生化工程,第二章酶促反应动力学
酶促反应动力学名词解释
酶促反应动力学名词解释
酶促反应动力学是研究酶催化反应速率、酶与底物之间的相互作用以及反应机制的科学领域。
酶是一种生物催化剂,能够加速化学反应的速率,而酶促反应动力学则是用来描述和解释酶催化反应速率的规律。
酶促反应动力学的主要研究内容包括反应速率、反应机理和酶动力学参数等。
反应速率是指单位时间内反应物转化为产物的量,可以通过测量底物浓度的变化来确定。
酶催化反应速率通常比非酶催化的速率高几个数量级,这是因为酶能够提供更适合反应进行的环境,如形成特定的活性位点、降低反应的活化能等。
反应机理是指酶催化反应中涉及的化学步骤和中间产物的生成过程。
酶催化的反应通常包括底物与酶结合形成底物-酶复合物、底物在酶的活性位点上发生化学反应、产物与酶解离的过程。
通过研究反应机理,可以更好地理解酶催化反应的特点和机制。
酶动力学参数是描述酶催化反应速率和酶与底物之间相互作用的定量指标。
常见的酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)和催化效率(kcat/Km)等。
Vmax表示在酶的浓度饱和状态下的最大反应速率,Km表示酶与底物结合的亲和力,kcat/Km则是酶催化反应的效率常数。
总的来说,酶促反应动力学的研究对于理解酶催化的反应机制、设计高效的酶催化反应以及开发新型药物和工业催化剂等方面具有重要的意义。
通过深入研究酶
促反应动力学,可以为生物工程、医药化学和工业生产等领域的应用提供理论和实践基础。
酶促反应动力学米氏方程
酶促反应动力学米氏方程摘要:1.酶促反应动力学的基本概念2.米氏方程的推导过程3.米氏方程的应用4.酶促反应动力学的影响因素5.总结正文:一、酶促反应动力学的基本概念酶促反应动力学是研究酶促反应速度及其影响因素的科学。
在酶促反应中,酶作为催化剂,可以降低反应所需的活化能,从而加速反应速率。
酶促反应动力学主要研究酶浓度、底物浓度、温度、pH、抑制剂和激活剂等因素对反应速率的影响。
二、米氏方程的推导过程米氏方程是描述酶促反应速度与底物浓度之间关系的经典方程。
其推导过程如下:1.假设酶分子的数量为[E],底物浓度为[S],酶促反应速度为v。
2.酶在催化过程中会与底物结合形成酶- 底物复合物(ES),此过程为慢反应。
3.酶- 底物复合物在达到一定程度后会分解为酶和产物,此过程为快反应。
4.根据慢反应和快反应的速率常数,可以得到酶促反应速度的表达式。
5.将表达式中的慢反应和快反应速率常数用米氏常数(Km)表示,即可得到米氏方程:v = (Km * [S]) / (Km + [S])三、米氏方程的应用米氏方程可以用于分析酶促反应的动态过程,预测反应速度与底物浓度的关系,以及研究酶的结构与功能。
此外,通过比较不同底物和酶的米氏方程,可以了解酶的专一性和底物选择性。
四、酶促反应动力学的影响因素酶促反应动力学受到多种因素的影响,主要包括:1.酶浓度:在一定范围内,酶浓度的增加会提高反应速率,但当酶浓度达到饱和时,反应速率不再随酶浓度增加而提高。
2.底物浓度:底物浓度的增加会提高反应速率,但当底物浓度达到一定程度时,反应速率不再随底物浓度增加而提高。
3.温度:温度的升高会加速反应速率,但过高的温度会导致酶失活,使反应速率降低。
4.pH:酶的活性受pH 值的影响,pH 值的改变会影响酶的催化效率。
5.抑制剂和激活剂:抑制剂会降低酶的催化效率,而激活剂会提高酶的催化效率。
五、总结酶促反应动力学是研究酶促反应速度及其影响因素的科学。
第二章 生物反应动力学 1 酶促反应 PPT课件
经典酶学研究中,酶活力的测定是在反应 的初始短时间内进行的,并且酶浓度、底物浓 度较低,且为水溶液,酶学研究的目的是探讨 酶促反应的机制。 工业上,为保证酶促反应高效率完成,常 需要使用高浓度的酶制剂和底物,且反应要持 续较长时间,反应体系多为非均相体系,有时 反应是在有机溶剂中进行。
1.1.3 酶促反应的特征
优点:
• • • •
常温、常压、中性范围(个别除外)下进行反应; 与一些化学反应相比,省能且效率较高; 专一性好; 反应体系较简单,反应过程的最适条件易于控制等。
不足:
• 多限于一步或几步较简单的生化反应过程; • 一般周期较长。
1.1.4
研究酶促反应的目的
对工程技术人员而言,仅用于解释酶促反应的 机制是不够的,还应对影响其反应速率的因素进行 定量分析,建立可靠的反应速率方程式,为反应器 的合理设计合反应过程的最佳条件选择服务。
1.2 均相酶促反应动力学
• ������ 均相酶反应:系指酶与反应物系处于同一 相—液相的酶催化反应,它不存在相间的物质传 递。
• ������ 非均相酶反应:系指酶与反应物系处于不同 相的酶催化反应,反应过程存在相间的物质传递。
1.2.1 酶促反应动力学基础
1 影响酶促反应速率的因素
酶 促 反 应 速 率 的 影 响 因 素 浓度因素: 酶浓度、底物浓度、产物浓度、效应物浓度。
积分
(C A0
1 dCD k 2 dt C D )(C B 0 C D ) 1 1 1 ( )dCD k 2 dt C B 0 ) C A0 C D C B 0 C D
(C A0
(C A0
C (C C D ) 1 ln B 0 A0 k 2t C B 0 ) C A0 (C B 0 C D )
酶促反应动力学(有方程推导过程)
酶促反应动力学(kinetics of enzyme- catalyzed reactions)是研究酶促反应速度及其影响因素的科学。酶促反应的影响因素主要包括酶的浓度、底物的浓度、pH、温度、抑制剂和激活剂等。
01
酶促反应动力学
02
3.4 酶促反应动力学
酶浓度的影响
在一定温度和pH下,酶促反应在底物浓度大于100 Km时,速度与酶的浓度呈正比。 酶浓度对速度的影响机理:酶浓度增加,[ES]也增加,而V=k3[ES],故反应速度增加。
,所以
(2)
将(2)代入(1)得:
(3)
当[Et]=[ES]时,
(4)
所以
将(4)代入(3),则:
01
Vmax指该酶促反应的最大速度,[S]为底
02
物浓度,Km是米氏常数,V是在某一底物浓
03
度时相应的反应速度。从米氏方程可知:
04
当底物浓度很低时
05
<< Km,则 V≌Vmax[S]/Km ,反应速度
〔E〕〔S〕
〔ES〕
〔E〕〔I〕
〔EI〕
ki
解方程①②③得: 〔ES〕=
〔E〕t
(1 + )+1
Km
〔S〕
〔I〕
Ki
又因vi=k3〔ES〕,代入上式得: Vi=
(1 + )+〔S〕
Km
〔I〕
Ki
Vmax〔S〕
〔I〕
Ki
很多药物都是酶的竞争性抑制剂。例如磺胺药与对氨基苯甲酸具有类似的结构,而对氨基苯甲酸、二氢喋呤及谷氨酸是某些细菌合成二氢叶酸的原料,后者能转变为四氢叶酸,它是细菌合成核酸不可缺少的辅酶。由于磺胺药是二氢叶酸合成酶的竞争性抑制剂,进而减少细菌体内四氢叶酸的合成,使核酸合成障碍,导致细菌死亡。抗菌增效剂-甲氧苄氨嘧啶(TMP)能特异地抑制细菌的二氢叶酸还原为四氢叶酸,故能增强磺胺药的作用。
酶促反应动力学 (2)PPT讲稿
(3) kcat/km的意义:
Vmax[S] V=
Km + [S]
∵Vmax=kcat[Et] ∴
kcat[Et][S] V=
Km + [S]
当[S] <<Km时, [E]=[Et]
是E和S反应形成产物的表观二级速率常数。 其大小可用于比较酶的催化效率。
kcat/km= k3k1
k2+k3
kcat/km的上限为k1,即生成ES的速率,即酶 的催化效率不超过E和S形成ES的结合速率
2、动力学参数的意义
(1)米氏常数Km的意义
V
Vmax Vmax/2
Vmax 2
Km
[S]
= Vmax[S] Km + [S]
Km=[S]
∴Km值等于酶促反应速度为最大反应速度一半 时的底物浓度,单位是mol/L。
①Km是酶的特性常数:
与pH 、温度、离子强度、酶及底物种类有关,与酶浓度 无关,可以鉴定酶。
k2>>k3时
k2 + k3 Km=
k1
Km≈k2(分离能力)/k1(亲合能力)
k1
k3
E+S
ES
P+E
k2
Km越小,亲和力越强。
[S]很小时,反应速度就能达到很大。
性能优,代谢中这类酶更为重要
③根据Km:
判断某[s]时v与Vmax的关系 判断抑制剂的类型
④ Km可帮助判断某代谢反应的方向和途径 催化可逆反应的酶对正/逆两向底物Km不同 —— Km较小者为主要底物
➢ 反应速度取其初速度,即底物的消耗量很 小(一般在5﹪以内)时的反应速度;
➢ 底物浓度远远大于酶浓度。([S] 》[E])
第二章 生化反应动力学
(2)、 可逆抑制
• 抑制剂与酶蛋白以非共价方式结合, 引起酶活性暂时性丧失。抑制剂可以 通过透析等方法被除去,并且能部分 或全部恢复酶的活性。根椐抑制剂与 酶结合的情况,又可以分为两类
A、 竟争性抑制
• 某些抑制剂的化学结构与底物相似,因 而能与底物竟争与酶活性中心结合。当 抑制剂与活性中心结合后,底物被排斥 在反应中心之外,其结果是酶促反应被 抑制了。 • 竟争性抑制通常可以通过增大底物浓度 ,即提高底物的竞争能力来消除。
• 酶的最适pH目前还只能用实验方法测得, 它可以随着底物浓度、温度及其它条件的 变化而改变。因此酶的最适pH并不是一个 常数,它只是在一定条件下才有意义。
• 用酶活或反应速度 对pH作图,一般得 到钟罩形的曲线。
• 在一定的pH 下, 酶具 有最大的催化活性,通 常称此pH 为最适 pH。 • Arginase(精氨酸酶)与 唾液淀粉酶、胃蛋白酶 (pepsin) • 多数酶在7.0左右
【举例】 丙二酸与琥珀酸竞争琥珀酸脱氢酶 琥珀酸
琥珀酸脱氢酶
FAD
COOH CH2 CH2 COOH
琥珀酸
延胡索酸
FADH2
COOH CH2 COOH
丙二酸
斜率
斜率争性抑制
• 酶可同时与底物及抑制剂结合,引起酶分子构象 变化,并导至酶活性下降。由于这类物质并不是 与底物竞争与活性中心的结合,所以称为非竞争 性抑制剂。 • 如某些金属离子(Cu2+、Ag+、Hg2+)以及EDTA等 ,通常能与酶分子的调控部位中的-SH基团作用, 改变酶的空间构象,引起非竞争性抑制。
温度对酶反应速度的影响
• 一方面是温度升高,酶 促反应速度加快。 • 另一方面,温度升高,酶 的高级结构将发生变化 或变性,导致酶活性降 低甚至丧失,反应速度 下降也迅速 • 因此大多数酶都有一个 最适温度。 在最适温 度条件下,反应速度最 大。
酶催化反应动力学概况课件
与酶的活性中心以外的位点结合,影响酶与底物的结合。
反竞争性抑制剂
既不与底物也不与酶直接结合,而是通过改变酶的构象来影响其 催化活性。
酶促反应的激活剂
01
02
有机小分子
金属离子
03 蛋白质
抑制剂与激活剂的应用
药物研发 生物工程 化学工业
05
酶催化反应的动力学应 用
CHAPTER
酶催化反应在生物工程中的应用
影响因素
速率常数受到多种因素的影响, 包括温度、pH值、离子强度、底 物浓度、酶浓度等。
酶的活性单位与测定方法
活性单位定义
1
常用活性单位
2
测定方法
3
酶促反应的速率常数与底物浓度关系
米氏方程
Km值的意义
04
酶促反应的抑制剂与激 活剂
CHAPTER
酶促反应的抑制剂
竞争性抑制剂
与底物竞争酶的活性中心,从而降低酶的催化效率。
02
酶催化反应的速率方程
CHAPTER
米氏方程
米氏方程是描述酶催化反应速率与底物浓度关系的方程,其形式为v=Vmax[S]/ (Km+[S]),其中v代表反应速率,Vmax代表最大反应速率,[S]代表底物浓度, Km代表米氏常数。
米氏方程是酶动力学中的基本方程之一,通过它可以研究酶催化反应的特性,如 最大反应速率、底物浓度等对反应速率的影响。
初始速率法
初始速率法可以避免产物抑制和底物 抑制等效应对实验结果的影响,因此 被广泛应用于酶促反应的动力学研究。
酶促反应的速率曲线
03
酶促反应的速率常数与 酶活性
CHAPTER
酶促反应的速率常数
定义
酶促动力学.ppt
加入非竞争性抑制剂后,Km 不变,而Vmax减小。
非竞争性抑制作用的Lineweaver–Burk图 :
加入非竞争性抑制剂后,Km 不变,而Vmax减小。
非竞争性抑制剂与酶活性中心以外的基团结合。这类抑制作用不会因提高底物浓度而减弱
(3)反竞争性抑制
酶只有与底物结合后才与抑制剂结合,形成的三元中间产物不能进一步分解为产物。
中间产物学说的关键在于中间产物的形成。酶和底物可以通过共价键、氢键、离子键和和配位键等结合形成中间产物。中间产物的稳定性较低,易于分解成产物并使酶重新游离出来。
二、底物浓度对酶反应速度的影响
2 中间络合物学说
※1913年Michaelis和Menten提出反应速度与底物浓度关系的数学方程式,即米-曼氏方程式,简称米氏方程式(Michaelis equation)。后来又有人进行了修正.
三、酶的抑制作用
(一)抑制作用与抑制剂
什么是酶的抑制作用和失活作用? 失活作用:酶变性;酶活性丧失(无选择性)。 抑制作用:酶的必需基团的化学性质改变,但并不引起酶蛋白变性的作用,而降低酶活性甚至使酶完全丧失活性的作用 引起作用的物质称为抑制剂(I)(选择性)。 研究抑制作用的意义?
特点
⑴ 竞争性抑制剂往往是酶的底物结构类似物; ⑵ 抑制剂与酶的结合部位与底物与酶的结合部位相同—— 酶的活性中心 ⑶ 抑制作用可以被高浓度的底物减低以致消除; ⑷ (表观)Km值增大,Vm值不变
竞争性抑制作用的Lineweaver–Burk图 :
1/Vmax
(表观)Km值增大,Vm值不变
363
(Eisenthal和Cornish-Bowden法)
(5)直接线性作图法
363
《酶促反应动力学》课件
底物浓度对反应速率的影响
总结词
随着底物浓度的增加,反应速率通常会加快,但当底 物浓度达到一定值后,反应速率将不再增加。
详细描述
底物是酶催化反应的对象,底物的浓度也会影响反应速 率。通常情况下,随着底物浓度的增加,反应速率会加 快。然而,当底物浓度达到一定值后,反应速率将趋于 稳定,不再增加。这是因为酶的活性位点有限,只能与 一定量的底物结合。
详细描述
酶促反应的活化能是酶促反应所需的最小能量,只有当底物获得足够的能量时,才能够 被酶催化发生反应。活化能的大小反映了酶促反应发生的难易程度,活化能越高,反应 越难以进行。通过实验测定活化能的大小,可以帮助我们了解酶促反应的动力学特征和
机制。
03
米氏方程与双倒数图
米氏方程的推导
总结词
米氏方程是描述酶促反应速度与底物浓 度关系的数学模型,通过实验数据和推 导,可以得出该方程的具体形式。
酶促反应动力学在药物代谢领域的应用,如研究药物在体内的代 谢过程和代谢产物的生成,有助于了解药物的作用机制和药效。
药物合成
在药物合成过程中,酶促反应动力学可用于优化药物合成 的反应条件和提高产物的纯度,降低副反应和废物产生。
在Hale Waihona Puke 境科学中的应用污染物降解酶促反应动力学可用于污染物降解领域,如有机污染物的 生物降解和重金属离子的转化,通过研究酶促反应动力学 参数,实现污染物的有效降解和转化。
温度对反应速率的影响
总结词
温度的升高通常会加快反应速率,但过高的温度可能导致酶失活。
详细描述
温度可以影响酶促反应的速率。一般来说,温度越高,分子间的运动越快,从而促进酶与底物的结合和反应的进 行。然而,过高的温度可能导致酶失活,从而降低反应速率。因此,选择合适的温度对于维持酶的活性和促进反 应的进行非常重要。
酶促反应的动力学
酶促反应的动力学酶促反应动力学是研究酶促反应速度及其影响因素的科学。
这些因素主要包括底物浓度、酶浓度、温度、PH、激活剂和抑制剂等。
在研究某一因素对酶促反应速度的影响时,应该维持反应中其它因素不变,而只改变要研究的因素。
一、酶与底物浓度在酶的浓度不变的情况下,底物浓度对反应速度影响的作用呈现矩形双曲线(图4-2-1)。
图4-2-1 底物浓度对酶促反应速度的影响在底物浓度很低时,反应速度随底物浓度的增加而急骤加快,两者呈正比关系;当底物浓度较高时,反应速度虽然随着底物浓度的升高而加快,但不再呈正比例加快;当底物浓度增高到一定程度时,如果继续加大底物浓度,反应速度不再增加,说明酶已被底物所饱和。
酶促反应速度与底物浓度之间的变化关系,反映了[ES]的形成与生成产物[P]的过程。
在[S]很低时,酶的活性中心没有全部与底物结合,增加[S],[ES]的形成与[P]的生成均呈正比关系增加;当[S]增高至一定浓度时,酶全部形成了[ES],此时再增加[S]也不会增加[ES],反应速度趋于恒定。
(一)米氏方程为了解释底物浓度与酶促反应速度的关系,1913年Michaelis和Menten把图4-2-1归纳为酶促反应动力学最基本的数学表达式---米氏方程:V=Vmax[S]/(Km+[S])Vmax为反应的最大速度,[S]为底物浓度,Km是米氏常数,V是在某一底物浓度时相应的反应速度。
(二)米氏常数(Km)的意义:1.当反应速度为最大速度一半时,米氏方程可以变换如下:1/2Vmax=Vmax[S]/(Km+[S])所以 Km=[S]。
因此,Km值等于酶促反应最大速度一半时的底物浓度。
2.Km值可判断酶与底物的亲和力(Km值愈大,酶与底物的亲和力愈小;反之亦然)。
3.Km值是酶的特征性常数,只与酶的结构、酶所催化的底物和酶促反应条件有关,与酶的浓度无关。
酶的种类不同,Km值不同,同一种酶与不同底物作用时,Km值也不同。
第二章生物反应动力学1酶促反应
A B
k 1
dC A d C B k ( C A C B ) 或 k 1 ( C A C B ) 1 0 0 dt dt
式中:k1-一级反应速率常数 CA0-底物A的初始浓度 CB-t时刻产物B的浓度
1.2.1 酶促反应动力学基础
5 二级反应
k 2 A B D
1dn p dC p rp v dt dt
式中:rs—底物S的消耗速率,mol/(L•S)
rp—产物P的生成速率,mol/(L•S)
v—反应体系的体积,L ns ,np—分别为底物S和产物P的物质的量,mol Cs ,Cp—分别为底物S和产物P的浓度,mol /L t—时间,s
根据质量作用定律,P的生成速率可表示为:
可忽 略由于生成中间复合物[ES]而消耗的底物。 (3)产物的抑制作用可以忽略。
P E [ ES ]
[ E 0 ] C [ E ] C [ ES ] (1)反应过程中,酶浓度保持恒定,即C
有两种推导反应速率方程的方法: 平衡假设法和拟稳态假设法。
1.2.2.1 平衡假设法—Michaelis-Menten方程 平衡假设:1913年, Michaelis-Menten认 为酶催化反应历程中,生成产物一步的反应 速率要慢于底物S和酶形成中间复合物的可 逆反应速率,因此生成产物一步的反应速率 决定整个酶催化反应的速率,生成复合物的 可逆反应则达到平衡状态。
第二章 生物反应动力学
生物反应动力学:是研究生物反应速率和各种 因素对反应速率影响的的科学。
������ 生物反 应 酶促反应 细胞培养
第二章 生物反应动力学
第一节 酶促反应动力学
第二节 细胞生长过程动力学
酶工程 第二章酶动力学 第一节酶促反应动力学
1913年前后,米彻利斯(Michaelis)和曼吞(Menten) 在前人工作的基础上,通过大量的定量研究,提出了酶促动力 学基本原理,并推导出了著名的米-曼氏方程,推导过程如下:
根据上述反应式,中间产物ES的生成速度(底物S的消失速度)
v1=k1[S][E]-k2[ES]
(2-1)
而ES的消失速度(产物P的生成速度) v2=k3 [ES],当反应达到 平衡时,即v1=v2时
第一节 酶促反应动力学
对许多酶的性质的观察和研究得知,在低的底物浓度[S]下, 反应速度(v)直接与底物浓度[S]成正比;在高底物浓度[S]下, 速度趋向于最大值(Vmax),此时反应速度与底物浓度[S]无关 (如图2-1)。
图2-1 单底物酶促反应的反应速度与底物浓度的关系
第一节 酶促反应动力学
图2-5 乒乓反应机理 实际上,多底物酶促反应动力学是非常复杂的,以上只是作以简要介绍, 有关详细内容,可查阅相关专著。
将米氏方程改写成以下形式
以 对作图,绘出曲线,横轴截距即为-值,纵轴截距则是 (图2-2)。
第一节 酶促反应动力学
图2-2 双倒数作图
第一节 酶促反应动力学
二、多底物动力学 通常情况下,酶催化反应涉及两个(少数情况下三个)底物。 现在我们考虑一个涉及两种底物和两种产物的酶促反应物反应。现在已知的生化反应 中有六成以上属于这一种反应。双底物反应的机理有下面三种 可能:
第一节 酶促反应动力学
1.有序反应机理(ordered reaction) 这种情况下,A和B分别可被说成是先导底物和后随底物,Q 是A的产物,最后被释放。A和Q竞争同游离酶E结合,但A和B则 不会(或者Q和B也不会)发生竞争(如图2-3)。依赖烟酰胺腺 嘌呤二核苷酸(NAD+或NADP+)的脱氢酶的反应就属于这种类型。
生物化学酶促反应动力学2
抑制剂对酶促反应速度的影响
实验原理 能降低酶活性,甚至使酶完全丧失活性的物质,被 称为酶的抑制剂。酶的抑制分为可逆性与不可逆性抑制 两大类。不可逆性抑制剂与酶生成共价结合的复合物, 或以其他结合方式生成结合牢固且难于再解离的复合物。 可逆性抑制剂如一般与酶的底物的化学结构相似的物质 (竞争性抑制剂),可与酶的活性中心结合,从而使酶 与其底物结合的比例减少,降低酶促反应速度,但当加 大底物浓度时,可逆转其抑制。
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1Biblioteka 酶标准液最终底物液(不加)
一
1
一
2
一
4
一
6
一
8
一
16
一
20
一
24
一
一
一
一
加入酶液后,立即计时,混匀后37℃水浴中准确保温15min, 保温后,立即加入碱性溶液以终止反应
碱性溶液 1.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0
米氏常数Km的测定
双倒数作图法。
取米氏方程式的倒数形式:
1.0
斜率=Km/Vmax 1
0.8
1
Km
1
= + V Vmax [S] Vmax
1/v
0.6
实验时选择不同的[S],测定相对应 的V。求出两者的倒数,以1/V对1/[S] 作图,则得到一个斜率为Km/Vm的 直线。将直线外推与横轴相交,其 横轴截矩为:-1/[S]=1/ Km,由此 求出Km值。该法比较简便。
生物反应工程 第二章 酶促反应动力学
EG
+B -B
-Q
+P
EQ
+Q
E
( EG:修饰过的酶 )
简单机制
+A +B
-Q
-P
E
-A
EA
-B
EAB
EPQ
+Q
EP
+P
E
双底物酶促反应动力学
反应机理:
解之,得
式中:
2.3 固定化酶促反应动力学
2.3.1 固定化酶促反应动力学基础 2.3.1.1 酶的固定化技术定义 酶的固定化技术是将水溶性的酶分子通过一定的方式,如静电 吸附,共价键等与载体如角叉菜胶、离子交换树脂等材料制成固 相酶的技术。 细胞的固定化技术: 为省去从微生物(或动、植物)中提取 酶的操作,确保酶的稳定性,采用直接固定化微生物细胞、动植 物细胞、组织技术。
2.3.2.2 内部扩散过程
具有大量内孔的球形固定化酶颗粒 dr r
内扩散效率因子
R
稳定状态下,对底物进行物料衡算:
流入量-流出量=反应量
整理,得
两侧同除
,得
当反应符合米氏方程规律时,
故, 令 , ,
, 上式可转化为无因次形式,得
边界条件:
, ,
该微分方程无解析解,只能用数ear Burk): 对米氏方程两侧取倒数,得
,以 作图,得一直线, 直线斜率为 ,截距为 ,根据直线 斜率和截距可计算出Km和rmax。
1/r
1/rmax
斜率-Km/rmax
-1/Km
1/CS
图2-2 双倒数法求解Km和rmax
2.2.2.2 抑制剂对酶促反应速率的影响 失活作用 抑制作用 竞争性抑制 非竞争性抑制
式中:
表明C*为Da准数的函数,即
生化反应工程酶促反应动力学
d[ S ] r dt
• 若用单位时间内生成物浓度 的增加来表示,则:
r d[ P ] dt
2.2.1.4酶促反应动力学分类----反应级数
①零级反应 反应速率与底物的浓度无关,称为零级反应。
d [ s] rmax dt
([S]-底物浓度,rmax-最大反应速率)
E + S
k1
k-1
ES
k2
E + P
稳态学说
稳态学说的几点假设条件: 1. 底物浓度[S]远大于酶的浓度[E],因此[ES]的形成不会降
低底物浓度[S],底物浓度以初始浓度计算。
2. 在反应的初始阶段,产物浓度很低,P+E→ES这个可逆反应
的速率极小,可以忽略不计。
3. [ES]的生成速率与其解离速率相等,其浓度不随时间而变 化。
• 当底物接近酶 的活性中心并 与之结合时, 酶的构象能发 生改变,更适 合于底物的结 合。
2.2.1.2影响酶促反应的因素
浓度因素(酶浓度,底物浓度,产物浓度等) 外部因素(温度,pH,压力,溶液的介电常数,离子 强度等) 内部因素(酶的结构等)
2.2.1.3反应速率及其测定
• 反应速率:单位时间内反应物或生成物浓度的改变。
酶量守恒 产物生成速率 动力学方程
KS
[E0 ] [E] [ ES ]
rP k2 [ ES]
rP rP max[ S ] K S [S ]
rP rP max[ S ] K m [S ]
与 Km
k K S 1 k1
k1 k 2 Km k1
动力学参数的求解
(9)
k 2 [ E0 ][S ] rP max[ S ] d[ P] rP k 1 k 2 dt [S ] K m [S ] k1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应速率及其测定
• 反应速率:单位时间内反 应物或生成物浓度的改变。 •P
• 设瞬时dt内反应物浓度的 很小的改变为dS,则:
•t
• 若用单位时间内生成物浓
•v
度的增加来表示,则:
PPT文档演模板
•t
生化工程,第二章酶促反应动力学
反应分子数
• 反应分子数:是在反应中真正相互作用的分子的数目。
•符合双分子反应的表达式,为二级反应。
PPT文档演模板
生化工程,第二章酶促反应动力学
把反应速率与反应物浓度无关的反应叫做零级反应。
v = k [A]0
• 反应分子数和反应级数对简单的基元反应来说是 一致的,但对某些反应来说是不一致的。例如:
•Sucrase
• Sucrose + H2O ─→ Glucose + Frucose • 是双分子反应,但却符合一级反应方程式。
•甲醇
甘油 + 脂肪酸 NaOH
•生物柴油
• 高果糖浆:
•
α-淀粉酶
糖化酶
葡萄糖异构酶
•淀粉浆液
糊精 葡萄糖
果糖
PPT文档演模板
生化工程,第二章酶促反应动力学
化学反应的基础知识
• 反应进行的方向 • 反应进行的可能性 • 反应进行的限度
•化学热力学
• 反应进行的速率 • 反应机制
PPT文档演模板
•化学动力学
•对于酶复合物ES的解离平衡过程来说, •ES •k-1 E + S •k+1
•其解离常数可以表示为,
•(4)
•即,
PPT文档演模板
•代入公式(2)得到
生化工程,第二章酶促反应动力学
•(5)
•当反应初始时刻,底物[S]>>[E],几乎所有的酶都与底物结合 成复合物[ES],因此[E0]≈[ES],反应速率最大,此时产物的最 大合成速率为:
离子强度等) ✓ 内部因素(效应物,酶的结构)
PPT文档演模板
生化工程,第二章酶促反应动力学
酶与底物的作用机理
• Lock and Key Model
PPT文档演模板
生化工程,第二章酶促反应动力学
Induced-Fit Model
• 手与手套的关 系.
• 当底物接近酶 的活性中心并 与之结合时, 酶的构象能发 生改变,更适 合于底物的结 合。
生化工程,第二章酶促反 应动力学
PPT文档演模板
2020/11/26
生化工程,第二章酶促反应动力学
•《生化工程》
•Biochemical Engineering
第二章 均相酶催化反应动力学
PPT文档演模板
•Lysozyme
生化工程,第二章酶促反应动力学
•实 例
• 脂肪酶催化酯化反应: 生物柴油
• 油料
• 如:A → P
属于单分子反应
• 根据质量作用定律,单分子反应的速率方程式是:
• 双如:A+B → C+D 属于双分子反应 • 其反应速率方程可表示为:
• 判断一个反应是单分子反应还是双分子反应,必须先了解反应机制, 即了解反应过程中各个单元反应是如何进行的。
• 反应机制往往很复杂,不易弄清楚,但是反应速率与浓度的关系可用 实验方法来确定,从而帮助推论反应机制。
PPT文档演模板
生化工程,第二章酶促反应动力学
酶反应动力学
➢ 酶反应动力学的两点基本假设:
反应物在容器中混合良好
反应速率采用初始速率
PPT文档演模板
生化工程,第二章酶促反应动力学
•单底物酶促反应动力学
•E •+ •S
•k+1 •ES
•k-1
•k+件:
酶的基本概念
酶可加快反应速率 降低反应的活化能(Ea) 不能改变反应的平衡常数K 不能改变反应的自由能变化(ΔG)
✓酶有很强的专一性
✓较高的催化效率
✓反应条件温和
✓酶易失活
PPT文档演模板
生化工程,第二章酶促反应动力学
酶促反应动力学基础
影响酶促反应的主要因素
✓ 浓度因素(酶浓度,底物浓度,产物浓度等) ✓ 外部因素(温度,压力,pH,溶液的介电常数,
酶促反应动力学基础-平衡常数
• 平衡:可逆反应的正向反应和逆向反应仍在继续进行, 但反应速率相等的动态过程。
• 反应的平衡常数与酶的活性无关,与反应速率的大小无 关,而与反应体系的温度、反应物及产物浓度有关。
• 平衡常数(K)的计算:
例:A+3B
2C+D
PPT文档演模板
生化工程,第二章酶促反应动力学
•代入式(5)得:
•(6)
•式中:
•Vp,max: 最大反应速率
•
如果酶的量发生改变,最大反应速率相应改变。
•KS: 解离常数,饱和常数
PPT文档演模板
生化工程,第二章酶促反应动力学
反应级数
•根据实验结果,整个化学反应的速率服从哪种分子反 应速率方程式,则这个反应即为几级反应。 •例:对于某一反应其总反应速率能以单分子反应的速 率方程式表示,那么这个反应为一级反应。 •又如某一反应: A + B → C + D
•式中k为反应速率常数
•E •+ •S •k+1 •k-1
•ES •k+2 •E •+ •P
•快速平衡学说
➢ 对于单底物的酶促反应:
•由假设4可得到:
•(1)
•由假设3可得到产物的合成速率为:
PPT文档演模板
•(2)
生化工程,第二章酶促反应动力学
•反应体系中酶量守恒:
•(3)
•由前面的公式(1)得:
•代入公式(3),变换后得:
•因为蔗糖的稀水溶液中,水的浓度比蔗糖浓度大得多, 水浓度的减少与蔗糖比较可以忽略不计。因此,反应速
率只决定于蔗糖的浓度。
•
PPT文档演模板
v = k [S]
生化工程,第二章酶促反应动力学
酶促反应动力学基础-反应速率
零级反应
•k
•A
一级反应 A ─→ B
•A0
积分后得: 这儿:k是反应速率常数,C是积分常数
•t •一级反应
若反应开始(t=0)时,A=A0,则C=lnA0, 最后得到: A=A0e-kt
PPT文档演模板
生化工程,第二章酶促反应动力学
•k 二级反应 A+B ─→ C
•k指反应的速率常数。
•反应速率与反应物的性质和浓 度、温度、压力、催化剂及溶剂 性质有关
PPT文档演模板
生化工程,第二章酶促反应动力学
1. 酶和底物生成复合物[ES],酶催化反应是经中间复合物完 成的。
2. 底物浓度[S]远大于酶的浓度[E],因此[ES]的形成不会降低 底物浓度[S],底物浓度以初始浓度计算。
3. 不考虑P+E→ES这个可逆反应的存在。
4. [ES]在反应开始后与E及S迅速达到动态平衡。
PPT文档演模板
生化工程,第二章酶促反应动力学