§3.3多维随机变量函数的分布
多维随机变量及其分布
(1) F ( x, y)
y
x
f ( x , y) d x d y
y x ( 2 x y ) d x d y , x 0, y 0, 0 0 2e 其它. 0,
(1 e 2 x )(1 e y ), x 0, y 0. 得 F ( x , y) 其它. 0,
8 3 2 14 , 13/102
§3.1 二维随机变量
3 2 P{ X 1,Y 1} 1 1 8 3 2 14 ,
2 8 1 P{ X 0,Y 2} 2 2 28 , 3 3 8 9 P{ X 1,Y 0} 1 1 2 28 ,
y
先在图像上画出非0区
O x
20/102
§3.1 二维随机变量
(2) 将 ( X,Y )看作是平面上随机点的坐标
即有 {Y X } {( X ,Y ) G },
P{Y X } P{( X ,Y ) G }
y
f ( x , y ) d x d y
G
YX
2e 0 y
具有同二维类似的性质。
§3.1 二维随机变量
二维离散型的随机变量:
定义:若二维随机变量(X,Y)全部可能取到的不相同的值 是有限对或可列无限多对,则称(X,Y)是离散型随机变量
二维离散型随机变量的分布律:
设二维离散型随机变量(X,Y)所有可能取的值为(xi,yj),i, j=1,2,…, 记P{X=xi,Y=yj}=pij,i,j=1,2,…,则由概率的定义有: pij≥0,
多维随机变量函数的分布
i ,k : g ( x i , y j ) = z k
∑
p ij
=pk ,
(x1,y1) (x1,y2) … p11 p12
(xi,yj) pij g(xi,yj)
…
Z=g(X,Y)
g(x1,y1) g(x1,y2)
例1 设(X,Y)的联合分布列如下所列: 试求(1)Z1=X+Y (2)Z2=X-Y (3)Z3=max{X,Y}的分布列
练习:设随机变量X与Y独立,且均服从0-1 分布,其分布律均为
X P 0 q 1 p
(1) 求W=X+Y的分布律; (2) 求V=max(X, Y)的分布律; (3) 求U=min(X, Y)的分布律。 (4)求w与V的联合分布律。
(X,Y) pij
W=X+Y
V=max(X, Y) U=min(X, Y)
−∞ 或 ∞ −∞
−∞
∫f
X
( z − y ) f Y ( y )dy = ∫ f X ( x) f Y ( z − x)dx.
例2 设X和Y相互独立,并且服从[-1,1]上的均匀分 布,求Z=X+Y的密度函数。
解:
1 f Y ( x) = 2 0
+∞
当 −1 ≤ x ≤ 1 其他
其中α>0,β>0,试分别就以上两 种联结方式写出L的寿命Z的概率 密度.
αe − αx , x > 0, f X ( x) = x ≤ 0, 0,
βe − βy , y > 0, fY ( y ) = y ≤ 0, 0,
其中 α > 0, β > 0 且 α ≠ β . 试分别就以上三种联 接方式写出 L 的寿命 Z 的概率密度 .
概率论第三章 多维随机变量及其分布
1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R
峁诗松 概率论与数理统计
华东师范大学
第三章 多维随机变量及其分布
第29页
3.2.1 边际分布函数
巳知 (X, Y) 的联合分布函数为 F(x, y),
则
X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第30页
3.2.2 边际分布列
(4) 当a<b, c<d 时,有 (非负性) F(b, d) F(b, c) F(a, d) + F(a, c) 0. 注意:上式左边 = P(a<Xb, c<Y d).
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第6页
3.1.3 联合分布列 二维离散随机变量
第三章 多维随机变量及其分布
第33页
注 意 点 (1)
由联合分布可以求出边际分布.
但由边际分布一般无法求出联合分布.
所以联合分布包含更多的信息.
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第34页
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ),
地取一整数值。试求(X, Y)的联合分布列.
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第15页
3.1.4 联合密度函数
设二维随机变量(X, Y) 的分布函数为 F(x, y),若存在 非负可积函数 p(x, y),使得
则称 (X, Y) 为二维连续型随机变量。 称p(x, y) 为联合密度函数。
第三章 多维随机变量及其分布
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )
P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:
第3.3节随机变量的函数及其分布(new)
pη ( y ) = ∫ p1 ( x) p2 ( y − x)dx
+∞
因此我们有如下定理: 定理:若 ξ1,ξ 2 相互独立,且有密度函 数, 则ξ1 + ξ 2也有密度函数,并且其 密度函数为 ξ1 与ξ 2密度函数的卷积。
例 设随机变数 ξ , η 独立,同服从 λ = 1的 指数分布,求 ξ + η 的密度函数。 解: ξ + η 的密度函数为 pξ+η ( y ) =
Fη ( y ) = P {η < y} = z1 = x1 令 z 2 = x1 + x 2 上式 = = (∫ ,则
2 x1 + x 2 < y
∫∫
p ( x 1 , x 2 ) dx 1 dx
2
∫ ∫
−∞ +∞ −∞
+∞
y −∞
p ( z 1 , z 2 − z 1 ) dz 1 dz
i =0 k
= ∑ P{ξ = i}P{η = k − i} = ∑ C p q C
i =0 i =0 i n i n −i
k
k
k −i m
p q
k −i
m− k +i
=p q
k
n+ m−k
∑C C
i =0 i n
k
k −i m
=C
k n+m
p q
k
n + m−k
, k = 0,L, n + m
则ξ + η ~ B(n + m, p)
故η的密度函数为 1 p( y) = F′( y) = 2 π(1+ y )
例2的解
第3章多维随机变量及其分布
f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)
(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn
有
PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0
0)
... ... ... ... ... ...
第三章多维随机变量及其分布
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
多维随机变量分布公式了解多维随机变量分布的数学公式
多维随机变量分布公式了解多维随机变量分布的数学公式多维随机变量分布公式在概率论和数理统计中,多维随机变量是指由两个或更多随机变量组成的向量。
多维随机变量的分布可以用数学公式来描述,这些公式包括联合概率密度函数、边际概率密度函数和条件概率密度函数。
通过了解和掌握这些公式,我们可以更好地理解和分析多维随机变量的行为和性质。
1. 联合概率密度函数(Joint Probability Density Function)联合概率密度函数是用来描述多维随机变量的联合概率分布的函数。
对于二维随机变量(X,Y),其联合概率密度函数可以表示为f(x,y),其中x和y分别为X和Y的取值。
联合概率密度函数满足以下性质:- 非负性:对于所有的x和y,有f(x,y) ≥ 0。
- 归一性:联合概率密度函数在整个样本空间上的积分等于1,即∬f(x,y)dxdy = 1。
- 边缘分布:通过联合概率密度函数可以计算出各个分量的边缘概率密度函数。
对于X和Y来说,其边缘概率密度函数分别为f_X(x)和f_Y(y),可以通过联合概率密度函数进行积分计算得到。
2. 边际概率密度函数(Marginal Probability Density Function)边际概率密度函数是指从联合概率密度函数中得到单个随机变量的概率密度函数。
对于二维随机变量(X,Y),其边际概率密度函数可以表示为f_X(x)和f_Y(y),分别表示X和Y的概率密度函数。
边际概率密度函数的计算可以通过对联合概率密度函数进行积分得到。
3. 条件概率密度函数(Conditional Probability Density Function)条件概率密度函数是在给定某个条件下,另一个随机变量的概率密度函数。
对于二维随机变量(X,Y),其条件概率密度函数可以表示为f_Y|X(y|x),表示在已知X=x的条件下,Y=y的概率密度函数。
条件概率密度函数可以通过联合概率密度函数和边际概率密度函数的比值来计算得到。
第三章 多维随机变量的函数的分布
C C C i
ki
n1
n2
k n2 n2
i0
k
所以
C p q C p q C p q i i n1i n1
k i k i n2 k i n2
k
k n1 n2 k
n1 n2
i0
可见,Z~b(n1+n2,p).
这个结果很容易推广至多个的情形:若
Xi~b(ni,p),i=1,2,…,m,且X1,…,Xm独立,则X1+X2+…+Xm~ b(n1+n2+…+nm,p)。
V=3 V=4 V=5
34
5
0.05 0.07 0.09
0.05 0.06 0.08
0.05 0.05 0.06
0.06 0.06 0.05
(2) U=Min(X,Y)的可能取值为:0,1,2,3 P{U=i}=P{X=i,Y≧i}+P{X>i,Y=i},i=0,1,2,3. U的分布律为
V0
1
2
12
0.01 0.03
W=3 W=4 W=5
34
5
0.05 0.07 0.09
1 0.01 0.02 0.04 0.05 0.06 0.08 W=6
2 0.01 0.03 0.05 0.05 0.05 0.06 W=7
3 0.01 0.02 0.04 0.06 0.06 0.05 W=8
例2: 设X和Y独立,分别服从二项分布b(n1,p), 和 b(n2,p)(注意两个二项分布中p是一样的),求Z=X+Y的 分布律.
设(X,Y)的概率密度为f(x,y),则Z=X+Y的分布函数为
FZ (z) P{Z z} P{X Y z} f ( x, y)dxdy x yz
§3.3 多维随机变量的函数的分布
推广:若X1 , X2 ,L, Xn相互独立,且Xi ~ P(λi )i = 1,2,L, n. 则X1 + X2 +L+ Xn ~ P(λ1 + λ2 +L+ λn ).用卷积写为 P(λ1 ) ∗ P(λ2 ) ∗L∗ P(λn ) = P(λ1 + λ2 +L+ λn ).
特别,λ1 = λ2 = L = λn = λ时,上式为 P (λ ) ∗ P (λ ) ∗ L ∗ P (λ ) = P ( nλ ).
−1
0
−1
3 − 2 5 2
−2
1 − 2 3 2
−1
1
3
3 0
5
−2
故 Z1 = X + Y的分布列为:
X +Y − 3
P
1 12
−2
1 12
−1
3 12
3 − 2
2 12
1 − 2
1 12
1
2 12
3
2 12
Z 2 = X − Y 的分布列为:
X −Y
P
0
1 12
1
4 12
5 2
2 12
3 2
ai X i ~ N ( ∑ ai µi , ∑ ai2σ i2 ). ∑
i =1 i =1 i =1 n n n
例6(伽玛分布的可加性) X ~ Ga(α1 , λ ),Y ~ Ga(α2 , λ ), ( 设
且X与Y相互独立,证明Z = X + Y ~ Ga(α1 + α2 , λ ).
证 Q Z = X + Y 在(0, +∞ )内 取 值 , ∴ 当 z ≤ 0时 , pZ ( z ) = 0.
多维随机变量及分布[概率与统计
独立性检验在多元统计分析中具有广泛的应用,例如在因子分析、主成分分析和聚类分析等领域。通过 独立性检验,我们可以更好地理解数据之间的关系和结构,从而更好地进行数据分析和建模。
06 多维随机变量的应用
在统计学中的应用
01
多元统计分析
多维随机变量在多元统计分析中有着广泛的应用,如多元回归分析、主
标准化变换
标准化变换
标准化变换是一种常用的数据预处理技术,它通过对数据进行缩放和平移,使得数据满足一定的特性或满足某种 规范。在多维随机变量的背景下,标准化变换通常是指对每个维度进行缩放和平移,使得所有维度都具有零均值 和单位方差。
标准化变换的作用
标准化变换的作用在于使得不同维度的数据具有可比性,并且使得数据的分布更加接近正态分布。此外,标准化 变换还可以消除量纲和单位对数据分析的影响,使得分析结果更加可靠和稳定。
多维指数分布
定义
多维指数分布是所有维度都服从指数分布的多维随机变量的概率 分布。
特征
具有指数概率密度函数,各维度之间相互独立。
应用
在排队论、可靠性工程等领域有应用。
04 多维随机变量的期望与方 差
期望的定义与性质
定义
01
多维随机变量的期望值是所有可能结果的加权平均,其中权重
为每个结果的概率。
性质
独立性检验
独立性检验
独立性检验是统计学中用于检验两个或多个随机变量是否相互独立的一种方法。在多维随机变量的背景下,独立性检 验通常用于判断各个维度之间是否存在相关性或依赖关系。
独立性检验的方法
独立性检验的方法有很多种,其中常用的有卡方检验、斯皮尔曼秩相关系数和皮尔逊相关系数等。这些方法可以帮助 我们判断两个或多个随机变量是否相互独立,或者是否存在某种依赖关系。
3.3多维随机变量函数的分布
p( x, y)d y,
称其为随机变量 ( X , Y ) 关于 X 的边际概率密度.
同理, 随机变量(X,Y)关于Y 的边际分布函数
y
FY ( y) F (, y)
p( x, y)d x d y,
pY ( y)
p( x, y)d x.
关于Y 的边际概率密度.
例3.2.3 设随机变量 X 和 Y 具有联合概率密度
上式右边分别乘以和除以 (1 p1 )ni ,两边对j从0到n i求 (n i)!
和,并记
p2
p2 1 p1
,则可得:
n-i
P(X
j=0
i,Y
j)
n! i !(n i)!
p1i (1
p1 )ni
n-i (n i)!
p2j (1 p1 p2 )ni j
j=0 j !(n i j)! (1 p1 ) j (1 p1 )ni j
P{Y y j } pij , j 1, 2, . i 1
因此得离散型随机变量关于X 和Y 的边际分布函
数分别为
FX ( x) F ( x, )
pij ,
xi x j1
FY ( y) F (, y)
pij .
y j y i1
例3.2.2 已知下列分布律求其边缘分布律.
n! i !(n
i)!
p1i (1
p1 )ni [
p2
(1
p2 )]ni
n! i !(n i)!
p1i (1
p1 )ni
Cni
p1i (1
p1 )ni .
即P( X
i)
C
i n
p1i (1
p1 )ni ,
概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0
P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
23 August 2021
多维随机变量及其分布
多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布
第3.3节随机变量的函数及其分布(1)
3.3 随机变量的函数及其分布一、博雷尔函数与随机变量的函数二、单个随机变量的函数的分布律三、随机向量的函数的分布律四、随机向量的变换五、随机变量函数的独立性一、博雷尔函数与随机变量的函数1引例在实际应用问题中,有时需要研究多维随机变量的函数的概率分布. 例如,鱼雷在水下运动时,其速度的三个分量都是随机变量,若已知的联合分布,如何计算其动能的分布.,,x y z v v v ,,x y z v v v 2221()2x y z E m v v v =++2 博雷尔函数() y g x R R R B =1111设有是到上的一个映照,若对于一切中的博雷尔点集均义有定 3.3.1{:()}x g x B ∈∈11()R g x σ11其中为上的博雷尔域,则称尔测数是一元博雷(可)函 注所有的连续函数与单调函数都是博雷尔函数(,,,) n n y g x x x R R R B =11211 设有是到上的一个映照,若对于一切中的博雷尔点集均有义定 3.3.2{(,,,):(,,,)}n n nx x x g x x x B ∈∈12121 (,,,)nn n R g x x x n σ12 其中为上的博雷尔域,则称是尔测数元博雷(可)函 3 随机变量的函数(,,)()()(,,)P g x g P ξξΩΩ若是概率空间上的随机变量,而是一元博雷尔函数,则是上的随机变量.问题g =()?如何根据已知的随机变量的分布求得随机变量的分布ξηξ4 离散型随机变量的函数的分布=2.设的分布律为求的分布律ξηξξp2101-41414141例一维离散型随机变量的函数的分布g =,().如果是离散型随机变量其函数也是离散型随机变量若的分布律为ξηξξξkpkx x x 21kp p p 21g =()则的分布律为ηξk k g x p (),.若中有值相同的应将相应的合并g =()ηξkp k g x g x g x 12()()()k p p p 21二维离散型随机变量函数的分布ξη12--1-21312312112101211221220122(,)设随机变量的分布律为ξη例+-(1),(2).求的分布律ηξξη结论的联合分布律为若二维离散型随机变量i j ij P x y p i j ===={,},,1,2,ξη g =(,)则随机变量函数的分布律为ψξηk k P z P g z ==={}{(,)}ψξη k i j ij z g x y p k ===∑()1,2,.例设相互独立的两个随机变量x与h具有同一分布律,且x的分布律为ξP1 05.0 5.0=:max(,).试求的分布律ζξη卷积公式k k a b =+{}{}, 设与是相互独立的随机变量,它们非负整数值,其概率分别为与,则的分布律为ξηζξηζr r r r c P r P r P r P r a b a b a b -=====+==-++===+++0110{}{0,}{1,1}{,0} ζξηξηξη称此计算公式为离散卷积公式例设且相互独立,求的分布律。
多维随机变量及其分布
第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、 各种分布与随机变量的独立性1. 各种分布(1)一般二维随机变量 F (x , y )=P { X ≤ x , Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x , y )为联合分布函数 ⇔ 1) 0 ≤F (x , y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x , −∞)=0, F (+∞,+∞)=1;3) F (x , y )关于x , y 均为单调不减函数; 4) F (x , y )关于x , y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P {X = x i , Y = y j } = p i j , i , j =1, 2 ,⋅⋅⋅ , p i j0,1=∑∑ijji p.边缘分布律 p i= P {X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ , pj = P { Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P {X = x i |Y = y j } =jj i p p •, P { Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x , y )为联合概率密度 ⇔ 1︒ f (x , y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X , Y )~ f (x , y )则 分布函数:⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度: ⎰∞+∞-=),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度: )(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x , y )= F X (x )F Y (y );⇔ p i j = p ip j (离散型)⇔ f (x , y )= f X (x )f Y (y ) (连续型)【注】 1 X 与Y 独立, f (x ), g (x )为连续函数 f (X )与g (Y )也独立.2 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立.3 常数与任何随机变量独立. 3. 常见的二维分布(1)二维均匀分布 (X , Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X , Y )~ N (μ1 , μ2, σ12 ,σ22,), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0,| | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22 ) ( b ) X 与Y 相互独立ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X +C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12 σ12 + C 22σ22 +2C 1C 2 σ1 σ2 ).( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B |A )=21, P (A |B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X , Y )的联合分布律; (2)计算Cov ( X , Y ); (3) 计算 22(2,43)Cov X Y +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X , Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U ,m in ,,m ax ==.(I )求(U , V )的概率分布;(II )求(U , V )的协方差C ov (U , V ). 【详解】(I )易知U , V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P)2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U , V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E .故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov .【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y X P .二、 二维(或两个)随机变量函数的分布1.分布的可加性(1)若X ~B (m, p ), Y ~B (n, p ), 且X 与Y 相互独立,则 X +Y ~ B (m +n , p ). (2)若X ~P (λ1), Y ~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X ~N (211,μσ), Y ~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n , 且X 1,X 2,…,X n 相互独立,则Y =C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X与Y相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X , Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z . 【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=1221)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z <0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 0)2(3231z z -=; 当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=;当2≥z 时, 1)(=z F Z . 故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二: ⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ; 当01z <<时, ⎰-=zZ dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.。
§3.3多维连续型随机变量及其概率密度函数
【注】有对比才能有区分。
例1 已知二维随机变量(X, Y)的概率密度函数为
f
(
x,
y)
Ae( x
y)
,
0,
0 x y, 其他.
求:(1)常数A;(2)P{X+Y1};(3)F(x, y)。
【解】(1)如图所示,依概率密度函数的规范性,有
1 f ( x, y)dxdy A e xdx e ydy
(2)规范性。 f ( x, y)dxdy 1.
【证】非负性显然。下面证明规范性。
依定理3.1,有
xy
f ( x, y)dxdy lim x
f (u, v)dvdu
y
lim F ( x, y) F (, ) 1. x y
【注】上述两条性质也是概率密度函数的特征,即若某 二元函数g(x, y)满足非负性和规范性,则g(x, y)一定是 某二维连续型随机变量(X, Y)的概率密度函数。
dx
xy
b
P X (a, b) R f ( x)dx. P ( X ,Y ) D R2 f ( x, y)dydx.
a
D
P{X=a}=0.
P{(X, Y)L}=0(L为平面曲线).
X的分布函数为
X与Y的联合分布函数为
x
xy
F ( x) f (t)dt, x R. F ( x, y) f (s, t)dtds, x, y R.
§3.3 多维连续型随机变量及其概率密度函数
一 二维连续型随机变量及其概率密度函数 二 两种重要的二维连续型分布 三 n维连续型随机变量及其概率密度函数
【引言】与一维连续型随机变量类似,下面定义二维连 续型随机变量及其概率密度函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明: P((X ,Y ) D) p(x, y)dxdy ( x, y)D
p(x(u, v), y(u, v))| (x, y) | dudv
( x, y)D
(u, v)
P((U ,V ) D)
p(u,v)dudv ( u ,v )D
例3.3.9
X ,Y ~ N (, 2 )相互独立 ,则 U X Y ~ N (2,0,2 2 ,2 2 ,0)
(u
2 2 2
)2
v2 2 2
2 2 2
边际分布U ~ N(2,2 2 ),
V ~ N(0,2 2 )
P150例3.2.5
(uv )2
1
2
e 2 2
2 p(u, v) pU (u) pV (v)
U,, 相互独立
三、积分布
已知X ~ pX (x),Y ~ pY ( y)且相互独立 , 则U XY ~ pU (u)
n
X i ~ N (0,1)且相互独立 , 则
X
2 i
~
2 (n)
i 1
P121 例2.6.3
二、最值分布
离散场合 一般情况下 例3.3.1
连续场合 相互独立情况下
已知条件 分布函数 Fi (x) 同分布函数 F(x) 同密度函数 p(x) 同指数分布 E()
Y max{ X1,..., X n}
pZ (z) pX ,Y (zy, y) | y | dy (X ,Y ) (Z,Y )
ห้องสมุดไป่ตู้
v x, y uv
| (x, y) | | 0 (u,v) 1
v |v
u
( X ,Y ) ~ pX ,Y (x, y), Z g1 ( X ,Y ),V g2 ( X ,Y ),
则(Z,V )
~
p( z, v)
pX ,Y (x(z, v), y(z, v))|
(x, y) ( z, v)
v y, x uv
| (x, y) | | v (u,v) u
0 |v
1
已知X
~
pX (x),Y
~
pY ( y)相互独立,
则U
Y X
~
pU (u)
pU (u) pU ,V (u, v)dv
不独立 p X ,Y (v, uv) v dv
独立性 pX (v) pY (uv) | v | dv
X—Y不服从泊松分布
=1
k!
例3.3.3 二项分布的可加性
b(n, p) b(m, p) b(n m, p)
b(n1, p) b(nr , p) b(n1 nr , p)
推广 b(n, p) b(n, p) b(nr, p)
{X n}独立同为参数为1, p的二项分布 , 则和分布 X1 X n ~ b(n, p)
证明: p(u, v) p(u v , u v ) | (x, y) | V X Y
2 2 (u,v) 且U ,V相互独立
p(
u
2
v
,
u
2
v
)
|
1
1 1
|
p(u v , u v) 1 2 22
1 1
1 2
pX
(u
2
v)
pY
(u
2
v)
1 2
( uv )2
1
2
e 2 2
2
1
e
1 2
§3.3 多维随机变量函数的分布
刘妍丽主讲
一、和分布、差分布
1、离散场合下的卷积公式
不独立 P( X Y k) P(X i,Y k i) P(X Y k) P(X i,Y i k)
i
i
X,Y独立 P( X i)P(Y k i) X,Y独立 P(X i)P(Y i k)
|
(X ,Y) (Z,V )
Z X Y Z X Y Z XY ZX
Y
pZ (z) pX ,Y (x, z x)dx
(X,Y) (X,Z)
pZ (z) pX ,Y (z y, y)dy
pZ (z)
p
X
,Y
(x,
z x
)
|
1 x
dx |
(X,Y) (Z,Y) (X,Y) (X,Z)
pY ( y) n (1 ey )n1 ey pZ (z) n (ez )n1 ez
y0
n(enz ) z 0 Z ~ E(n)
变量变换法
已知(X ,Y ) ~ p(x, y),U g1(X ,Y ),V g2 (X ,Y ), 则求(U ,V ) ~ p(u, v)
p(u, v) p(x(u,v), y(u, v))| (x, y) | (u, v)
)
例3.3.7 伽玛分布的可加性
Ga(1, ) Ga(2 , ) Ga(1 2 , ) 推广 Ga(1, ) Ga( n , ) Ga(1 n , )
Ga(,) Ga(,) Ga(n,)
E() .... E() Ga(n,)
2 (n1 ) 2 (nr ) 2 (n1 nr )
和分布仍为此类分布,类型不变
例3.3.2 泊松分布的可加性
P(1) P(2 ) P(1 2 )
P(1 ) P(n ) P(1 n )
推广
X ~ P(1),Y ~ P(2 ), 且X与Y相互独立,则X Y ~ P(1 2 )
{X n}独立同为参数为 的泊松分布 , 则和分布 X1 X n ~ P(n)
例3.3.6 正态分布的可加性
N
(
1
,
2 1
)
N
(
2
,
2 2
)
N (1
2
,
2 1
2 2
)
X ~ N (, 2 ), 则aX b ~ N (a b, a 2 2 ) P119,定理2.6.2
{X n}独立同为正态分布 , 则
a1 X 1
an X n
~
N (a11
an
n
,
a12
2 1
an2
2 n
pU (u) pU ,V (u, v)dv
不独立
u1
p X ,Y (v, v ) v dv
独立性
p
X
(v)
pY
(
u v
)
1 v
dv
v x, u xy
| (x, y) | 1 1
(u, v)
y1 ||
v
x0
不独立
p
X
,Y
(
u v
,
v)
1 v
dv
独立性
p
X
(u v
)
pY
(v)
X,Y独立 pX (x) pY (z x)dx
X,Y独立 pX (z x) pY ( y)dy
T X Y
pT (t) p(x, x t)dx
不独立
X,Y独立
pX (x) pY (x t)dx
pT (t) p( y t, y)dy
不独立
X,Y独立
pX ( y t) pY ( y)dy
i
i
不独立 P( X Y k) P( X k j,Y j) P( X Y k) P( X k j,Y j)
j
j
X,Y独立 P( X k j)P(Y j) X,Y独立 P( X k j)P(Y j)
j
j
X,Y不独立 例3.3.1
X,Y独立
例3.3.2 泊松分布的可加性 例3.3.3 二项分布的可加性
即b(1, p) b(1, p) b(n, p)
2、连续场合下的卷积公式
Z X Y
z x
FZ (z) P(Z z) P( X Y z)
p(x, y)dydx (F (x, z x) F (x,))dx
pZ (z) p(x, z x)dx 不独立
pZ (z) p(z y, y)dy 不独立
n
FY ( y) Fi ( y) i 1
Z min{ X1,..., X n}
n
FZ (z) 1 (1 Fi (z)) i 1
FY ( y) (F ( y)) n FZ (z) 1 (1 F (z)) n
pY ( y) n (F ( y)) n1 p( y) pZ (z) n (1 F (z)) n1 p(z)
1 v
dv
v y, u xy
| (x, y) | 1 1
(u, v)
y0 ||
v
x1
四、商公式
已知X
~
pX (x),Y
~
pY ( y)相互独立,
则U
X Y
~
pU (u)
pU (u) pU ,V (u, v)dv
不独立 p X ,Y (uv, v) v dv
独立性 pX (uv) pY (v) | v | dv
证明: P(X Y k) P( X i)P(Y k i) i 0, k i 0 k 0,1,2....
i
i
i
e 1 1 i!
k i
e 2
2
(k i)!
(1 2 ) k e (12 )
k!
i
k! i!(k
i)!
1
1 2
i
2 1 2
k i
(1 2 ) k e (12 )