·s-(1)/(2^n)=___。
- 解析:- 通过前面的计算可以发现规律。
每次计算都是1减去后面分数之和,而后面分数之和的分母是最后一个分数的分母,分子比分母小1。
- 对于1-(1)/(2)-(1)/(4)-(1)/(8)-·s-(1)/(2^n),结果应该是(1)/(2^n)。
2. 若a = (1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020),求a的值。
- 解析:- 先分析每一项的规律,(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 那么a=<=ft(1-(1)/(2))+<=ft((1)/(2)-(1)/(3))+<=ft((1)/(3)-(1)/(4))+·s+<=ft((1)/(2019)-(1)/(2020))。
- 可以发现中间项都可以消去,最后a = 1-(1)/(2020)=(2019)/(2020)。
二、整式探究题3. 探究(a + b)^2=a^2 + 2ab + b^2与(a - b)^2=a^2-2ab + b^2的关系。
- 解析:- 把(a - b)^2中的-b看作一个整体,(a - b)^2=[a+(-b)]^2。
- 根据(a + b)^2=a^2 + 2ab + b^2,可得[a+(-b)]^2=a^2+2a(-b)+(-b)^2=a^2 - 2ab + b^2。
人教版七年级上册数学专题 训练:找规律之图形变化类(一)(含答案)
七年级上册数学专题培优训练:找规律之图形变化类(一)1.如图是由一些火柴棒搭成的图案:(1)摆第1个图案用根火柴棒,摆第2个图案用根火柴棒,摆第3个图案用根火柴棒.(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒(n为正整数)?(3)摆2021根火柴棒时是第几个图案?2.观察图示,解答问题.(1)由上而下第8行,白球有个,黑球有个;(2)若第n(n为正整数)行白球与黑球的总数记作y,求y与n的关系式;(3)求出第2020行白球和黑球的总数.3.如图所示,将一个边长为1的正方形纸片分割成6个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,以此类推.(1)图1的阴影部分的面积是;(2)受此启发,得到++++的值是;(3)若按这个方式继续分割下去,受前面问题的启发,可求得+++…+的值为;(4)请你利用图2,再设计一个能求+++…+的值的几何图形.4.【规律探索】如图所示的是由相同的小正方形组成的图形,每个图形的小正方形个数为S,n是正整数.观察下列图形与等式之间的关系n【规律归纳】(1)S 9﹣S 8= ;S n ﹣S n ﹣1= ; (2)S 9+S 8= ;S n +S n ﹣1= ; 【规律应用】 (3)计算的结果为 .5.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题: (1)第6个点阵中有 个圆圈;第n 个点阵中有 个圆圈. (2)小圆圈的个数会等于331吗?请求出是第几个点阵.6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形的个数 1 2 3 4 5 6火柴棒的根数 4 7 10 13(2)第n个图形有根火柴棒.(3)小亮用若干根火柴棒按如图所示的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,……,当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第(n+1)个图案还差8根.问最后摆的第(n+1)个图案是第几个图案?7.下列小金鱼图案是用长度相同的小木棒按一定规律拼搭而成,第一条小金鱼图案需8根小木棒,第二条小金鱼图案需14根小木棒,…,按此规律,(1)第n条小金鱼图案需要小木棒根;(2)如果有30000根小木棒,按照如图所示拼搭第1条,第2条……,直到第100条金鱼,请通过计算说明这些木棒是否够用.8.探究题.观察图形,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)图中从第一层到第n层一共有多少个圆圈?(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.9.如图是用棋子摆成的“上”字.(1)依照此规律,第4个图形需要黑子、白子各多少枚?(2)按照这样的规律摆下去,摆成第n个“上”字需要黑子、白子各多少枚?(3)请探究第几个“上”字图形白子总数比黑子总数多15枚.10.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3……以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成个互不重叠的正方形;第4次画线后,分割成个互不重叠的正方形.发现:第n次画线后,分割成个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.参考答案1.解:(1)观察图形的变化可知:摆第1个图案用5+1=6根火柴棒,摆第2个图案用5×2+1=11根火柴棒,摆第3个图案用5×3+1=16根火柴棒;故答案为:6,11,16;(2)结合(1)可知:摆第n个图案用(5n+1)根火柴棒;(3)因为5n+1=2021,解得n=404,所以摆2021根火柴棒时是第404个图案.2.解:(1)第一行1个白球,1个黑球,第二行2个白球,3个黑球,第三行3个白球,5个黑球,…所以可得第n行白球有n个,黑球有2n﹣1个.第8行,白球有8个,黑球有15个;故答案为:8,15;(2)第n(n为正整数)行白球数为n个,黑球数为:(2n﹣1)个,所以总数y与n的关系式为:y=n+2n﹣1=3n﹣1;(3)第2020行白球和黑球的总数为:3×2020﹣1=6059.3.解:(1)∵观察图形发现部分①的面积为:;部分②的面积为=;…∴图1的阴影部分的面积是;故答案为:;(2)++++=1﹣=;故答案为:;(3)+++…+=1﹣;故答案为:1﹣; (4)如图为+++…+的值的几何图形,4.解:(1)根据图形与等式之间的关系可知:S 2﹣S 1=2; S 3﹣S 2=3; S 4﹣S 3=4;… 发现规律:S n ﹣S n ﹣1=n ;∴S 9﹣S 8=9; 故答案为9、n ; (2)S 2+S 1=22;S 3+S 2=32; S 4+S 3=42;… 发现规律:S n +S n ﹣1=n 2;∴S 9+S 8=92=81; 故答案为81、n 2;(3)结合(1)(2)可知:==.故答案为.5.解:图1中黑点个数是6×1=6个; 图2中黑点个数是6×2=12个; 图3中黑点个数是6×3=18个; …,所以图8、图n 中黑点的个数分别是48,6n ; 故答案为:48,6n ;(1)观察点阵可知: 第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1; 第3个点阵中有19个圆圈;19=3×3×2+1; 第4个点阵中有37个圆圈;37=4×3×3+1; 第6个点阵中有圆圈个数为:6×3×5+1=91(个); 发现规律:第n 个点阵中有圆圈个数为:n ×3(n ﹣1)+1=3n 2﹣3n +1. 故答案为:91;n ×3(n ﹣1)+1=3n 2﹣3n +1. (2)会;第11个点阵. 3n 2﹣3n +1=331 整理得,n 2﹣n ﹣110=0解得n 1=11,n 2=﹣10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.6.解:(1)观察图形的变化可知:第1个图形有3×1+1=4根火柴棒.第2个图形有3×2+1=7根火柴棒.第3个图形有3×3+1=10根火柴棒.…第5个图形有3×5+1=16根火柴棒.第6个图形有3×6+1=19根火柴棒.故答案为:16,19;(2)由(1)可知:第n个图形有(3n+1)根火柴棒.故答案为:(3n+1);(3)因为摆完第n个图案时剩下了20根火柴棒,要刚好摆完第(n+1)个图案还差8根.所以3(n+1)+1=20+8,解得n=8,所以最后摆的第(n+1)个图案是第9个图案.7.解:(1)第一条小金鱼图案需8根小木棒,即8=6×1+2;第二条小金鱼图案需14根小木棒,即14=6×2+2;第三条小金鱼图案需20根小木棒,即20=6×3+2…,发现规律,第n条小金鱼图案需要小木棒(6n+2)根;故答案为:(6n+2);(2)拼搭第1条,第2条……,直到第100条金鱼,所需小木棒:8+14+20+…+602==30500>30000.答:这些木棒不够用.8.解:(1)第八层有15个小圆圈,第n层有(2n﹣1)个小圆圈;(2)令2n﹣1=65,得,n=33.所以,这是第33层;(3)1+3+5+…+(2n﹣1)=n2;(4)1+3+5+…+99=502=2500;(5)101+103+105+...+199=(1+3+5+...+199)﹣(1+3+5+ (99)=1002﹣502=7500.9.解:(1)依照此规律,第4个图形需要黑子5枚,白子14枚;(2)按照这样的规律摆下去,摆成第n个“上”字需要黑子(n+1)枚,白子(3n+2)枚;(3)设第m个“上”字图形白子总数比黑子总数多15枚,则3m+2=m+1+15,解得m=7.所以第7个“上”字图形白子总数比黑子总数多15枚.10.解:尝试:3×3+1=10,3×4+1=13;故答案为:11,13;发现:通过尝试可知:第n次画线后,分割成的正方形为:3n+1;当n=2020时,3n+1=6061,即第2020次画线后得到互不重叠的正方形的个数是6061;故答案为:(3n+1);探究:不能.设每次画线后得到互不重叠的正方形的个数为m,则m=3n+1.若m=1001,则1001=3n+1.解得.这个数不是整数,所以不能.。
初一上数学真题专题练习---规律探究与新定义运算
规律探究与新定义运算【真题精选】1.(2020秋•161月考)按一定规律排列的一列数依次为,﹣,,﹣,,﹣,…,按此规律排列下去,这列数中第8个数是,第n个数是(n为正整数).2.(2020秋•海淀月考)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……第2020个单项式是()A.2020a B.﹣2020a C.a2020D.﹣a2020 3.(2019秋•昌平区月考)观察下面的单项式:2x,4x2,8x3,16x4根据你发现的规律,写出第6个式子是,第n个式子是.4.(2020秋•房山期末)观察下列单项式:0,3x2,8x3,15x4,24x5…,按此规律写出第20个单项式是.5.(2015秋•人大附中)观察下列单项式,2x,﹣5x2,10x3,﹣17x4,…根据你发现的规律写出第8个式子是,第n个式子是.6.(2020秋•海淀校级期中)有一列式子,按照一定的规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26…,则第n个式子为(n为正整数).7.(2020秋•西城校级期中)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是2023,则n等于()A.337B.338C.339D.3408.(2020秋•海淀期末)在一列数a1,a2,a3,a4,…a n中,已知a1=2,a2=,a3=,a4=,…a n=,则a2020=.9.(2021秋•西城期末)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣2的差倒数是,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是()A.﹣55B.55C.﹣65D.65 10.(2021•海淀月考)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是.如果a1=﹣3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404的值是()A.B.﹣3C.D.11.(2020秋•朝阳期中)根据如图数字之间的规律,问号处应填()A.61B.52C.43D.37 12.(2021•西城月考)如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=.13.(2021•海淀月考)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为.14.(2020秋•西城期末)观察图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有()个〇.A.6058B.6059C.6060D.6061 15.(2020秋•东城月考)观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7…将这组数排成如图的形式,按图中规律排下去,则第6行中从左边数第3个数是()A.28B.﹣28C.﹣34D.34 16.(2020秋•海淀校级期中)世界上最著名的数列之一﹣﹣斐波那契数列,是从兔子繁殖问题引申出的一个数学模型.兔子在出生两个月后就具有繁殖能力,一对兔子每个月能生出一对小兔子.如果所有兔子都不死,那么一年后可以繁殖的兔子的对数会成斐波那契数列.斐波那契数列1,1,2,3,5,8,13,21,…的排列规律是:从第3个数开始,每一个数都是它前面两个数的和.在斐波那契数列的前2021个数中,共出现的偶数的个数为()A.670B.671C.672D.673 17.(2020秋•西城期末)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是()A.2B.4C.6D.818.(2020秋•海淀区校级月考)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A.1B.2C.3D.519.(2020秋•西城区校级期中)如下表,从左向右依次在每个小格子中都填入一个有理数,使得其中任意四个相邻小格子中所填数之和都等于15.已知第3个数为7,第5个数为m﹣1,第16个数为2,第78个数为3﹣2m,则m的值为,第2021个数为.20.(2020秋•丰台期末)如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.21.(2021秋•朝阳期末)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种22.(2020秋•海淀月考)规定一种新的运算=ad﹣bc,那么=.23.(2020秋•西城区校级期中)定义计算“△”,对于两个有理数a,b,有a△b=ab﹣(a+b),例如:﹣3△2=﹣3×2﹣(﹣3+2)=﹣6+1=﹣5,则3△﹣2=,[(﹣1)△(m﹣1)]△4=.24.(2021春•海淀区校级期末)对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=.25.(2020秋•东城期末)一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对”,则代数式mm﹣[n+(6﹣12n﹣15m)]的值为.规律探究与新定义运算参考答案与试题解析一.试题(共25小题)1.【分析】观察已知一列数的变化发现:分子都是1,分母是序号数的平方加1,奇数项是正数,偶数项是负数,据此可以解答.【解答】解:根据分析可知:一列数依次为:,﹣,,﹣,,﹣,…,按此规律排列下去,则这列数中的第8个数是﹣,所以第n个数是:(﹣1)n+1(n是正整数).故答案为:﹣;(﹣1)n+1.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.2.【分析】根据题目中的单项式,可以发现单项式的变化特点,从而可以写出第n个单项式,然后即可写出第2020个单项式.【解答】解:∵一列单项式为:a,﹣a2,a3,﹣a4,a5,﹣a6,…,∴第n个单项式为(﹣1)n+1•a n,当n=2020时,这个单项式是(﹣1)2020+1•a2020=﹣a2020,故选:D.【点评】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,写出相应的单项式.3.【分析】观察已知单项式,归纳总结得到一般性规律,确定出第6个式子与第n个式子即可.【解答】解:归纳总结得:第6个式子是26x6=64x6,第n个式子是2n x n,故答案为:64x6,2n x n【点评】此题考查了单项式,根据题意归纳总结得到一般性规律是解本题的关键.4.【分析】找出单项式规律求解即可.【解答】解:由0,3x2,8x3,15x4,24x5…,可得第n项为(n2﹣1)x n,所以第20个单项式是399x20.故答案为:399x20.【点评】本题主要考查了单项式,解题的关键是正确的找出单项式规律.5.【分析】观察得到奇数位上的单项式的系数为正,偶数位上的单项式的系数为负,并且单项式的系数的绝对值为x的指数的平方加1,即第n个式子为:(﹣1)n+1(n2+1)x n,n =8即可得到第8个式子.【解答】解:根据所给式子可得:第n个式子为:(﹣1)n+1(n2+1)x n,则第8个式子是﹣65x8.故答案为:﹣65x8,(﹣1)n+1(n2+1)x n.【点评】本题考查了关于数字的变化规律:先要观察每个单项式的系数和字母指数的特点,得出数字变化的规律,然后写出一般规律性的式子.6.【分析】利用归纳法来求已知数列的通式.【解答】解:∵第一个式子:﹣3a2=,第二个式子:9a5=,第三个式子:﹣27a10=,第四个式子:81a17=,….则第n个式子为:(n为正整数).故答案是:.【点评】本题考查了单项式.此题的解题关键是找出该数列的通式.7.【分析】根据题目中的数据,可以发现数字的变化特点,从而可以求得n的值,本题得以解决.【解答】解:由题目中的数据可知,第一行是一些连续的奇数,第二行奇数个数为奇数,偶数个数为偶数,第二行的第m个数为1+3(m﹣1)=3m﹣2,令3m﹣2=2023,得m=675,∵第一行和第二行第n个相同的数是2023,∴n=(675+1)÷2=338,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出n的值.8.【分析】根据已知条件进行计算分别得出前几个数,进而发现规律:每3个数一个循环,即可求解.【解答】解:∵a1=2,∴a2==﹣1;a3==;a4==2;…,发现规律:每3个数一个循环,所以2020÷3=673…1,则a2020=a1=2.故答案为:2.【点评】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,运用规律.9.【分析】根据题意可以写出前几项,然后即可发现数字的变化规律,然后即可求得所求式子的值,本题得以解决.【解答】解:由题意可得,a1=﹣4,a2=,a3=,a4=﹣4,a5=,a6=,…,∵﹣4+==﹣,61÷3=20…1,∴a1+a2+a3+a4+…+a61=20×(﹣)+(﹣4)=﹣51+(﹣4)=﹣55,故选:A.【点评】本题考查数字的变化类、倒数,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.10.【分析】根据差倒数定义分别求出前几个数字,即可发现规律进而得结果.【解答】解:∵a1=﹣3,∴a2==,a3==,a4==﹣3,……∴这个数列以﹣3,,依次循环,∵404÷3=134…2,∴a403的值是﹣3,a404的值是,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404=﹣3﹣++3+﹣﹣3﹣++3+﹣﹣ (3)=﹣3﹣=﹣.故选:A.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.11.【分析】由图可知每个圆中的规律为左边与上边对应的数相乘得到的积再加上右边的数,所得结果为最下边的数.【解答】解:由图可知每个圆中的规律为:1×2+2=4,2×3+3=9,3×5+4=19,4×7+5=33,∴最后一个圆中5×11+6=61,∴?号所对应的数是61,故选:A.【点评】本题考查数字的变化规律;能够通过图形找到每个圆中的四个数之间的关系是解题的关键.12.【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=1+2+3+…+44==990;故答案为:990.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.13.【分析】由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,据此可以得出最大的三角形数和正方形数,即可以求得m和n的值,从而可以计算出m+n的值.【解答】解:由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,当n=19时,=190<200,当n=20时,=210>200,所以最大的三角形数m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数n=196;则m+n=190+196=386,故答案为:386.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现三角形数和正方形数的变化特点,求出m、n的值.14.【分析】观察图形的变化可得第n个图形中共有〇的个数,进而可得第2020个图形中共有〇的个数.【解答】解:观察图形的变化可知:第1个图形中共有3×1+1=4个〇;第2个图形中共有3×2+1=7个〇;第3个图形中共有3×3+1=10个〇;…所以第n个图形中共有(3n+1)个〇;所以第2020个图形中共有〇的个数为:3×2020+1=6061.故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的规律.15.【分析】根据数字的变化情况寻找规律即可求解.【解答】解:因为第一行﹣1第二行2,﹣3,4第三行﹣5,6,﹣7,8,﹣9第四行10,﹣11,12,﹣13,14,﹣15,16,共7个数;所以,第五行﹣17,18,﹣19,20,﹣21,22,﹣23,24,﹣25,共9个数;第六行26,﹣27,28,﹣29,…34,﹣35,36,共11个数.所以第6行中从左边数第3个数是28.【点评】本题考查了数字的变化类,解决本题的关键是寻找规律.16.【分析】从题目上可看出第3个,第6个,第9个为偶数,依此类推每3项就是一个偶数,2021÷3=673.所以应该有673个偶数.【解答】解:从数列中可看出每3个,就有一个偶数,2021÷3=673.所以有673个偶数.故选:D.【点评】本题是一个规律性题目,关键是看出每3个数中就有一个偶数,可求解.17.【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2020÷4=505,得出22020的个位数字与24的个位数字相同,是6.【解答】解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.【点评】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律.18.【分析】利用青蛙停在奇数点上,则下一次沿顺时针方向跳两个点,若停在偶数点上,则下一次沿逆时针方向跳一个点这一规律,找出青蛙跳跃停留的点对应的数字是以3,5,2,1循环往复,由此得到结论.【解答】解:由题意得:青蛙第1次跳到的那个点是3,∵若青蛙停在奇数点上,则下一次沿顺时针方向跳两个点,∴青蛙第2次跳到的那个点是5,∴青蛙第3次跳到的那个点是2.∵若青蛙停在偶数点上,则下一次沿逆时针方向跳一个点,∴青蛙第4次跳到的那个点是1,∴青蛙第5次跳到的那个点是3;归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,∵2020=4×505,∴经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1,【点评】本题主要考查了数字的变化的规律,准确找出变化的数字的循环规律是解题的关键.19.【分析】根据题意,任意四个相邻格子中的和等于15,列出等式,找出规律,计算出m 的值;再求出第2021个数是几即可.【解答】解:∵任意四个相邻小格子中所填数之和都等于15,∴第5个数(5﹣4=1)与第1个数相同,都为m﹣1;第16个数(16÷4=4)与第4个数相同,都为2;第78个数(78÷4=19…2)与第2个数相同,都为3﹣2m;∴m﹣1+3﹣2m+7+2=15,解得m=﹣4,则m﹣1=﹣4﹣1=﹣5,3﹣2m=11,∵2021÷4=505…1,∴第2021个数是﹣5.故答案为:﹣4;﹣5.【点评】本题主要考查有理数的加法及数字的变化规律,解决此题的关键是根据题意,列出等式,求出字母的值,找出规律.20.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.21.【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x的值为小数,不合题意.【解答】解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选:B.【点评】本题考查了代数式求值:先把代数式进行变形,然后把满足条件的字母的值代入计算得到对应的代数式的值.也考查了解一元一方程.22.【分析】根据题意给出的运算法则以及整式的运算法则即可求出答案.【解答】解:原式=4﹣2(1﹣x)=4﹣2+2x=2+2x故答案为:2+2x【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.【分析】先根据定义得出算式,再根据整式的加减法则求出即可.【解答】解:3△﹣2=3×(﹣2)﹣[3+(﹣2)]=﹣7,[(﹣1)△(m﹣1)]△4=[﹣m+1﹣m+2]△4=(﹣2m+3)△4=(﹣2m+3)×4﹣(﹣2m+3+4)=﹣8m+12+2m﹣7=﹣6m+5,故答案为:﹣7,﹣6m+5.【点评】本题考查了整式的加减,能正确根据运算法则进行化简是解此题的关键.24.【分析】根据(m,n)是“相随数对”得出9m+4n=0,再将原式化成9m+4n﹣2,最后整体代入求值即可.【解答】解:∵(m,n)是“相随数对”,∴,∴,整理得:9m+4n=0,∴3m+2[3m+(2n﹣1)]=3m+2[3m+2n﹣1]=3m+6m+4n﹣2=9m+4n﹣2=0﹣2=﹣2,故答案为:﹣2.【点评】本题考查代数式求值,理解“相随数对”的意义是正确计算的关键.25.【分析】(1)利用新定义“相伴数对”列出算式,计算即可求出m的值;(2)利用新定义“相伴数对”列出关系式,原式去括号合并后代入计算即可求出值.【解答】解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣3【点评】此题考查了整式的加减﹣化简求值,弄清题中的新定义是解本题的关键.。
七年级数学探究规律题
规律探究1.图1是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.2 .观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是___。
”3.如图,是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )4.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .5.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。
A 、12+n B 、12-n C 、n 2 D 、2+n6.如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个. 7.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 ( )个 .找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。
这样捏合到第 次后可拉出64根细面条。
第一次捏合 第二次捏合 第三次捏合(3) …… 图1 (1) (2) … … 第1幅 第2幅 第3幅 第n 幅 图5第1个第2个第3个…… n =1 n =2 n =32、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表:(2(3)如果剪了100次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .(2)当x 非常大时,2100x 的值接近于什么数?5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲ ▲△△▲△▲▲△△▲△▲▲……则黑色三角形有 个,白色三角形有 个。
小学七年级数学上册难点探究专题:有理数中的规律探究(含答案)
小学七年级数学上册难点探究专题:有理数中的规律探究(选做)——从特殊到一般,探寻多方规律◆类型一 一列数中的规律1.找规律,并按规律填上第5个数:-32,54,-78,916, . 2.(济宁中考)按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为 W.3.(随州月考)给定一列按规律排列的数:12,25,310,417,…,则这列数的第6个数是( )A.637B.635C.531D.739◆类型二 计算中的规律一、四则运算中的规律4.(河北模拟)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依自己顺序数的倒数加1,第1位同学报⎝⎛⎭⎫11+1,第2位同学报⎝⎛⎭⎫12+1,第3位同学报⎝⎛⎭⎫13+1,这样得到的前20个数的积为 . 5.(无锡校级月考)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则5!= = ,100!98!= .6.(咸阳校级月考)计算:1-3+5-7+9-11+…+97-99.二、乘方运算中的规律7.(深圳模拟)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22016的末位数字是 .8.(孝感中考)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015= .三、图形中与数的计算的有关规律9.(泉州中考)找出下列各图形中数的规律,依此,a 的值为 .10.(北京中考)百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”表示澳门回归日期,最后一行中间两位“23 50”表示澳门面积,…,同时它也是十阶幻方,即其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.◆类型三 数轴中的规律11.(石家庄模拟)如图,在数轴上点A 表示1,现将点A 沿数轴做如下移动:第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律,则点A 13,A 14之间的距离是.参考答案与解析1.-1132 2.293.A 4.21 解析:⎝⎛⎭⎫11+1⎝⎛⎭⎫12+1⎝⎛⎭⎫13+1…⎝⎛⎭⎫120+1=2×32×43×…×2120=21. 5.5×4×3×2×1 120 99006.解:1-3+5-7+9-11+…+97-99=(1-3)+(5-7)+(9-11)+…+(97-99)=-2×502=-50. 7.6 8.100829.226 解析:根据题意得出规律a =15×16-14=226.10.505 解析:1~100的总和为(1+100)×1002=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为5050÷10=505.11.42 解析:因为第一次点A 向左移动3个单位长度至点A 1,则A 1表示的数为1-3=-2,第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为-2+6=4,所以A1A2=4-(-2)=6=2×3.因为第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4-9=-5,所以A2A3=4-(-5)=9=3×3.因为第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为-5+12=7,所以A3A4=7-(-5)=12=4×3,…,所以A13A14=(13+1)×3=42.。
七年级数学上册人教版整式的加减专题复习——规律探究(解析版)
整式的加减专题复习——规律探究(解析版)第一部分典例剖析+针对训练类型一数式规律典例1(2021秋•南岗区校级期中)有一列数,按一定规律排列而成:﹣1,3,﹣9,27,﹣81,243,…,其中某三个相邻数的和是1701,则这三个数中最小的数是.思路引领:设三个数中最前面的数为x,则另外两个数分别为﹣3x,9x,根据三个数之和为1701,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入﹣3x和9x 中,取其中最小值即可得出结论.解:设三个数中最前面的数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=1701,解得:x=243,∴﹣3x=﹣729,9x=2187.∵﹣729<243<2187,故答案为:﹣729.总结升华:本题考查了一元一次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.典例2(2022秋•涟水县校级月考)观察下面三行数,并按规律填空:①﹣2,4,﹣8,16,﹣32,64,,,…;②0,6,﹣6,18,﹣30,66,,…;③﹣3,3,﹣9,15,﹣33,63,,….(1)按第①行数的规律,分别写出第7和第8个数;(2)请你分别写出第②③行的第7个数;(3)取每行数的第9个数,计算这三个数的和.思路引领:(1)根据已知数据都是前一个数乘2的到得,再利用第奇数个系数为负数即可得出答案;(2)根据3行数据关系分别分析得出即可;(3)根据(2)得出的规律分别求出每行第9个数,再把它们相加即可.解:(1)∵①﹣2,4,﹣8,16,﹣32,64,∴第7个数是﹣128,第八个数是256;(2)第②行数是第①行数加上2,第③行数正好比第①行数少1得到的,即第二行的第7个数是﹣128+2=﹣126,第三行的第7个数是﹣128﹣1=﹣129;(3)根据以上所求得出:第一行第9个数为﹣512,第二行第9个数为﹣512+2=﹣510,第三行第9个数为﹣512﹣1=﹣513,则这三个数的和是:﹣512﹣510﹣513=﹣1535.总结升华:此题主要考查了数字变化规律,根据已知数据得出得数字第②行数是第①行数加上2,第③行数正好比第①行数少1得到的是解题关键.针对训练11.(2021•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9B.10C.11D.12思路引领:观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数.故选:B.总结升华:此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.2.(2021秋•新洲区期中)有一串数:﹣2018,﹣2014,﹣2010,﹣2006,﹣2002…按一定的规律排列,那么这串数中前个数的和最小.思路引领:根据题目中数据的特点,可以写出第n个数,然后令第n个数等于0,即可得到相应的n的值,从而可以解答本题.解:∵有一串数:﹣2018,﹣2014,﹣2010,﹣2006,﹣2002…∴这串数的第n个数为﹣2018+4(n﹣1)=4n﹣2022,当4n﹣2022=0时,解得,n=505…2,∴那么这串数中前505个数的和最小,故答案为:505.总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出第多少个数的值为0.类型二数阵、数表规律典例3(2020秋•江汉区月考)将全体正偶数排成一个三角形数阵:按照以上规律排列,第25行第20个数是.思路引领:观察数字的变化,第n行有n个偶数,求出第n行的第一个数,结论可得.解:观察数字的变化可知:第n行有n个偶数.∵第1行的第一个数是:2=1×0+2;第2行第一个数是:4=2×1+2;第3行第一个数是:8=3×2+2;第4行第一个数是:14=4×3+2;•∴第n行第一个数是:n(n﹣1)+2.∴第25行第一个数是:25×24+2=602.∴第25行第20个数是:602+2×19=640.故答案为:640.总结升华:本题主要考查了数字的变化的规律,有理数的混合运算.准确找出数字的变化规律是解题的关键.典例4(2019秋•江汉区期中)有这样一对数,如下表,第n+3个数比第n个数大2(其中n是正整数)第1个第2个第3个第4个第5个……a b c(1)第5个数表示为;第7个数表示为;(2)若第10个数是5,第11个数是8,第12个数为9,则a=,b=,c=;(3)第2019个数可表示为.思路引领:(1)根据第n+3个数比第n个数大2,即可求解;(2)根据第n+3个数比第n个数大2,分别求出第10、11、12个数即可求出结果;(3)根据数字的变化规律,解:(1)∵第n+3个数比第n个数大2,∴第5个数比第2个数大2,∴第5个数为b+2.∵第4个数比第1个数大2,∴第4个数为a+2,∴第7个数比第4个数大2,∴第7个数为a+4.故答案为b+2、a+4.(2)∵第10个数为a+6,第11个数为b+6,第12个数为c+6,∴a+6=5,b+6=8,c+6=9解得a=﹣1,b=2,c=3.故答案为﹣1、2、3.(3)第一组数是a、b、c第二组数是a+2、b+2、c+2第三组数是a+4、b+4、c+4第四组数是a+6、b+6、c+6…第n组数的第三个数是c+(2n﹣2)2019÷3=673,第2019个数是第673组的第三个数,∴第673组的第三个数是c+2×673﹣2=c+1344.故答案为c+1344.总结升华:本题考查了数字的变化类,解决本题的关键是寻找数字的变化规律.针对训练21.(2021秋•播州区期中)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a6=,a2020=.思路引领:根据题目中的数据,可以写出前几项,从而可以数字的变化特点,然后即可得到a6和a2020的值.解:由题意可得,a1=1,a2=1+2=3,a3=1+2+3=6,a4=1+2+3+4=10,a5=1+2+3+4+5=15,…,∴a n=1+2+3+…+n=n(n+1)2,∴当n=6时,a6=6×72=21,当n=2020时,a2020=2020×20212=2041210,故答案为:21,2041210.总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.2.(2018秋•江夏区期中)已知一列数:1、﹣2、3、﹣4、5、﹣6、……,将这列数排成下列形式:按照上述规律排列下去,第10行数的第1个数是()A.﹣46B.﹣36C.37D.45思路引领:观察排列规律得到第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,则可计算出前9行的数的个数45,而数字的序号为偶数时,数字为负数,于是可判断第10行数的第1个数为﹣46.故选A.解:第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,所以前9行的数的个数为1+2+3+…+9=45,而数字的序号为奇数时,数字为正数,数字的序号为偶数时,数字为负数,所以第10行数的第1个数为﹣46.故选:A.总结升华:本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.3.(2017秋•海淀区校级期中)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可求得x=,第2017个格子中的数为.(2)判断:前m个格子中所填整数之和是否可能为2018?若能,求出m的值,若不能,请说明理由.(3)若取前3格子中的任意两个数记作a、b,且a≥b,那么所有的|a﹣b|的和可以通过计算|9﹣★|+|9﹣☆|+|★﹣☆|得到,其结果为;若a、b为前19格子中的任意两个数记作a、b,且a≥b,则所有的|a﹣b|的和为.思路引领:(1)根据三个相邻格子的整数的和相等列式求出x的值,再根据第9个数是2可得☆=2,然后找出格子中的数每3个为一个循环组依次循环,在用2014除以3,根据余数的情况确定与第几个数相同即可得解;(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.解:(1)∵任意三个相邻格子中所填整数之和都相等,∴9+★+☆=★+☆+x,解得:x=9,★+☆+x=☆+x﹣6,∴★=﹣6,所以,数据从左到右依次为9、﹣6、☆、9、﹣6、☆、…,第9个数与第三个数相同,即☆=2,所以,每3个数“9、﹣6、2”为一个循环组依次循环,∵2017÷3=672…1,∴第2017个格子中的整数与第1个格子中的数相同,为9.故答案为:9,9;(2)9﹣6+2=5,2018=2015+3=2015+9﹣6,2015÷5=403,403×3=1209,所以是第1209+1+1=1211个数,即m=1211,故前1211个数的和为2018;(3)∵取前3格子中的任意两个数,记作a、b,且a≥b,∴所有的|a﹣b|的和为:|9﹣(﹣6)|+|9﹣2|+|﹣6﹣2|=30.∵由于是三个数重复出现,那么前19个格子中,这三个数,9出现了7次,﹣6和2各出现了6次.∴代入式子可得:|9﹣(﹣6)|×7×6+|9﹣2|×7×6+|2﹣(﹣6)|×6×6=1212.故答案为:30,1212.总结升华:本题主要考查数字的变化规律,解答的关键是找出数字间的关系,得出规律.类型三图形的增长规律典例4(2021•汉川市模拟)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则第10个图形中右下方的“三角形数”中的所有点数是.思路引领:观察图象中点的个数的规律有第一个图形是4=1+3,第二个图形是9=3+6,第三个图形是16=6+10,…则按照此规律得到第10个图形的规律即可.解:∵第1个图形是4=1+(1+2),第2个图形是9=(1+2)+(1+2+3),第3个图形是16=(1+2+3)+(1+2+3+4),…∴第10个图形是112=(1+2+3+4+5+6+7+8+9+10)+(1+2+3+4+5+6+7+8+9+10+11)=55+66.故答案为:66.总结升华:此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.典例5(2020秋•江夏区期中)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是()A.360B.363C.365D.369思路引领:观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.解:第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n 个图案有黑色与白色地砖共(2n ﹣1)2,其中黑色的有12[(2n ﹣1)2+1],当n =14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365.故选:C .总结升华:本题考查图形的变化规律,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键. 针对训练31.(2021秋•中山市期中)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第10个图形共有 个〇.思路引领:观察图形的变化先得前几个图形中圆圈的个数,可以发现规律:第n 个图形共有(3n +1)个〇,进而可得结果. 解:观察图形的变化可知: 第1个图形共有1×3+1=4个〇; 第2个图形共有2×3+1=7个〇; 第3个图形共有3×3+1=10个〇; …所以第n 个图形共有(3n +1)个〇; 所以第10个图形共有10×3+1=31个〇; 故答案为:31.总结升华:本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律.2.(2018秋•硚口区期中)对于大于或等于2的整数的平方进行如下“分裂”,如下分别将22、32、42分裂成从1开始的连续奇数的和,依此规律,则20182的分裂数中最大的奇数是 .思路引领:由题意可知:每个数中所分解的最大的奇数是前边底数的2倍减去1.由此得出答案即可.解:自然数n2的分裂数中最大的奇数是2n﹣1.20182分裂的数中最大的奇数是2×2018﹣1=4035,故答案为:4035.总结升华:此题考查数字的变化规律,注意根据具体的数值进行分析分解的最大的奇数和底数的规律,从而推广到一般.3.(2022•仙居县校级开学)如图,都是由棱长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(10)个图形由()个正方体叠成.A.120B.165C.220D.286思路引领:根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+⋯+ n(n+1)2,据此可得第(6)个图形中正方体的个数.解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+⋯+n(n+1)2,∴第10个图形中正方体的个数为1+3+6+10+15+21+28+36+45+55=220.故选:C.总结升华:本题主要考查了图形变化类问题,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+⋯+n(n+1)2.类型四乘方规律典例6(2022•内蒙古)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72022的结果的个位数字是( ) A .0B .1C .7D .8思路引领:由已知可得7n 的尾数1,7,9,3循环,则70+71+…+72022的结果的个位数字与70+71+72的个位数字相同,即可求解.解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,… ∴7n 的尾数1,7,9,3循环, ∴70+71+72+73的个位数字是0, ∵2023÷4=505…3,∴70+71+…+72022的结果的个位数字与70+71+72的个位数字相同, ∴70+71+…+72022的结果的个位数字是7, 故选:C .总结升华:本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解题的关键.典例7(2022秋•东港区校级月考)求1+2+22+23+……+22007的值,可令S =1+2+22+23+……+22007,则2S =2+22+23+24+……+22008,因此2S ﹣S =22009﹣1,即S =22009﹣1,仿照以上推理,计算出1+3+32+33+……+32022值为32023−12.思路引领:令S =1+3+32+33+……+32022,则3S =3+32+33+……+32023,作差求出S 即可. 解:令S =1+3+32+33+……+32022, 则3S =3+32+33+……+32023, ∴3S ﹣S =32023﹣1, 则S =32023−12,即1+3+32+33+……+32022=32023−12.故答案为:32023−12.总结升华:本题考查数字的变化规律,通过观察所给的求和方法,灵活应用此方法求和是解题的关键. 针对训练41.(2021秋•罗湖区期中)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;……,已知按一定规律排列的一组数:2501,2502,2503,……,2999,21000.若2500=a ,用含a 的式子表示这组数之和是( ) A .2a 2﹣2aB .2a 10﹣2a 5﹣2C .2a 2﹣aD .2a 20﹣a思路引领:把所求的数列的各数提取2500,可得:2500×(2+22+23+…+2499+2500),利用所给的等式的规律求解即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…, ∴2+22+23+…+2n =2n +1﹣2, ∴2501+2502+2503+…+2999+21000 =2500×(2+22+23+…+2499+2500) =2500×(2500+1﹣2) =2500×(2×2500﹣2), ∵2500=a , ∴原式=a (2a ﹣2) =2a 2﹣2a . 故选:A .总结升华:本题主要考查了规律型:数字的变化类,有理数的混合运算,解答的关键是由所给的等式总结出规律.2.(2019秋•汾阳市期末)任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m 3分裂后,其中有一个奇数是203,则m 的值是( ) A .13B .14C .15D .16思路引领:观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数203的是从3开始的第101个数,然后确定出101所在的范围即可得解.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m =(m+2)(m−1)2,∵2n +1=203,n =101,∴奇数203是从3开始的第101个奇数, ∵(13+2)(13−1)2=90,(14+2)(14−1)2=104,∴第101个奇数是底数为14的数的立方分裂的奇数的其中一个, 即m =14. 故选:B .总结升华:本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示:则第4个方框中x+y的值是()A.11B.12C.13D.14思路引领:找出求解过程图中的规律,利用此规律求得m,n,x,y的值,将相应字母的值代入即可得出结论.解:求解过程图中的表格中的规律为:第一行前两个格为十位数字的平方,后两个格为个位数字的平方,平方后不是两位数,十位数字用0代替,第二行从第二个格开始表示的是两位数中个位数字与十位数字的乘积的2倍,第三行为从右开始将一二行数字相加的和,足10进1,∵62=36,∴m=3,n=6,∵6×7×2=84,∴x=8,y=4,∴x+y=12.故选:B.总结升华:本题主要考查了有理数的乘方,求代数式的值,找出求解过程图中的规律是解题的关键.类型五幻方规律典例8(2021秋•江阴市期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3B.﹣8或1C.﹣1或﹣4D.1或﹣1思路引领:由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等式可得结论.解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.总结升华:本题考查了有理数的加法.解决本题的关键是知道横竖两个圈的和都是2.典例9(2020•冷水江市一模)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,m=.思路引领:根据“每行、每列、每条对角线上的三个数之和相等”解答即可.解:1+2+3+…+9=45,根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,第三列第二个数为:15﹣3﹣5=7,第三个数为:15﹣2﹣7=6,如图所示:∴m=15﹣8﹣6=1.故答案为:1.总结升华:本题考查数的特点和有理数的加法,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.针对训练51.(2021秋•南安市期中)现有七个数﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m,如图2给出了一种填法,此时m=64,在所有的填法中,m的最大值为256.思路引领:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以﹣8,﹣8必须放在被乘两次的位置.与﹣8,﹣8同圆的只能为﹣1,﹣4,其中﹣4m=256解:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以﹣8,﹣8必须放在被乘两次的位置.与﹣8,﹣8同圆的只能为﹣1,﹣4,其中﹣4放在中心位置,如图∴m=(﹣8)×(﹣8)×(﹣1)×(﹣4)=256总结升华:本题考查有理数的乘法,关键是找到两个(﹣8)的位置.2.将9个数填入幻方的九个方格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等,如表一:按此规律将满足条件的另外6个数填入表二,则表二中这9个数的和为(用含a的整式表示).表一492357816表二a+5a+1a﹣1思路引领:根据同一横行、同一竖列、同一斜对角线上的三个数的和相等作出图形,根据题意列出关于a与x的方程,可得x=a+2,进一步求出这9个数的和即可.解:如图所示:4+x+a﹣1+a+3=a﹣3+a+1+a+3,解得x=a﹣5,a+3+x+a+3=2a+6+a﹣5=3a+1,3(3a+1)=9a+3.故答案为:9a+3.总结升华:此题考查了列代数式,整式的加减,熟练掌握运算法则是解本题的关键.类型六其他规律典例10(2019秋•武昌区校级期中)某初中七(5)班学生军训排列成7×7=49人的方阵,做了一个游戏,起初全体学生站立,教官每次任意点4个不同学号的学生,被点到的学生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则15次点名后蹲下的学生人数可能是()A.3B.27C.49D.以上都不可能思路引领:假设站立记为“+1”,则蹲下为“﹣1”.原来49个“+1”,乘积为“+1”,每次改变其中的4个数,即每次运算乘以4个“﹣1”,即乘以了“+1”,乘积为“+1”,即可得出结论.解:假设站立记为“+1”,则蹲下为“﹣1”.原来49个“+1”,乘积为“+1”,每次改变其中的4个数, 即每次运算乘以4个“﹣1”,即乘以了“+1”, 15次点名后,乘积仍然是“+1”, 所以,最后出现“﹣1”的个数为偶数, 即蹲下的学生人数为偶数, 选项A ,B ,C 都不符合题意, 故选:D .总结升华:此题主要考查了奇数与偶数,有理数乘法中积的符号的判断,解决本题的关键是利用有理数的乘法进行解决. 针对训练61.(2019秋•硚口区期中)把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x 是集合的一个元素时,100﹣x 也必是这个集合的元素,这样的集合又称为黄金集合,例如{﹣1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m ,且1180<m <1260,则该黄金集的元素的个数是( ) A .23B .24C .24或25D .26思路引领:由黄金集合的定义,可知一个整数是x ,则必有另一个整数是100﹣x ,则这两个整数的和为x +100﹣x =100,只需判断1180<m <1260内100的个数即可求解. 解:在黄金集合中一个整数是x ,则必有另一个整数是100﹣x , ∴两个整数的和为x +100﹣x =100, 由题意可知,1180<m <1260时, 100×12=1200,100×13=1300, ∴这个黄金集合的个数是24或25个; 故选:C .总结升华:本题考查有理数,新定义;理解题意,通过两个对应元素和的特点,结合m 的取值范围,进而确定元素个数是解题关键.第二部分 专题提优训练1.观察下面一列数:1,12,2,13,1,3,14,23,32,4,15,12,1,2,5,16,…(已写出了第1至第16个数).(1)第7,第8,第9,第10个数的积是 ,前16个数的积是 ; (2)按此规律,第30个数是 ;(3)在上面这列数中,从左起第m 个数记为F (m ),当F (m )=92020时,求m 的值. 思路引领:(1)根据规律直接写出数计算即可;(2)根据题意将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数据的积为1,且分子递增1,分母递减1,然后根据规律得出第30个数即可; (3)根据F (m )=92020判断出F (m )是第几组第几个数即可得出m 的值. 解:(1)根据题意知,第7,第8,第9,第10个数的积是14×23×32×4=1,前16个数的积是1×(12×2)×(13×1×3)×(14×23×32×4)×(15×24×1×42×5)×16=16,故答案为:1,16;(2)由(1)知,将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数据的积为1,且分子递增1,分母递减1, ∵1+2+3+4+5+6+7=28,∴第30个数在第8组的第2个数,即1+18−1=27,故答案为:27;(3)∵F (m )=92020,2020+9=2029,∴F (m )是第2028组第9个数,前面有2027组数, ∴m =(1+2+3+4+…+2027)+9=1+20272×2027+9=2055387. 总结升华:本题主要考查数字的变化规律,根据数字的变化分组分析规律是解题的关键.2.(2021秋•丹江口市期中)观察一列数:1,﹣2,3,﹣4,5,﹣6,7,…,将这列数排成下列形式:(1)在表中,第12行第6个数是 ;(2)在表中,“2021”是其中的第 行,第 个数;(3)将表中第i 行的最后一个数记为a i ,如第1行的最后一个数记为a 1,即a 1=1,第2行的最后一个数记为a 2,即a 2=3,如此下去,a 3=﹣6,a 4=﹣10,…,第n 行的最后一个数记为a n ,则用含n 的式子表示|a n |为 ; (4)在(3)的条件下,计算1a 1+1a 2−1a 3−1a 4+1a 5+1a 6−1a 7−1a 8+1a 9+1a 10.思路引领:(1)先求出前11行一共有66,即可求解;(2)求出前n 行共有n(n+1)2个数,再求前63行共有2016个数,即可求2021的位置;(3)由题意可得,1+2+3+......+n =n(n+1)2,即可求解; (4)原式=2(1−12+12−13+13−14+......+19−110+110−111),再运算即可. 解:(1)由题可知,第一行1个数,第二行2个数,…,第n 行n 个数, ∴前11行一共有1+2+3+…+11=66, ∴第12行第一个数是67, ∴第12行第6个数是﹣72, 故答案为:﹣72;(2)由题意可得,前n 行共有n(n+1)2个数,∴当n =63时,前63行共有2016个数, ∴2021时第64行的第5个数, 故答案为:64,5;(3)由题意可得,1+2+3+......+n =n(n+1)2, ∴|a n |=n(n+1)2, 故答案为:n(n+1)2; (4)1a 1+1a 2−1a 3−1a 4+1a 5+1a 6−1a 7−1a 8+1a 9+1a 10=11+13+16+110+......+145=2(11×2+12×3+13×4+......+19×10+110×11) =2(1−12+12−13+13−14+......+19−110+110−111)=2(1−111) =2011.总结升华:本题考查数字的变化规律,根据题意探索数字的排列规律是解的关键. 3.(2022•东莞市校级一模)找出以下图形变化的规律,则第2022个图形中黑色正方形的数量是 3033 .思路引领:仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案. 解:∵当n 为偶数时第n 个图形中黑色正方形的数量为n +12n 个;当n 为奇数时第n 个图形中黑色正方形的数量为n +12(n +1)个,∴当n =2022时,黑色正方形的个数为2022+1011=3033个. 故答案为:3033.总结升华:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到规律.4.(2020秋•西城区校级期中)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,….由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.(1)请你写出一个既是三角形数又是正方形数的自然数 .(2)类似地,我们将k 边形数中第n 个数记为N (n ,k )(k ≥3).以下列出了部分k 边形数中第n 个数的表达式: 三角形数:N (n ,3)=12n 2+12n 正方形数:N (n ,4)=n 2 五边形数:N (n ,5)=32n 2−12n 六边形数:N (n ,6)=2n 2﹣n …根据以上信息,得出N (n ,k )= .(用含有n 和k 的代数式表示)思路引领:(1)由题意得第8个图的三角形数是36,所以既是三角形数又是正方形数,且大于1的最小正整数为36;(2)由已知等式进行变形进而可推出结果.解:(1)由题意第8个图的三角形数为12×8(8+1)=36,∴既是三角形数又是正方形数,且大于1的最小正整数为36, 故答案为36.(2)∵N (n ,3)=n 2+n 2=(3−2)n 2+(4−3)n2,N (n ,4)=n 2=2n 2+0×n 2=(4−2)n 2+(4−4)n2, N (n ,5)=32n 2−12n =(5−2)n 2+(4−5)n2,N (n ,6)=2n 2﹣n =4n 2−2n 2=(6−2)n 2+(4−6)n2, 由此推断出N (n ,k )=(k−2)n 2+(4−k)n2(k ≥3).故答案为:(k−2)n 2+(4−k)n2(k ≥3).总结升华:本题考查三角形数、正方形数的规律、完全平方数与归纳推理等知识,观察已知式子的规律并改写形式是解决问题的关键.5.(2020秋•江夏区校级月考)观察下列等式:12=1,22=4,32=9,42=16,52=25,…,若12+22+32+42+52+…+n 2的个位数字是1(0<n ≤2020,且n 为整数),下列选项中,n 的最大值是( ) A .2001B .2006C .2011D .2019思路引领:通过计算发现每10个数,末位数字循环一次,再结合选项进行判断即可求解. 解:∵12=1,22=4,32=9,42=16,52=25,62=36,72=49,82=64,92=81,102=100,112=121,122=144,132=169,…, ∴每10个数,末位数字循环一次, ∴1+4+9+6+5+6+9+4+1+0=45, ∵2001÷10=200……1, ∴200×45+1=9001; ∵2006÷10=200……6, ∴200×45+1+4+9+6+5+6=9031; ∵2011÷10=201……1, ∴201×45+1=9046; ∵2019÷10=201……9, ∴202×45=9090; ∵2006>2001, ∴n 的最大值为2006, 故选:B .总结升华:本题考查数字的变化规律,通过探索每个数的尾数的循环规律,并运用规律求解是解题的关键.6.(2021•碧江区 模拟)观察等式:2+22=23﹣2:2+22+23=24﹣2;2+22+23+24=25﹣2,…已知按一定规律排列的一组数:250、251、252、…、299、2100,若250=a,则用含a的式子表示这组数的和是.思路引领:由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故答案为:2a2﹣a.总结升华:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.7.(2019秋•武汉期中)如图,在边长为1厘米的正方形网格有12个格点,用这些格点做三角形顶点,一共可以连成面积为2平方厘米的三角形个数为()A.24B.32C.28D.12思路引领:根据面积等于底乘以高依次分情况分析既可以得到三角形个数.解:①如图以AB为底时,与对边CF的四个顶点都可以构成面积等于2平方厘米的三角形,类似这样的三角形共有16个,②如图以AC为底与线段BE上的三个点可以构成面积等于2平方厘米的三角形,类似这样的三角形共有12个,其中有四个直角三角形是重复的,故三角形总个数:16+12﹣4=24个,。
初中数学复习专题27 规律探究问题(解析版)
专题27 规律探究问题一、单选题(共0分)1.(2022·广东广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252 B.253 C.336 D.337【答案】B【解析】【分析】根据图形的变化及数值的变化找出变化规律,即可得出结论.【详解】解:设第n个图形需要an(n为正整数)根小木棒,观察发现规律:第一个图形需要小木棒:6=6×1+0,第二个图形需要小木棒:14=6×2+2;第三个图形需要小木棒:22=6×3+4,…,∴第n个图形需要小木棒:6n+2(n-1)=8n-2.∴8n-2=2022,得:n=253,故选:B.【点睛】本题考查了规律型中图形的变化类,解决该题型题目时,根据给定图形中的数据找出变化规律是关键.2.(2022·新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98 B.100 C.102 D.104【答案】B【解析】【分析】观察数字的变化,第n 行有n 个偶数,求出第n 行第一个数,故可求解.【详解】观察数字的变化可知:第n 行有n 个偶数,因为第1行的第1个数是:2102=⨯+ ;第2行的第1个数是:4212=⨯+ ;第3行的第1个数是:8322=⨯+;…所以第n 行的第1个数是:()12n n -+ ,所以第10行第1个数是:109292⨯=+,所以第10行第5个数是:9224100+⨯= .故选:B .【点睛】本题考查了数字的规律探究,推导出一般性规律是解题的关键.3.(2020·重庆)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .21【答案】B【解析】【分析】 根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3, ……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+……+n.4.(2020·山东聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图表示,那么图㊿中的白色小正方形地砖的块数是().…A.150 B.200 C.355 D.505【答案】C【解析】【分析】由图形可知图①中白色小正方形地砖有12块,图②中白色小正方形地砖有12+7块,图③中白色小正方形地砖有12+7×2块,…,可知图中白色小正方形地砖有12+7(n-1)=7n+5,再令n=50,代入即可.【详解】解:由图形可知图中白色小正方形地砖有12+7(n-1)=7n+5(块)当n=50时,原式=7×50+5=355(块)故选:C【点睛】考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.5.(2020·湖南)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【解析】【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【详解】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点睛】本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.6.(2022·湖北鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是()A.8 B.6 C.4 D.2【答案】C【解析】【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C.【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.7.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32 B.34 C.37 D.41【答案】C【解析】【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.(2021·江苏镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B3【答案】B【解析】【分析】把A1,A2,B1,B3的式子表示出来,再结合值等于789,可求相应的n的值,即可判断.【详解】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.【点睛】本题主要考查规律型:数字变化类,解答的关键是理解清楚题意,得出相应的式子.9.(2021·湖北十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025 B.2023 C.2021 D.2019【答案】B【解析】【分析】根据数字的变化关系发现规律第n行,第n列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【详解】解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.10.(2021·山东济宁)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D【解析】【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时W 的分子为5,分母为23110+=∴这个数为51102= 故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.11.(2022·河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 【答案】B【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,),故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.12.(2021·贵州安顺)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线()1,2,3,4,5,6,7n n y k x b n =+=,其中12345,k k b b b ===,则他探究这7条直线的交点个数最多是( )A .17个B .18个C .19个D .21个【答案】B【解析】【分析】因为题中已知12345,k k b b b ===,可知:第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,由此即可求解此题.【详解】解:∵直线()1,2,3,4,5,6,7n n y k x b n =+=,其中12345,k k b b b ===∴第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,∴这5条直线最多有7个交点,第6条直线,与前面5条直线的交点数最多有5个,第7条直线,与前面6条直线的交点数最多有6个,∴得出交点最多就是7+5+6=18条,故选:B .【点睛】本题考查了两条直线相交或平行问题,做题关键在于分析得出两条平行直线,三条直线相交于一点.二、填空题(共0分)13.(2022·青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n 个图中共有木料______根.【答案】()21n n +【解析】【分析】 第一个图形有1根木料,第二个图形有2(21)122⨯++=根木料,第三个图形有3(31)1232⨯+++=根木料,第四个图形有4(41)12342⨯++++=根木料,以此类推,得到第n 个图形有()21n n +根木料.【详解】 解:∵第一个图形有1(11)12⨯+=根木料, 第二个图形有2(21)122⨯++=根木料, 第三个图形有3(31)1232⨯+++=根木料, 第四个图形有4(41)12342⨯++++=木料, ∴第n 个图形有()11232n n n +++++=L 根木料, 故答案为:()21n n +.【点睛】 本题考查了图形的变化类问题,仔细观察,分析,归纳并发现其中的规律是解本题的关键.14.(2021·西藏)按一定规律排列的一列数依次为23,14,215,112,235,…,按此规律排列下去,这列数中的第n 个数是___________________.【答案】2211n +-() 【解析】 【分析】观察一列数可得223122=- , 214123=-, 2221541=- , 2211251=- ,2223561=-,…,按此规律排列下去,即可得这列数中的第n 个数. 【详解】解:观察一列数可知:223122=-,214123=-,2221541=-,2211251=-,2223561=-,…, 按此规律排列下去,这列数中的第n 个数是:2211n +-(), 故答案为:2211n +-(). 【点睛】此题考查规律总结,根据已知数据找出规律用代数式表示即可. 15.(2022·湖南怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是 _____. 【答案】744 【解析】 【分析】由题意知,第n 行有n 个数,第n 行的最后一个偶数为n (n +1),计算出第27行最后一个偶数,再减去与第21位之差即可得到答案. 【详解】由题意知,第n 行有n 个数,第n 行的最后一个偶数为n (n +1), ∴第27行的最后一个数,即第27个数为2728756⨯=,∴第27行的第21个数与第27个数差6位数,即75626744-⨯=, 故答案为:744. 【点睛】本题考查数字类规律的探究,根据已知条件的数字排列找到规律,用含n 的代数式表示出来由此解决问题是解题的关键.16.(2021·湖北恩施)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;图形…五边形数 1 5 12 22 35 51 …将五边形数1,5,12,22,35,51,…,排成如下数表;1第一行512第二行223551第三行……………观察这个数表,则这个数表中的第八行从左至右第2个数为__________.【答案】1335【解析】【分析】分析表格中的图形和五边形数之间的规律,再找到排成数表中五边形数和行数之间的规律.【详解】解:由图形规律可知,第n个图形是一个由n个点为边长的等边三角形和一个长为n个点,宽为(n-1)个点的矩形组成,则第n个图形一共有()()1+12n nn n+⋅-个点,化简得232n n-,即第n个图形的五边形数为232n n-.分析排成数表,结合图形可知:第一行从左至右第1个数,是第1个图形的五边形数;第二行从左至右第1个数,是第2个图形的五边形数;第三行从左至右第1个数,是第4个图形的五边形数;第四行从左至右第1个数,是第7个图形的五边形数;…∴第n行从左至右第1个数,是第()11+2n n-个图形的五边形数.∴第八行从左至右第2个数,是第30个图形的五边形数.第30个图形的五边形数为:22333030=1335 22n n-⨯-=.故答案为:1335. 【点睛】本题是找规律题,解此题的关键是分析表格中的图形个数与五边形数,排成数表中的五边形数和行数,得出规律.17.(2022·湖南长沙)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下:YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数; DDDD (懂的都懂):2002等于2200; JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大. 其中对2002的理解错误的网友是___________(填写网名字母代号). 【答案】DDDD 【解析】 【分析】根据乘方的含义即可判断YYDS (永远的神)的理解是正确的;根据积的乘方的逆用,将2002化为1002(2),再与2200比较,即可判断DDDD (懂的都懂)的理解是错误的;根据2的乘方的个位数字的规律即可判断JXND (觉醒年代)的理解是正确的;根据积的乘方的逆用可得2001020603202(2),10(10)==,即可判断QGYW (强国有我)的理解是正确的. 【详解】2002是200个2相乘,YYDS (永远的神)的理解是正确的;200100222(2)200=≠,DDDD (懂的都懂)的理解是错误的; 1234522,24,28,216,232===== ,∴2的乘方的个位数字4个一循环, 200450÷= ,∴2002的个位数字是6,JXND (觉醒年代)的理解是正确的;2001020603202(2),10(10)== ,10321024,101000==,且103210> 20060210∴>,故QGYW (强国有我)的理解是正确的;故答案为:DDDD . 【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算法则是解题的关键.18.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 【答案】 15 13032【解析】 【分析】 由已知推出1211111n n n n a a a a +++-=-,得到202220211132a a -=,202120201132a a -=,L 431132a a -=,211132a a -=,上述式子相加求解即可. 【详解】 解:∵21112n n n a a a +++=;∴1211111n n n n a a a a +++-=-, ∵21111113212222a a -=-=-=,∵43411113227a a a -=-=,∴a 4=15,∴202220211132a a -=,202120201132a a -=,L 211132a a -=, 把上述2022-1个式子相加得2022111320212a a ⨯-=, ∴a 2022=13032, 故答案为:15,13032.【点睛】此题主要考查了数字的变化规律,关键是得出1211111n n n n a a a a +++-=-,利用裂项相加法求解.19.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 【答案】()10,18 【解析】 【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案. 【详解】第1行的第一个数字:()2111=+-1 第2行的第一个数字:()22121=+- 第3行的第一个数字:()25131=+- 第4行的第一个数字:()210141=+- 第5行的第一个数字:()217151=+- …..,设第n 行的第一个数字为x ,得()211x n =+- 设第1n +行的第一个数字为z ,得21z n =+ 设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+ ∴22(1)98n n -≤< ∵n 为整数 ∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18. 【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.20.(2021·甘肃武威)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________. 【答案】()12112n n n a b +-+-⋅【解析】 【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∴第n 个式子是:()1211·2n n n a b +-+-.故答案为:()1211·2n n n a b +-+- 【点睛】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.21.(2021·江苏扬州)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275 【解析】 【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可. 【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.22.(2022·黑龙江大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.【答案】49【解析】【分析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规律即可得答案.【详解】解:∵第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,第3个图案中有六边形图形:3+4+3=10个,第4个图案中有六边形图形:4+5+4=13个,……∴第16个图案中有六边形图形:16+17+16=49个,故答案为:49. 【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题. 23.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45 【解析】 【分析】根据题意找到图形规律,即可求解. 【详解】根据图形,规律如下表:三角形3正方形4五边形5六边形6LM 边形m11111 L1 2 1+2 1+211+2111+211 1L1+21(3)1m ⎫⎪-⎬⎪⎭3 1+2+31+2+31+21+2+31+21+21+2+31+21+2 1+2L1+2+312(3)12m +⎫⎪-⎬⎪+⎭4 1+2+3+41+2+3+41+2+31+2+3+41+2+3 1+2+31+2+3+41+2+3 1+2+3 1+2+3L 1+2+3+4123(3)123m ++⎫⎪-⎬⎪++⎭n 12n +++ 12n +++12(1)n +++-L12n +++12(1)n +++-L 12(1)n +++-L12n +++12(1)n +++-L 12(1)n +++-L 12(1)n +++-L L12n +++12(1)(3)12(1)n m n +++-⎫⎪-⎬⎪+++-⎭由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-L L , 整理得:1)(1)(3)2(2n n n n m S --+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==, 故答案为:45. 【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.24.(2021·贵州铜仁)观察下列各项:112,124,138,1416,…,则第n 项是______________. 【答案】12nn + 【解析】 【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果. 【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+, …则第n 项是12n n +; 故答案为:12nn +. 【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 25.(2022·江苏宿迁)按规律排列的单项式:x ,3x -,5x ,7x -,9x ,…,则第20个单项式是_____. 【答案】39x - 【解析】 【分析】观察一列单项式发现偶数个单项式的系数为:1,-奇数个单项式的系数为:1,而单项式的指数是奇数,从而可得答案. 【详解】解:x ,3x -,5x ,7x -,9x ,…,由偶数个单项式的系数为:1,- 所以第20个单项式的系数为1,- 第1个指数为:211,´- 第2个指数为:221,´- 第3个指数为:231,´-······指数为220139,´-= 所以第20个单项式是:39.x - 故答案为:39x - 【点睛】本题考查的是单项式的系数与次数的含义,数字的规律探究,掌握“从具体到一般的探究方法”是解本题的关键.26.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【解析】【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律. 27.(2021·贵州黔西)如图,在Rt ΔOAB 中,90AOB ∠=︒,OA OB =,1AB =,作正方形1111D C B A ,使顶点1A ,1B 分别在OA ,OB 上,边11C D 在AB 上;类似地,在Rt △11OA B 中,作正方形2222A B C D ;在Rt △22OA B 中,作正方形3333A B C D ;⋯;依次作下去,则第n 个正方形n n n n A B C D 的边长是______.【答案】13n【解析】【分析】法一:过O 作OM AB ⊥,通过做辅助线并结合等腰直角三角形的性质找到第二个正方形边长与第一个正方形边长的比值为13,依次类推可得第n 个正方形的边长. 法二:直接利用等腰直角三角形的性质,找到第二个正方形边长与第一个正方形边长的比值为13,依次类推可得第n 个正方形的边长. 【详解】解:法1:过O 作OM AB ⊥,交AB 于点M ,交11A B 于点N ,如图所示:11//A B AB ,11ON A B ∴⊥,OAB ∆ 为斜边为1的等腰直角三角形,1122OM AB ∴==, 又 △11OA B 为等腰直角三角形,111122ON A B MN ∴==, :1:3ON OM ∴=,∴第1个正方形的边长1122113323A C MN OM ===⨯=, 同理第2个正方形的边长22222113363A C ON ==⨯=, 则第n 个正方形n n n n AB DC 的边长13n; 法2:由题意得:45A B ∠=∠=︒,11111111AC A C C D B D BD ∴====,1AB =,111133C D AB ∴==, 同理可得:221122111333C D A B AB ===, 依此类推13n n n C D =. 故答案为:13n. 【点睛】 本题考查了等腰直角三角形与正方形的性质,能够准确利用相关性质找到正方形边长的比值规律是解决本题的关键.28.(2022·黑龙江齐齐哈尔)如图,直线:l y x =+x 轴相交于点A ,与y 轴相交于点B ,过点B 作1BC l ⊥交x 轴于点1C ,过点1C 作11B C x ⊥轴交l 于点1B ,过点1B 作12B C l ⊥交x 轴于点2C ,过点2C 作22B C x ⊥轴交l 于点2B …,按照如此规律操作下去,则点2022B 的纵坐标是______________.【答案】202243⎛⎫ ⎪⎝⎭【解析】【分析】 先根据30°的特殊直角三角形,如AOB ,1BAC ,1BOC △,11BC B △求出B 点,B 1点的纵坐标,发现规律,即可【详解】∵:l y =当0y =时,3x =-当0x =时,y =故(3,0)A -,B∴AOB 为30°的直角三角形∴30BAO ∠=︒∵1BC l ⊥∴1BAC 为30°的直角三角形∴160OC B ∠=︒∴1BOC △为30°的直角三角形1BC = ∵11B C x ⊥轴∴11B C BO ∥∴111B C B C BO ∠=∠11BC B △为30°的直角三角形211143B C BC OB OB === 同理: 2222121143B C C B C OB ⎛⎫== ⎪⎝⎭ 33343B C OB ⎛⎫= ⎪⎝⎭…43n n n B C OB ⎛⎫= ⎪⎝⎭故:20222022202220224433B C OB ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:202243⎛⎫ ⎪⎝⎭【点睛】 本题考查30°的特殊直角三角形;注意只用求点2022B 的纵坐标,即20222022B C 长度 29.(2021·山东潍坊)在直角坐标系中,点A 1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A 2(1,0),A 3(1,1),A 4(﹣1,1),A 5(﹣1,﹣1),A 6(2,﹣1),A 7(2,2),….若到达终点An (506,﹣505),则n 的值为 _______.【答案】2022【解析】【分析】终点()506505n A -,在第四象限,寻找序号与坐标之间的关系可求n 的值. 【详解】解:∵()506505-,是第四象限的点, ∴()506505n A -,落在第四象限. ∴在第四象限的点为()()()()61014213243506505n A A A A ---⋯-,,,,,,,,. ∵64121042214432=⨯-+=⨯-+=⨯-+,,,18442=⨯-+⋯,, ∴450522022n =⨯-+=.故答案为:2022【点睛】本题考查了点坐标的位置及坐标变化规律的知识点,善于观察并寻找题目中蕴含的规律是解题的关键.30.(2021·内蒙古呼伦贝尔)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ;……;按照这个规律进行下去,点2021B 的坐标为___________.【答案】202020202020202133(,)22【解析】【分析】由题意分别求出A 1、A 2、A 3、A 4……A n 、B 1、B 2、B 3、B 4……B n 、的坐标,根据规律进而可求解.【详解】解:∵点1B 在直线1:2l y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A , ∴1(1,0)A ,11(1,)2B ,∴A 1B 1=12,根据题意,OA 2=1+12=32, ∴23(,0)2A ,233(,)24B , 同理,39(,0)4A ,399(,)48B , 427(,0)8A ,42727(,)816B …… 由此规律,可得:113(,0)2n n n A --,11133(,22n n n n n B ---, ∴2021120211202120211202133(,22B ---即2020202020212020202133(,22B , 故答案为:202020202020202133(,)22. 【点睛】本题考查一次函数的应用、正方形的性质、点的坐标规律,理解题意,结合图象和正方形的性质,探索点的坐标规律是解答的关键.31.(2021·辽宁朝阳)如图,在矩形ABCD 中,AB =1,BC =2,连接AC ,过点D 作DC 1⊥AC于点C 1,以C 1A ,C 1D 为邻边作矩形AA 1DC 1,连接A 1C 1,交AD 于点O 1,过点D 作DC 2⊥A 1C 1于点C 2,交AC 于点M 1,以C 2A 1,C 2D 为邻边作矩形A 1A 2DC 2,连接A 2C 2,交A 1D 于点O 2,过点D 作DC 3⊥A 2C 2于点C 3,交A 1C 1于点M 2;以C 3A 2,C 3D 为邻边作矩形A 2A 3DC 3,连接A 3C 3,交A 2D 于点O 3,过点D 作DC 4⊥A 3C 3于点C 4,交A 2C 2于点M 3…若四边形AO 1C 2M 1的面积为S 1,四边形A 1O 2C 3M 2的面积为S 2,四边形A 2O 3C 4M 3的面积为S 3…四边形An ﹣1OnCn +1Mn 的面积为Sn ,则Sn =__________.(结果用含正整数n 的式子表示)【答案】11945n n -+⨯ 【解析】【分析】根据四边形ABCD 是矩形,可得AC 运用面积法可得DC 1=AB BC AC ⋅,进而得出DCn =n ,得出S 1=21920DC ,……,Sn =2920n DC =920×2n =11945n n -+⨯. 【详解】解:∵四边形ABCD 是矩形,∴∠B =90°,AD ∥BC ,AD =BC =2,CD =AB =1,∴AC∵DC 1•AC =AB •BC ,∴DC 1=AB BC AC⋅,同理,DC 2DC 1)2,DC 3)3, ……,DCn n ,∵11DC CC =tan ∠ACD =AD CD=2, ∴CC 1=12DC 1∵tan ∠CAD =11DC AC =CD AD =12, ∴A 1D =AC 1=2DC 1∴AM 1=AC 1﹣C 1M 1=2DC 1﹣12DC 1=32×DC 1, 同理,A 1M 2=32×DC 2, A 2M 3=32×DC 3, ……,An ﹣1Mn =32×DCn , ∵四边形AA 1DC 1是矩形,∴O 1A =O 1D =O 1A 1=O 1C 1=1,同理∵DC 2•A 1C 1=A 1D •DC 1,∴DC 2=1111A D DC A C ⋅=45, 在Rt △DO 1C 2中,O 1C 235=34DC 2, 同理,O 2C 3=34DC 3, O 3C 4=34DC 4, ……,OnCn +1=34DCn +1, ∴1121211ADM O DC AO C M S S S S ==- 四边形 =12×AM 1×DC 1﹣12×O 1C 2×DC 2 =(34﹣310)21DC =21920DC=925, 同理,1223222920A DM O DC S S S DC =-==920×4=3945⨯,S 3=92023DC =920×6=24945⨯, ……,Sn =9202n DC =920×2n=11945n n -+⨯. 故答案为:11945n n -+⨯. 【点睛】本题考查了矩形性质,勾股定理,解直角三角形,三角形面积等,解题关键是通过计算找出规律.32.(2020·四川广安)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.【答案】(-21011,-21011)【解析】【分析】首先先求出B 1、B 2、B 3、B 4、B 5、B 6、B 7、B 8、B 9、B 10的坐标,找出这些坐标之间的规律,然后根据规律计算出点B 2021的坐标.【详解】解:∵正方形OA1B1C1的边长为2,∴OB1B1的坐标为(2,2)∴OB2∴B2(0,4),同理可知B3(-4,4),B4(-8,0),B5(-8,-8),B6(0,-16),B7(16,-16),B8(32,0),B9(32,32),B10(0,64).由规律可以发现,点B1在第一象限角平分线上、B2在y轴正半轴上、B3在第二象限角平分线上、B4在x轴负半轴上、B5在第三象限角平分线上、B6在y轴负半轴上、B7在第四象限角平分线上、B8在x轴正半轴上、B9在第一象限角平分线上、B10在y轴正半轴上,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,倍,∵2021÷8=252⋯⋯5,∴B2021和B5都在第三象限角平分线上,且OB2021=2×2021=2×21010=21011∴点B2021到x轴和y轴的距离都为21011=21011.∴B2021(-21011,-21011)故答案为:(-21011,-21011).【点睛】此题考查的是一个循环规律归纳的题目,解答此题的关键是确定几个点坐标为一个循环,再确定规律即可.33.(2020·黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是_____.【答案】22020【解析】。
专题 整式中的规律探究题(原卷版)
(苏科版)七年级上册数学《第3章 代数式》专题 整式中的规律探究题1.(2023春•耿马县期末)按一定规律排列的单项式:2a ,3a 2,4a 3,5a 4,6a 5,…,第n 个单项式是( )A .(n +1)a nB .(n +1)a 2nC .na 2nD .2na n2.(2022春•湖北期末)按一定规律排列的单项式:2a 2,4a 3,8a 4,16a 5,32a 6,…,第n 个单项式是( )A .2n a nB .2n ﹣1a n +1C .2n a n +1D .2n +1an3.(2023•大理市模拟)观察下列关于x 的单项式:x ,﹣3x 2,5x 3,﹣7x 4,9x 5,﹣11x 6,…,按此规律,第n 个单项式为( )A .(2n ﹣1)x nB .﹣(2n ﹣1)x nC .(﹣1)n (2n ﹣1)x nD .(﹣1)n +1(2n ﹣1)x n4.(2023•楚雄市二模)按一定规律排列的单项式:a 3,−a 25,a 39,−a 417,…,第n 个单项式是( )A .(−1)n a n2n1B .(−1)n a n 2n +11C .(−1)n +1a n 2n 1D .(−1)n +1a n 2n +115.(2022秋•云阳县期中)观察下列单项式:a ,﹣a 2,a 3,﹣a 4,a 5,…,按此规律第n 个单项式是 .(n 为正整数)6.(2023•西藏)按一定规律排列的单项式:5a ,8a 2,11a 3,14a 4,….则按此规律排列的第n 个单项式为 .(用含有n 的代数式表示)7.按照规律填上所缺的单项式并回答问题:(1)a 、﹣2a 2、3a 3、﹣4a 4, ;(2)试写出第2008个单项式;(3)试写出第n 个单项式.8.观察下列单项式:﹣x ,3x 2,﹣5x 3,7x 4,…,﹣37x 19,39x 20,…,回答下列问题:(1)这些单项式的系数的规律是什么?(2)这些单项式的次数的规律是什么?(3)根据上面的规律,归纳出第n 个单项式是什么.(4)第2023和2024个单项式是什么?1.(2023•双柏县模拟)按一定规律排列的多项式:x ﹣y ,x 2+2y ,x 3﹣3y ,x 4+4y ,x 5﹣5y ,x 6+6y ,…,则第n 个多项式是( )A .x n +(﹣1)n ny B .(﹣1)n x n +ny C .x n +(﹣1)n +1nyD .(﹣1)n x n +(﹣1)n ny2.按一定规律排列的多项式:﹣x +2y ,x 2+4y ,﹣x 3+6y ,x 4+8y ,﹣x 5+10y ,x 6+12y ,…,根据上述规律,可知第n 个多项式是( )A .(﹣1)n x n +ny B .(﹣1)n x n +2ny C .(﹣1)n +1x n +2nyD .(﹣1)n x n +(﹣1)n ny3.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,……,其中第10个式子的次数是( )A .10B .17C .19D .214.(2023•巧家县二模)观察下列代数式:1﹣x 2,2+x 3,3﹣x 4,4+x 5,……,根据其中的规律可得第2023个式子是( )A .2022﹣x 2023B .2022+x 2023C .2023﹣x 2024D .2023+x 20245.有一组多项式:a ﹣b 2,a 3+b 4,a 5﹣b 6,a 7+b 8,…,请观察它们的构成规律,用你发现的规律写出第n 个多项式为 .6.按一定规律排列的多项式:x +2y ,﹣x 2+4y ,x 3+8y ,﹣x 4+16y ,x 5+32y ,…,根据上述规律,则第n 个多项式是 .7.观察下列各式及其展开式(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5……请你猜想(2x ﹣1)8的展开式中含x 2项的系数是( )A .224B .180C .112D .488.已知一列多项式:12x 2−x ,32x 2+2x ,56x 2−3x ,76x 2+4x ,910x 2−5x ,1110x 2+6x ,1314x 2−7x ,1514x 2+8x ,⋯(1)第9个多项式是 ,第10个多项式是 .(2)当n 是奇数时,第n 个多项式是 ,第(n +1)个多项式是 .(3)已知2x 2+x =3,求前100个多项式的和.1.(2023•牡丹江模拟)按一定规律排列的一列数依次为3,6,12,24,…,按此规律排列下去,这列数的第7个数是( )A .96B .124C .192D .2342.(2022秋•衡南县期末)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为a 1,第二个三角数记为a 2,…,第n 个三角数记为αn ,计算a 2021﹣a 2020的值为( )A .2021B .2020C .2019D .20183.(2023春•镇雄县期末)一组按规律排列的式子:﹣2,52,−83,114,….第n 个式子是( )(n 为正整数)A .(−1)n +13n−1nB .(−1)n3n−1n 1C .(−1)n2n 1nD .(−1)n3n−1n4.(2023春•渝北区校级期中)当x ≠﹣1时,我们把−1x 1称为x 的“和1负倒数”.如:2的“和1负倒数”为−121=−13,若x 1=1,x 2是x 1的“和1负倒数”,x 3是x 2的“和1负倒数”…依次类推,则x 1•x 2•x 3•…x 2023的值为( )A .1B .﹣1C .12D .−125.(2023春•泗水县期中)将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+⋯+n =n(n 1)2,则表示2023的有序数对是( )A .(64,7)B .(64,64)C .(64,58)D .(64,57)6.(2023•新洲区模拟)有一列数,记为a 1,a 2,⋯,a n ,记其前n 项和为S n =a 1+a 2+⋯+a n ,定义T n =S 1S 2⋯S nn为这列数的“亚运和”,现有99个数a 1,a 2,⋯,a 99,其“亚运和”为1000,则1,a 1,a 2,⋯,a 99这100个数的“亚运和”为( )A .791B .891C .991D .10017.(2023•天河区校级模拟)观察按一定规律排列的一组数:2,12,27,…,其中第n个数记为a n;第n+1个数记为a n+1,第n+2个数记为a n+2,且满足1a n+1a n+2=2a n+1,则a4= ,a2023= .8.(2023•烈山区一模)观察以下等式:第1个等式21=11+11;第2个等式23=12+16;第3个等式25=13+115;第4个等式27=14+128.……按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明你的结论.9.(2023秋•瓯海区校级月考)观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5= .(2)用含有n的代数式表示第n个等式:a n= (n为正整数);(3)求a1+a2+…+a100的值.1.(2023•洪山区开学)如图,摆第一个图形需要4根火柴,摆第二个图形需要7根火柴,…,以此类推.那么摆第八个图形需要( )根火柴.A .24B .27C .25D .282.(2022秋•凤翔县期末)找出以下图形变化的规律,则第2022个图形中黑色正方形的数量是( )A .3030B .3031C .3032D .30333.(2023•东海县开学)如图,一张正方形桌子四周可以坐4人,如果按如图所示的方式拼桌子,六张桌子拼在一起可以坐 人.4.(2023春•凉州区期末)观察下列图形,它们是按一定规律排列的,按此规律,第100个图形中“〇”的个数为 .5.(2022秋•无锡月考)探究规律:将棋子按下面的方式摆出正方形.(1)按图示规律,第(6)图需要 个棋子;(2)按照这种方式摆下去,摆第n(n为正整数)个正方形需要 个棋子;(3)按照这种方式摆下去,摆第2020个正方形需要多少棋子?6.下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有 个★,第六个图形共有 个★;(2)第n个图形中有★ 个;(3)根据(2)中的结论,第几个图形中有2020个★?7.(2023春•肇东市期末)用棋子摆出下列一组图形:(1)填写表:图形编号123456图形中的棋子 (2)照这样的方式摆下去,那么第n个图形的棋子数是 枚;(3)如果某一图形共有102枚棋子,那么它是第 个图形.8.(2022秋•濮阳县期中)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)2节链条长 cm,6节链条长 cm;(2)n节链条长多少cm?(3)如果一辆自行车的链条由60节这样的链条组成,那么这辆自行车上链条总长度是多少?9.(2022秋•永兴县期末)一串图形按如图所示的规律排列.(说明:下列所指的小正方形都是与第1个图形一样大小的正方形)(1)第5个图形中有几个小正方形?第6个图形呢?(2)求出第n个图形中小正方形的个数.(3)求出第20个图形中小正方形的个数.(4)是否存在某个图形,其小正方形的个数恰好是下列各数:①5050;②1000.给出你的判断,并说明理由.。
初中数学规律探究题
归纳猜想型问题考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律.一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
A . 637B .635C . 531D .739111121133114641⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab ba b a a b a b ab b +=++=+++=++++=++++根据前面各式的规律,则6()__________________________________.a b +=考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律.其中,以图形为载体的数字规律最为常见.猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论. 1.(牡丹江)用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共有 小三角形的个数是 .2.(娄底)如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.3.(江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为____________(用含n 的代数式表示).4.(呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需____________根火柴.5.(遂宁)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为 .6.(深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有 个正方形.7. 如图所示,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数为_______.8. 如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案3是由个组成的,依此,第n个图案是由个组成的.9.(2015·重庆(B),8,3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是()A.32 B.29 C.28 D.2610.(2015·重庆(A),8,3分)下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为()A.21 B.24 C.27 D.3011。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
七年级数学专题-----规律探究题
题型一:数字变化类问题
,,…1,.观察下列按顺序排列的等式:,,试猜想第n个等式(n为正整数):a= __________.n
2.下表中的数字是按一定规律填写的,表中a的值应是.
…a 5 8 13 1 2 3
…34 8 13 21 2 3 5
234,…根据你发现的规律,第4a8,﹣8a3.观察下面的单项式:a,﹣2a个式子,是.
4.有一组等式:2222222222222222……2021,467??,35?412???131?2?33??,2?3?请观察它们的构成规律,用你发现的规律写出第8个等式为_________
5.把奇数列成下表,
根据表中数的排列规律,则上起第8行,左起第6列的数是.
5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。
已
请将二进制数10101010写成十进制数为 . (二)
精品文档.
精品文档
6.观察下列各数,它们是按一定规律排列的,则第n个数是.
,,…,,,
2222,…,则第2013个单项式是,9x,11x.7.观察一列单项式:1x,3x,5x ,7x
8.有这样一组数据a,a,a,…a,满足以下规律:n321
,(n≥2且n为正整数),则a2013的值为______(结果用数字表示).
9.观察下列各式的计算过程:
5×5=0×1×100+25,
15×15=1×2×100+25,
25×25=2×3×100+25,
35×35=3×4×100+25,
…………
请猜测,第n个算式(n为正整数)应表示为____________________________.10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是
A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1)
1234567=2187…3,3 ,3=729=27,3=81,3,=24311.观察下列等式:3=3,3=92342013的末位数字是(…解答下列问题:3+3+3+3)+3
A.0 B.1 C.3 D.7
12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.
2
精品文档.
精品文档85.7列的数x是13.将连续正整数按以下规律排列,则位于第7行
第
题型二:图形变化类问题.
__________根火柴棒14.如图,是用火柴棒拼成的图形,则第个图形需n
电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个15.提醒游戏者此数如果无雷,掀开方块下面就标有数字,方块下面最多埋一个雷,WORD,此字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标以示与未掀开者的都标出来吧,0中为方便大家识别与印刷,我还是把图乙中的图乙第一行.3”表示它的周围八个方块中仅有3个埋有雷区别),如图甲中的“(请. 从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有
填入方块上的字母)C DAB G FE14342223213112130??1132图甲002110??图乙
;∠A的平分线交于点A,得∠ABC ABC中,∠A=m°,∠和∠ACD16.如图,在△11的平分线交于CDBC和∠AA,得∠CDBCA和∠A的平分线交于点AA;…∠201222012121度。
= A,则∠点A 20132013
精品文档.
精品文档
17.为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.
18.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征
19.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.
20.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.精品文档.
精品文档
59 158 D..157 C.1A.156 B
…时,由白色小正方形和和黑色小正方形3当白色小正方形个数等于1,2,21.n 个图形中白色小正方形和黑色小正方形的个则第组成的图形分别如图所示.n是正整数)_____________.(用表示,数总和等于nn
.顺次连结菱形=60°如图,在菱形ABCD中,边长为10,∠A22. D;顺次连结四边形ABCD各边中点,可得四边形ABC1111;顺次连结四边DD各边中点,可得四边形ABCABC21212121;按此规律继各边中点,可得四边形ABCD形ABCD33232322▲;四边的周长是续下去…….则四边形ABCD 2222D
. ▲B形ACD的周长是2013201320132013 D D C211 D C33 AA …C C 22BA33 A B1 B12B
,再FO后ODOC,,OE,OBO23.如图所示,以为端点画六条射线后OA,,若将各条射线所OA上某点开始按逆时针方向依次在射线上描点并连线,从射线后,那么所描的第2013个点在射线…,,,,,,,描的点依次记为12345678
上.
精品文档.
精品文档
24.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).
精品文档.。