自动控制原理及其应用(第二版)答案_黄坚
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理及其应用_课后习题答案_第二章
自动控制原理及其应用_课后习题答案_第二章黄坚主编自动化专业课程(2-1a)第二章习题课(2-1a)2-1(a)试建立图所示电路的动态微分方程。
u+ci1=i2-ic+d)+uoR1(ui-uo+u1u[R-CR2u]R1+uoui=dtoi2---C解:CCi1R1R2ic+uoi2-duiduo输入量为ui,输出量为uo。
Rui=u1+uoR2ui=uoR1-CdtR1R2+CdtR12+uoR2ducd(ui-uo)uoic=Cidt=dtu1=i1R1duodui2=RuoR1+CdtR1R2+uoR2=R2ui+CdtR1R22黄坚主编自动化专业课程(2-1b)第二章习题课(2-1b)2-1(b)试建立图所示电路的动态微分方程。
ducCLd2uoduoLduoLic==2+CdtR1uL=dtR2dt+uR2dtd2u+uooCCLoR2duou=+uo+Ci1ii2=Rui=u1+uo2dt-R2R2dt2-输入量为ui,输出量为uo。
u1=i1R1i1=iL+icdiLuL=Ldtducd(ui-uo)ic=Cdt=dtuoiL=i2=R2习题课一(2-2)求下列函数的拉氏变换。
(1)f(t)=in4t+co4tf(t)=in4t+co4tw:L解:∵L[inwt]=22w+L[cowt]=22w+ 4+L∴L[in4t+co4t]=2+162+16+4=2+16黄坚主编自动化专业课程(2)f(t)=t3+e4tf(t)=t3+e4t]=3!+:解:L[t3+1(3)f(t)=tneatf(t)=)=t13!1-4=4+-4:解:L[tneat]=n!(-a)n+1(4)f(t)=(t-1)2e2tf(t)=(t-1)2e2t]=e-(-2)2:解:L[(t-1)(-2)3黄坚主编自动化专业课程2-3-1函数的拉氏变换。
F()=(+1)(+3)F()=+1+1A解:A1=(+2)(+1)(+3)+1A2=(+3)(+1)(+3)1F()=+3-+2F()=2=-3=-1=-2=2f(t)=2e-3t-e-2tf(t)=2e黄坚主编自动化专业课程2-3-2函数的拉氏变换。
自动控制原理 答案 黄坚习题详解
第二章 自动控制系统的数学模型习题2-1 试建立图示电路的动态微分方程。
解:(a )解法一:直接列微分方程组法⎪⎩⎪⎨⎧-==+O i C O C C u u u Ru R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++⇒ 解法二: 应用复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2) 联立式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 212112)1()()(+++= 微分方程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法一:直接列微分方程组法⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io oo u R u R R dt du C R R L dt u d LC R 22121221)()(=++++⇒解法二: 应用复数阻抗概念求⎪⎪⎩⎪⎪⎨⎧++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i O C)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++⇒ 拉氏反变换可得系统微分方程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图示的机械系统(a)和电网络系统(b)是相似系统(即有相同形式的数学模型)。
解:(a)取A 、B 两点分别进行受力分析。
自动控制原理黄坚 第二版 第三章习题答案
第三章习题课 (3-13)
3-13 已知系统结构如图,试确定系统稳 定时τ值范围。 R(s) 10 C(s) 1 解: 10(1+ 1 ) s G(s)=s2+s+10 s τ 10(s+1) =s(s2+s+10 s) τ 10(s+1) Φ(s)= s3 +s2+10 s2+10s+10 τ 10(1+10 )-10 τ b31= 1+10 >0 τ
e
-1.8
第三章习题课 (3-6)
3-6 已知系统的单位阶跃响应: -60t -10t c(t)=1+0.2e -1.2e (1) 求系统的闭环传递函数。 (2) 求系统的阻尼比和无阻尼振荡频率。 1 + 0.2 - 1.2 = 600 解: C(s)= s s+60 s+10 s(s+60)(s+10) 1 C(s)= 600 R(s)= s R(s) s2+70s+600 ω n=24.5 ζ 2 ω n=70 ω n2 =600 ζ=1.43
第三章习题课 (3-17)
1 r(t)=I(t), t , 2 t2 (2) 求系统的稳态误差: 1 K1 τ = 1 G(s)= 2 解: s +Kτ s s( 1 Kτ s+1)
1
1 R(s)= s υ=1
Kp=∞ K =K υ
ess1=0 τ ess2= =0.24 ess3=∞
R(s)= s1 2 R(s)= s1 3
(3) 求d1(t)作用下的稳态误差. 1 K F(s)= Js G(s)=Kp + s -F(s) 1 essd= lim s1+G(s)F(s) s s→0 - 1 1 =0 Js = lim s K) 1 s s→0 1+(Kp+ s Js
自动控制原理黄坚第二版课后答案第四章
4-1 已知系统的零、极点分布如图,大解:(5)(7)(8)4-2 已知开环传递函数,试用解析法绘制出系统的根轨迹,并判断点(-2+j0),(0+j1),(-3+j2)是否在根轨迹上。
解:K r (s+1)G(s)=K rΦ(s)=s+1+Kr K r =0s=-1-K r系统的根轨迹s=-1K r =→∞s=-∞s=-2+j0s=0+j14-3 已知系统的开环传递函数,试绘制出根轨迹图。
解: 1p 1=0 p 2=-1 2p 1~p 2 z 1=-1.5 z 2z 1~p 3 3)根轨迹的渐近线 n-m= 1 θ= + 180o4)分离点和会合点A (s )B'(s )=A'(s )B (s )A(s)=s 3+6s 2+5s B(s)=s 2+7s+8.25A(s)'=3s 2+12s+5B(s)'=2s+7s 1=-0.63s 2=-2.5s 3=-3.6s 4=-7.28解得K s(s+1)(s+4)(2) G(s)=r (s+1.5)1)开环零、极点p 1=0p 2=-1p3=-42)实轴上根轨迹段p 1~p 2z 1=-1.5p 3~z 13)根轨迹的渐近线n-m= 2θ= +90o 2σ=-1-4+1.5=-1.754)分离点和会合点 A(s)=s 3+5s 2+4s B(s)=s+1.5 A(s)'=3s 2+10s+4 B(s)'=1 解得 s=-0.62 5)系统根轨迹K s(s+1)2(3) G(s)=r1)开环零、极点p 1=0p 2=-1p 3=-12)实轴上根轨迹段p 1~p 2p 3~-∞3)根轨迹的渐近线n-m=34θ= +180+60o ,闭环特征方程为s 3+2s 2+s+K r =05)分离点和会合点A(s)=s 3+2s 2+s B(s)=1A(s)'=3s 2+4s+1B(s)'=0解得s=-0.336)系统根轨迹1p 1=0p2p 1~p 2p 4=-15p 3~z 143)根轨迹的渐近线n-m=3(4) G(s)=3σ=-3-7-15+8=-5.67θ= +180o +60o , K r =0 ω1=0K r =638 ω2,3=±6.25)分离点和会合点A(s)=s 4+25s 3+171s 2+315s B(s)=s+8A(s)'=4s 3+75s 2+342s+315B(s)'=2s+7解得s=-1.44)根轨迹与虚轴的交点闭环特征方程为s 4+25s 3+171s 2+323s+8K r =04-5 已知系统的开环传递函数。
《自动控制原理》黄坚课后习题答案
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理及其应用第二版课后答案
自动控制原理及其应用第二版课后答案【篇一:《自动控制原理》黄坚课后习题答案】ss=txt>uo-u+o(a)解:i1=i-i2u1=ui-uouuu-ui=i1==211dud(u-u)i2=c=c(b)解:(u-u)i=i1+i2i=udui1=i2=c2duu1-uo=21u-uud(u-u)-c=12dudur2(ui-uo )=r1u0-cr1r2(-)duducr1r2+r1uo+r2u0=cr1r2+r2uidud2uuuduu--21112=2+cud2udu+(c+=12+(1+2)uo12duu+c2duo+22-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4t(2) f(t)=t3+e4t434t解:l[t+e](3) f(t)=tneat解:l[tneat]=(4) f(t)=(t-1)2e2t解:l[(t-1)2e2t]=e-(s-2)2-3求下列函数的拉氏反变换。
(1) f(s)=aa解:a1=(s+2)=-1a2=2 -f(t)=2e-3t-e-2t(2) f(s)=aaa解:a1=(s+1)=-1a2[=2a3s=-2=-2f(t)=-2e-2t-te-t+2e-t(3) f(s)=2as+aa解:f(s)(s2=a1s+a2j=a1s+aj-2-5j+1=ja1+a2-5j-1=-a1+ja2a1=1a2=-5a3=f(s)s=1++f(t)=1+cost-5sint(4) f(s)=解:=a+a+a+aa1a3a4a2ad[2]s=-1f(t)=e-t-e-t++e-3t(2-4)求解下列微分方程。
a2=5 a3=-4y(t)=1+5e-2t-4e-3t并求传递函数。
2-5试画题图所示电路的动态结构图,c+sc)r2r+rrscu(s)==c1+(+sc)r212121(2)cl1=-r2 /lsl2=-/lcs2l3=-1/scr1l1l3=r2/lcr1s2c112122-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求g(s)。
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理 黄坚 第二版 课后答案第五章
5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()(+=t t r (2) )452cos(2)(-=t t r(s+1)1解: (s+11)1 )A ω 112+( )2 1ω √ =0.905 = 112+1 1√ = 122 1√ =-5.2o φ ( ω ) ω 11 =-tg -1 1 11=-tg -1 c s (t)=0.9sin(t+24.8o) (1)计算的最后结果: (1))83.24sin(905.0)(+=t t c ; (2))3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G(3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G(7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G绘制各系统的开环幅相频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:n-m=3I 型系统ω=0A()=∞ωφ-90o (ω)=-270o φ(ω)=0)=A(ω(2s+1)(8s+1)(3) G(s)=10解:n-m=20型系统ω=0)=10 A(ω-180φ)=-180o (ω)=0)=A(ω0)=0o φ(ω)=s(s-1)(5) G(s)=10解:n-m=2I 型系统ω=0ω=∞)=∞A(ω-270)=-270o φ(ω)=-180)=-180o φ(ω)=0A()=ωs 2(s+0.1)(s+15)(7) G(s)=10(s+0.2)解:n-m=3II 型系统ω=0ω=∞)=∞A(ω-180o φ(ω)=φ-270o(ω)=0)= A(ωω绘制各系统的开环对数频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:s(G(s)=1051s+1)s+1)(151ω1=5ω2=15低频段曲线:20lgK=20dB ω=0ω=∞-90)=-90o φ(ω)=-270)=-270o φ(ω)=相频特性曲线:(2s+1)(8s+1)(3) G(s)=10解:低频段曲线:20lgK=20dBω1=0.125ω2=0.5相频特性曲线:ω=0ω=∞0)=0o φ(ω)=-180φ)=-180o (ω)=s(s-1)(5) G(s)=10解:低频段曲线:20lgK=20dB ω1=1ω=0ω=∞φ-270o(ω)=-180)=-180o φ(ω)=相频特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
自动控制原理黄坚第二版第五章习题答案
5-4 已知系统的开环幅频率特性曲线, 写出传递函数并画出对数相频特性曲线。
(a) 20lgK=20 K=10
G(s)=(0.11s0+1)
L(ω ) dB
20
20lgK
0
10
-20dB/dec
ωc ω
(b) 20lgK=-20 K=0.1
G(s)=(0.0150ss+1)
L(ω ) dB
01
10 20
(e)
p=0
Im υ=1
-1
ω=0
0
Re
ω=0+
系统稳定
p=0
(e)
Im -1 0
υ=1
ω=0 Re
(f)
ω=0 -1
Im p=1 υ=0
0 Re
系统稳定
(a) p=1
-1
Im υ=0
ω=0
0
Re
系统稳定 ω=0+
系统不稳定
第五章习题课 (5-17)
5-17 已知系统开环幅频率特性曲线(1)写出
传递函数。(2)利用相位裕量判断稳定性(3)
ω1=0.1 ω2=0.2 ω3=15
相频特性曲线:
-40dB/dec
40
-60dB/dec
20
0 0.1 0.2 1 -20
-40dB/dec
φ (ω )
ω=0
φ (ω )=-180o
0 -90
15
ω
-60dB/dec
ω
ω=∞ φ (ω )=-270o -180 -270
第五章习题课 (5-4)
0
1 10 50 100ω
G(s)=(s+1)(0.12s+511)(0.01s+1)
自动控制原理答案黄坚习题详解汇总
⾃动控制原理答案黄坚习题详解汇总第⼆章⾃动控制系统的数学模型习题2-1 试建⽴图⽰电路的动态微分⽅程。
解:(a )解法⼀:直接列微分⽅程组法-==+O i C O C C u u u R u R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++? 解法⼆:应⽤复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2)联⽴式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 2 12112)1()()(+++= 微分⽅程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法⼀:直接列微分⽅程组法++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++?解法⼆:应⽤复数阻抗概念求++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i OC)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++? 拉⽒反变换可得系统微分⽅程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图⽰的机械系统(a)和电⽹络系统(b)是相似系统(即有相同形式的数学模型)。
解:(a)取A 、B 两点分别进⾏受⼒分析。
自动控制原理黄坚课后答案
5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()( +=t t r(2) )452cos(2)( -=t t r计算的最后结果:(1)) 83.24sin(905.0)(+=t t c ;(2)) 3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G (3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G (7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G 绘制各系统的开环幅相频率特性曲线:绘制各系统的开环对数频率特性曲线:5-3已知电路如图所示,设R 1=19kΩ,R 2=1 kΩ,C=10μF。
试求该系统传递函数,并作出该系统的伯德图。
计算的最后结果:19.0,2.0)(,1)(1221112===+=+=c R T c R R T s T s T s G ; 5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。
计算的最后结果数字:(a) 11010)(+=s s G (b) 101)(s s G +=; (c) )1100)(101.0(100)(++=s s s s G ; (d) )1100)(110)(1(250)(+++=s s s s G ; (e) 3.0,3.50,]12)[(100)(2==++=ξωωξωn nn s s s s G 5-6画出下列给定传递函数的极坐标图。
自动控制原理黄坚第二版第四章习题答案
σ根 s=3-K+ω轨4r3--s+p14迹32ω13-+~3ω的3p2==s2=+-分001K.离p3r=3~KK点0θrr-===:012+ωω6012o=,,3+=01±810.7o
ζ=AK0sss(2.3rs1没5====)3B|--s有4.03系3'2+(得|.s|64s位s20统)×5+3.=+23s8于A根.171s2=|'×+根|6(轨s-23s×03=s)=+0轨.B2迹3-.0=332(7迹|-s.6+22)=j.6上201..8,9 舍s去3 p-33。
第四章习题课 (4-1)
4-1 已知系统的零、极点分布如图,大 致绘制出系统的根轨迹。
解: (1)
jω (2)
jω
600
0σ
0σ
(3)
jω
(4)
jω
900
0σ
600
0σ
第四章习题课 (4-1)
(5)
jω
(6)
jω
600
0σ
0σ
(7)
jω
1350
450
0σ
(8)
jω
1080
360
0σ
第四章习题课 (4-2)
p4
5)p4分=-离15点和z1会=-8合点
pp z13 -5.672
p
01 σ
2A)(s实)=轴s4+上25根s3轨+1迹71段s2+3p115~sp2 p3~z1
-6.2
3A)(s根)'=轨4s迹3+的75渐s2+近3线42s+315p4~-∞
《自动控制原理》黄坚课后习题答案
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UC(s)=UO(s)+UL(s) I1(s)=IL(s)+IC(s)
UO(s) I2(s)= R2 UI(s)+UC(S) I 即:1(s)= R1 IL(s)=I1(s)-IC(s)
Ui 1 R1 I1
IC(s)=CsUC(s) UO(s) I1(s)= R2 UC(s) IC(s)= Cs
IL IC Cs R2 UL sL + UO
R(s) G3(s)
(2-11b)
+ L1 C(s) +
求系统的 传递函数
_
Байду номын сангаас
G1(s)
L2
G2(s)
G4(s)
H(s) 解: L1=-G1G2H L1=-G1G4H Δ=1+G4G2H+G1G2H P1=G1G2 P2=G3G2 Δ2=1+G1G4H Δ1 =1 C(s) G1G2+G2G3+G1G2G3G4 H R(s) = 1+G1G2H+G1G4H
2-5-b 试画出题 2-1图所示的电路 的动态结构图,并 求传递函数。 解:ui=R1I1+uc uo ∴ iL= R2 UL(s)=sLIL(s)
+ ui -
R1 C
L
R2
+ uo -
uc=uo+uL i1=iL+ic
diL uL=L dt duc ic=C dt
Ui(s)=R1I1(s)+UC(s)
6+2s2+12s ∴ Y(s)= 2 s(s +5s+6) A1=sY(s)
s=0
1 s
(2-4-2)
求下列微分方程。
d3y(t) d2y(t) dy(t) 初始条件: 3 +4 dt2 +29 dt =29, dt · · y(0)=0 , y(0)=17 , · y(0)=-122 解:
2-5-a 试画题2-1图所示电路的动态结构图,并 求传递函数。 + uc - 解:ui=R1i1+uo ,i2=ic+i1 duc ic=C dt UI(s)=R1I1(s)+UO(s) I2(s)=IC(s)+I1(s) UI(s)-UO(s) 即: =I1(s) R1
C C ic
+ ui -
i1 R1 R2
+ uo i2 -
IC(s)=CsUC(s)
[UI(s)-UO(s)]Cs=IC(s)
UI(s)
UI(s) sC
1+ ( R1 sC )R2 IC(s) + I2(s) + I1(s)
UO(s)
-
R2
UO(s)
1 R1
1 ( +sC)R2 UO(s) R1 R2+R1R2sC = = 1 UI(s) ( +sC)R2 R1+R2+R1R2sC 1+ R 1
s+2 2 1 -3t 3 -t t -t (4) F(s)= 2(s+3) = 3 +12 e - 4 e - 2 e s(s+1) s+2 st + s+2 est 解:f(t)= 2(s+3)e (s+1) s(s+1)2 s=-3 s=0 s+2 d[ s(s+3)est ] + lim s -1 ds 2-4s-6)est (s+2)test 2 1 -3t (-s = + e +lim[ 2+3)2 + s2+3s ] s -1 3 12 (s
第二章习题课
(2-1a)
2-1(a) 试建立图所示电路的动态微分方 程。 u
+
c
-
i1=i2-ic
+ d(u ) + uo R1 i-uo+ u1u =[ -C R2 u ]R1+uo ui dt o i R2 - - -
C
解:
C C i1 R1 R2
ic
+ uo i2 -
dui duo 输入量为ui,输出量为uo。 R ui=u1+uo R2ui=uoR1-Cdt R1R2+C dt R1 2+uoR2 duc d(ui-uo) uo u1=i1R1 o du ic=C i dt = dt du i2= R uoR1+C dt R1R2+uoR2=R2ui+C dt R1R2 2
ui R1
R2 -∞ + + C
R3
uo
R2 +R3 UO(S) R2 SC+ 1 ∴ C(S)= - UI(S) = R1
ui R1
R2 -∞ + +
R3
C
uo
R1+R3+R2R3CS = - R (R SC+1) 1 2
2-6-b 用运算放大器组成的有源电网络如 力所示,试采用复数阻抗法写出它们的传 递函数。 C
解:L[t3+e4t]= (3) f(t)=tneat 解:L[tneat]= n! (s-a)n+1 3! 1 3! 1 3+1 + s-4 = s4 + s-4 s
(4) f(t)=(t-1)2e2t 2e2t]=e-(s-2) 2 解:L[(t-1) (s-2)3
2-3-1 函数的拉氏变换。 s+1 F(s)=(s+1)(s+3) s+1 解:A1=(s+2) (s+1)(s+3) A2=(s+3) s+1 (s+1)(s+3) = -1
求下列函数的拉氏变换。 (1) f(t)=sin4t+cos4t w 解:∵L[sinwt]= 2 2 w +s s L[coswt]= 2 2 w +s
习题课一 (2-2)
4 + s ∴L[sin4t+cos4t]= s2+16 s2+16 s+4 = 2 s +16
(2) f(t)=t3+e4t
G6(s)X3(s) C(s) R(s) G4 G3 G2 G C(s) R(s) 1 X (s) - G3G4 X (s) G1G2 X2(s) 1+G G G 3 1 3 2 6 G5 C(s)G5(s)G C(s)[G7(s)-G8(s)] 5 G 7 G7-G8 G 8
7 8 X1(s)=R(s)G1(s)-G1(s)[G7(s)-G8(s)]C(s) G XX(s)=GC(s)=G(s)-G6(s)X37(s)] 2 3(s)=G3(s)[X1 4(s)X3(s) 2 (s)[X2(s)-C(s)G5(s)] G1G2G3G4 G8 X1(s)={R(s)-C(s)[G7(s)-G8(s)]}G1(s)
R2 ui R3
R1
-∞ + +
uo R4 R5
UO (R2R3SC+R2+R3)(R4+R5) = - UI R1(R3SC+1)R5 R2R3 (R4+R5)(R2+R3)( SC+1) R2+R3 =- R1R5(R3SC+1) R5 UO(R3SC+1) R4+ R5 =- R2R3SC+R2+R3 R5 R5 UO UO UI R4+ R5 R4+ R5 =- - R3 R1 R3 R2 + SC R3 SC+ 1 R2 + 1 R3 +
H2(s)
Δ=1+G2H1+G1G2H2 P1=G1G2 Δ1 =1 P2=G3G2 Δ2 =1 n C(s) Σ PkΔk = G2G1+G2G3 = k=1 R(s) 1+G2H1+G1G2H2 Δ L1=-G2H1 L2=-G1G2H1
第二章习题课
(2-11b)
2-11(b) G3(s) G3(s) 求系统的 R(s) + C(s) C(s) R(s) G1 2G(s) + G2G3GG2(s) C(s) _ _ 传递函数 = G1G2+G G1 3+G1 G2(s) 4 H 1+G4HG1 H+G G H R(s) 1+G1G2 + 1 4G (s) 4 H(s) 解: H(s)
s=-2
=2
s=-3
2 1 F(s)= s+3 - s+2
f(t)=2e-3t-e-2t
2-3-2 函数的拉氏变换。 s F(s)= (s+1)2(s+2) s 解:f(t)= est +lim d [ s est] (s+1)2 s=-2 s -1 ds s+2 -2t+lim( st est+ 2 =-2e s -1 s+2 est) (s+2)2 =-2e-2t-te-t+2e-t =(2-t)e-t-2e-2t
第二章习题课
(2-8)
2-8 设有一个初始条件为零的系统,系 统的输入、输出曲线如图,求G(s)。
δ (t)
c(t)
解:
T
δ (t)
c(t)
K 0
K
t
0
T
t
K t- K (t-T) K (1-e-TS) c(t)= T T C(s)= Ts2 C(s)=G(S)
第二章习题课
(2-9)
2-9 若系统在单位阶跃输入作用时,已 知初始条件为零的条件下系统的输出响 应,求系统的传递函数和脉冲响应。 -t 1 -2t R(s)= s c(t)=1-e +e r(t)=I(t) 1 - 1 + 1 = (s2+4s+2) 解: C(s)= s s+2 s+1 s(s+1)(s+2) (s2+4s+2) G(S)=C(s)/R(s) = (s+1)(s+2) (s2+4s+2) =1+ 2 - 1 脉冲响应: C(s)= (s+1)(s+2) s+2 s+1 -t -2t c(t)=δ (t)+2e +e