页岩孔隙结构及页岩气开发特征研究-英文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fracture‒Matrix Interaction
Field observation (preferential flow in a fracture network) of dye distribution in unsaturated fractured tuff at Yucca Mt.
1
2006
2004
2000 2008
http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm
2
http://www .eia.gov/tod ayinenergy/ detail.cfm?i d=2170 Updated June 1, 2011
21
height
Log mass imbibed
h φa (h ) = φp χ
β ν
1 Slope = = 0.5 2
Pore structure
Barnett Shale (7,219 ft)
pathways
Porosity: 5.5% k: nanodarcys (10-21 m2) Median pore dia.: 5 nm
• Gas deliverability from nanopores to well bore 5
Ewing and Horton (2002)
∂θ ∂ ∂θ = D ( θ ) ∂t ∂x ∂ x
High t 0.5 constant constant Low t 0.263 t -0.48 t -1.83
15
• Affected the same way by pore connectivity:
elliptical to completely rounded
Where is the porosity?
angular
rectangular
8
CH4 size: 0.375 nm
9
http://www.transcanada.com/customerexpress/docs/presentations_general/2009_ North_American_Shale_Gas_Overview_NECA.pdf
(Spontaneous) Imbibition Test
• Rock sample epoxycoated along length → 1D flow • Imbibition rate monitored continuously over time
Balance
• Sample size (cm range) and shape • Different initial water contents • Tracer solution
Pore Structure and Hydrocarbon Recovery in Fractured Shales
(Max) Qinhong Hu 胡钦红 maxhu@uta.edu Department of Earth and Environmental Sciences University of Texas, Arlington
Pore Geometry and Topology
Total Porosity Isolated Porosity Connected Porosity
Edge Porosity
Infinite Cluster
Backbone
Dead Ends
Pore structure: shape, volume, size, sizedistribution, connectivity, a nd surface area 6
Sample dimension
1.33 cm L×1.76 cm W ×1.43 cm H (Vertical) 1.76 cm L×1.72 cm W ×1.32 cm H (Horizontal) 1.38 cm L×1.71 cm W ×1.72 cm H (Vertical) 1.73 cm L×1.73 cm W ×1.21 cm H (Horizontal) 1.35 cm L×1.79 cm W ×1.81 cm H (Vertical) 1.24 cm L×1.78 cm W ×1.32 cm H (Horizontal) 1.24 cm L×1.74 cm W ×1.67 cm H (Vertical) 1.74 cm L×1.72 cm W × 1.26 cm H (Horizontal) 1.37 cm L×1.74 cm W × 1.95 cm H (Vertical) 1.69 cm L×1.71 cm W ×1.36 cm H (Horizontal)
nanopore
0.375 nm
10
11
Fluid Flow and Mass Transport in Stimulated Reservoir Volume
~3×106 m3 for one frac stage (Curtis et al., 2012) 12
http://www.transcanada.com/customerexpress/docs/presentations_general/ 2009_North_American_Shale_Gas_Overview_NECA.pdf
Percolation Theory
The mathematics of how macroscopic properties result from local (microscopic) connections
p is the local connection probability
percolation threshold 0.5 < pc < 0.66 (for 2D square lattice) p = 0.5
“Ant in a labyrinth”
p = 0.66
Solute in a pore system

16
Multiple Approaches to Studying Pore Structure
• • • • • • • • • • • • Imbibition with samples of different shapes Edge-accessible porosity Liquid and gas diffusion Mercury injection porosimetry N2 adsorption/desorption isotherms Vapor absorption Nuclear Magnetic Resonance Cryoporometry SEM imaging after Wood’s metal impregnation Microtomography (high-resolution, synchrotron) Focused Ion Beam/SEM imaging Small-Angle Neutron Scattering (SANS) Pore-scale network modeling 17
• • •
Slope = 0.5 at high p Slope = 0.26 at p=pc At intermediate p values, at some time or distance to the wetting front,
the slope transitions from 0.26 to 0.50
Rock milling in 1998
My work on fracture transport starts with this rock
7
Intraparticle organic nanopores
Ar-ionbeam milling and fieldemissiongun SEM: resolve pores as small as 5 nm Loucks et al. (2009)
-3.0 -1.5 -0.5
Time (min) in log scale
0.5
1.5
2.5
3.5
19
Imbibition Results for Barnett Shale Samples Depth 7,109 ft (2,167 m) 7,136 ft (2,175 m) 7,169 ft (2,185 m) 7,199 ft (2,194 m) 7,219 ft (2,200 m)
Pore-Scale Network: Simulation Results (Ewing of ISU)
• p is pore connectivity probability; pc ≈ 0.2488 is the percolation threshold for cubic lattice
Height/width
Imbibition slope
0.93 0.76 1.12 0.70 1.16 0.87 1.12 0.67 1.25 0.80
0.214 ±0.059 (N=3) 0.291 ±0.027 (N=3) 0.269 ±0.0045 (N=3) 0.216 ±0.040 (N=3) 0.273 ±0.050 (N=3) 0.357 ±0.006 (N=3) 0.284 ±0.062 (N=3) 0.282 ±0.047 (N=3) 0.306 ±0.019 (N=3) 0.264 ±0.046 (N=3) 20
3
Low gas recovery factor 15-30% for Barnett Shale (King, 2012)
4
Pore Structure and Low Hydrocarbon Production
RPSEA project: “Integrated • Amount of gas experimental and in place modeling approaches • Free vs. to studying the adsorbed gas fracture-matrix interaction in gas • Tortuous recovery from Barnett transport shale”
14
Pore Connectivity and Diffusion • Same mathematics for diffusion and imbibition:
∂c ∂ ∂c = Ds (θ ) ∂t ∂x ∂x
Pore connectivity: Time-dependence: Distance to front Diffusion coefficient Distance-dependence: Diffusion coefficient
18
Low Pore-Connectivity of Shale Samples
30 sec 5 min 2 hr 20 hr
Cumulative imbibition (mm) in log scale
0.0
-1.0
-2.0
Barnett Shale 2,166.8 m (7,109 ft) Rectangular prism (1.33 cm long × 1.76 cm wide × 1.43 cm tall)
13ቤተ መጻሕፍቲ ባይዱ
中海油以151亿美元收购加拿大Nexen公司, 并承担该公司约43亿美元债务
~1 m/yr movement (advection vs. diffusion ?)
LaFollette, R. 2010. Key Considerations for Hydraulic Fracturing of Gas Shales. Manager, Shale Gas Technology, BJ Services Company, September 9, 2010. www.pttc.org/aapg/lafollette.pdf
相关文档
最新文档