初中数学中被删掉的有用知识圆幂定理及其应用
2-3-4圆幂定理
141+ = 第四讲 圆幂定理在圆锥曲线中的应用圆幂定理在圆中的应用【例 1】如图,在平面直角坐标系 xOy 中,已知点 A (-1 ,0),点 P 是圆O : x 2 + y 2 = 4上的任意一点,过点B (1 ,0)作直线 BT 垂直于 AP ,垂足为T ,则2PA + 3PT 的最小值是.【例 2】(2015 全国 1 文)已知过点 A (0 ,1)且斜率为 k 的直线l 与圆C : (x - 2)2 + ( y - 3)2 = 1交于 M 、N .(1) 求 k 的取值范围;(2) OM ⋅ ON = 12,其中O 为坐标原点,求| MN |.圆幂定理在椭圆上的推广x 2 y 2 1 【例 3】(2019•陆良县月考)已知椭圆C : a 2 + b 2 = 1(a > b > 0)的左右焦点分别为 F 1, F 2,离心率为 2, 椭圆C 上的点 M (1 , 3)到点 F , F 的距离之和等于 4. 2 1 2(1)求椭圆C 的标准方程;2 (2)是否存在过点 P (2 ,1)的直线l 与椭圆C 相交于不同的两点 A , B ,满足 PA ⋅ PB = PM?若存在,求出直线l 的方程;若不存在,请说明理由.【例 4】(2017•南京二模)在平面直角坐标系中,焦点在 x 轴上的椭圆C : x 8 y 2 b 21经过点(b ,2e ),其中 2142 AP TBe 为椭圆C 的离心率.过点T (1 ,0)作斜率为 k (k > 0)的直线l 交椭圆C 于 A , B 两点( A 在 x 轴下方).(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 且平行于l 的直线交椭圆C 于点 M , N ,求 AT ⋅ BT 的值;MN 2(Ⅲ)记直线l 与 y 轴的交点为 P ,若 = 2 ,求直线l 的斜率 k .5。
北师大版九年级下册数学圆幂定理
圆幂定理 圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。
∙ 发展历程 圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。
根据两条与圆相交的直线的不同位置,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P 引两条割线与圆分别交于A 、B ;C 、D ,则有PA·PB=PC·PD 从上述定理可以看出,两条直线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
∙ 定理内容 圆幂定义圆幂定义:假设平面上有一圆O ,其半径为R ,有一点P 在圆O 外,则22R OP -即为P 点到圆O 的幂;符号:圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
定理内容 过任意不在圆上的一点P 引两条直线L 1、L 2,L 1与圆交于A 、B (可重合,即切线),L 2与圆交于C 、D (可重合),则有∙ 定理证明图Ⅰ:相交弦定理。
如图,AB、CD为圆O的两条任意弦。
相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以所以有:,即:。
图Ⅱ:割线定理。
如图,连接AD、BC。
可知∠B=∠D,又因为∠P为公共角,所以有,同上证得。
图Ⅲ:切割线定理。
如图,连接AC、AD。
∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有,易证图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO 为公共边,因此所以PA=PC,所以。
综上可知,是普遍成立的。
证明完毕。
[。
圆幂定理切割线定理
圆幂定理和切割线定理1. 圆幂定理圆幂定理是指在一个圆内部或外部,如果有一条切线和一条线段相交,并且这条线段的一个端点在圆上,那么这条线段两个端点和切点构成的矩形的两条对角线线段的乘积是相等的。
1.1 圆内部的圆幂定理设一条圆在点A上,直径为d,直线l和圆相交于点B和切点C,如图所示:根据圆幂定理,可以得到以下公式:AC * BC = DC * EC其中,AC表示线段AC的长度,BC表示线段BC的长度,DC表示线段AD的长度,EC表示线段BE的长度。
1.2 圆外部的圆幂定理设一条圆在点A上,直径为d,直线l和圆相交于点B和切点C,如图所示:同样根据圆幂定理,可以得到以下公式:AC * BC = DC * EC其中,AC表示线段AC的长度,BC表示线段BC的长度,DC表示线段AD的长度,EC表示线段BE的长度。
2. 切割线定理切割线定理是指一个圆内部一条切线所切割的弧的长度等于该切点到切线的距离两端的两条弦的长度的和。
设一条圆在点A上,直线l和圆相交于点B和切点C,如图所示:根据切割线定理,可以得到以下公式:AC = AD + DB其中,AC表示切割线的长度,AD和DB表示距离切割线等长的两条弦的长度。
3. 圆幂定理和切割线定理的应用圆幂定理和切割线定理是几何学中常用的定理,广泛应用于解决与圆有关的几何问题。
3.1 圆的切线长度问题在一个圆内部或外部,已知切点和切线的长度,可以利用圆幂定理计算其他线段的长度。
例如,在一个圆外部,已知切线长度为l,切点到圆心的距离为r,可以利用圆幂定理得到切点到切线两端的两条弦的长度。
3.2 弦的位置问题在一个圆内部或外部,已知圆心、切点和切线的长度,可以利用切割线定理计算弦的长度和位置。
例如,在一个圆内部,已知切点到切线的距离为d,可以利用切割线定理得到切割线切割的弧的长度。
3.3 圆的相交问题利用圆幂定理和切割线定理,可以解决圆的相交问题。
例如,已知两个圆的圆心和半径,可以利用圆幂定理和切割线定理计算两个圆的切点和切线。
圆幂定理及其应用之一
圆幂定理及其应用之一编者注:本专题本来我打算放到后面写,但是昨天和今天通过考试及学生提问,我发现很多学生对圆幂的概念不清,产生了极大的错误,所以先写一篇概念,以正视听。
“yuan”幂“yang”幂老婆看到这篇文章的标题,第一反应是“杨幂定理”!不过读起来确实有点像,虽然圆幂定理在数学中是很著名的定理,不过在当今中国应该还是没有杨幂的名气大。
言归正传,作为第一篇,本篇主要写关于圆幂的三个概念:点对圆的幂、两圆根轴、三圆根心。
众所周知,如图,半径为r的圆O内相交于E两弦AB、CD,有相交弦定理:AE*BE=CE*DE=r^2-OE^2,同样对半径为r的圆O外点E,ET为圆切线,EAB、ECD为割线,则有切割线定理[1]:ET^2=EA*EB=EC*ED=OE^2- r^2。
为了把他们统一起来,我们引入点E对半径为r的圆O的幂[2] 为:由定义知:E在圆内时,p(E)<>E在圆上时,p(E)=0;E在圆外时,p(E)>0,即为过E的圆的切线长的平方。
从而圆幂的范围为:若过E的任意直线交圆O于A、B两点,则容易证明:圆幂定理:用向量(或者有向线段)的乘积表示圆幂的目的就是为了将切割线定理和相交弦定理中的正负号统一起来。
这里需要特别强调的是:刚开始接触圆幂概念的人会觉得很奇怪,为什么要引入一个负值呢,明明两个线段的乘积为正的,为什么要画蛇添足,引入有向线段的乘积来表示圆幂呢?所以很多竞赛教材都将圆幂定义成这恰恰是画蛇添足!还有些教材觉得加不加绝对值无所谓,都是合理的。
事实上,定义中绝对不能加绝对值!!至于原因,请允许我先买个关子,一会儿讲到根轴的时候再说明。
在解析几何中,点E(a,b)对圆O:的幂,不难用定义得到这样定义圆幂其实更简单明了,就是将点的坐标带入圆的解析式中即可。
对一个圆而言,每个点都有一个圆幂。
下面自然的问题是对两个圆呢?最简单的问题是:对两个圆的幂相等的点轨迹是什么?当然很多人知道这就是所谓的两圆的根轴,是一条与两圆连心线垂直的直线,若两圆相交,根轴即为两圆公共弦。
圆幂定理及其应用
点A、B、C,且△ ABC的外心在直线/=o上,求i+b的值. 解法!:可设点A(01,0)、B(02,O)、C(0,b)(b&0). 因为点A、B均在抛物线y=02+ao+b上,所以0#、02是关
于0的一元二次方程02+a«+b=O的两个根. 由于% ABC的外心在直线/=0上,可设%ABC的外接
*本文系北京市教育学会“十三五”教育科研滚动立项课题“数学文化与高考研究”(课题编号FT2017GD003,课题 负责人:甘志国)的阶段性研究成果.
40 中•了京市丰台二中甘志国
2019年7月
圆&定理在平面几何中有重要应用,相交弦定理与 切割线定理都是其重要推论,反过来,用它们也可给出 圆幕定理的证明.文章还给出了圆幕定理在解答自主招 生试题中的应用.
圆"定理:若过定点"作一动直线与定圆!0(其半 径是$)交于%两点,则"% •"& = (0"2-$21(把常数 \OP2-R2\叫作定点"对于定圆。的J).
证明:当点")00外时,如图1所示,作PT9QO于 点,,连接 0T、0P,可得"OTP=90°.
由切割线定理及勾股定理,可得"% •P&=PT2=OP2R2=\OP2-R2\.
当点"在OO上时,不妨设点%与点"重合,可得"% PB=O=\OP2-R2\.
当点"在O O内,即点"在线段%&上且不是端点时, 如图2所示,作O O过点"的直径ST.
' ) 圆圆心为6 ,-£ .再由圆幕定理的注“0$间= * 6O2 -6C2”, 可 得 0(02 =b = -~2 ) ,-b 丨;-_2) + - ) )&0),则i+b=-1.
圆幂定理及其应用
教学过程设计一、从学生原有的认知结构提出问题说出相交弦定理、切割线定理、割线定理的内容.从相交弦定理出发,用运动的观点来统一认识定理.(1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例:一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165)(2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的切割线定理的推论(割线定理).(图7-166)(3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋转,使C,D两点在圆上逐渐靠近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD=PC2,这就是我们学过的切割线定理.(图7-167)(4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168)至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和切线长定理之间有着密切的联系.3.启发学生理解定理的实质.经过一定点P作圆的弦或割线或切线,如图7-169.观察图7-169,可以得出:(设⊙O半径为R)在图(1)中,PA·PB=PC·PD=PE·PF=(R-OP)(R+OP)=R2-OP2;在图(2)中,PA·PB=PT2=OP2-OT2=OP2-R2在图(3)中,PA·PB=PC·PD=PT2=OP2-R2.教师指出,由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.二、例题分析(采用师生共同探索、讲练结合的方式进行)例1 如图7-170,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆于D,E,AB=12,AO=15,AD=8,求两圆的半径.分析:结合图形和已知条件,根据勾股定理容易求出大圆的半径OB.求OC也可考虑用上述方法,但AC未知,此时则可根据切割线定理先求出AE,再利用垂径定理便可求出AC,于是问题得解.例2 如图7-171,在以O为圆心的两个同心圆中,A,B是大圆上任意两点,过A,B作小圆的割线AXY和BPQ.求证:AX·AY=BP·BQ分析:在平面几何比较复杂的图形中,往往都是由几个简单的图形组合而成的.但本题不直接含有这样的图形,我们应考虑通过添加适当的辅助线来构造出这样的图形,以此为出发点,师生共同探索,得出以下几种不同的辅助线的添法.方法1 在图7-172中,过点A,B分别作小圆的切线AC,BD,C,D为切点.这时就出现了切割线定理的基本图形,于是有AC2=AX·AY,BD2=BP·BQ.再连结CO,AO,DO,BO,易证Rt△AOC≌△Rt△BOD,得出AC=BD所以AX·AY=BP·BQ.方法2 在图7-173中,作直线XP交大圆于E,F,分别延长AY,BQ,交大圆于C,D.这样就出现了相交弦定理的基本图形.于是有AX·XC=EX·XF,BP·PD=FP·PE.易证AX=CY,BP=DQ,EX=FP.所以AX·XC=AX·AY,BP·PD=BP·BQ,EX·XF=FP·PE.所以AX·AY=BP·BQ.方法3 如图7-174,由于点O是圆内的特殊点,考虑过O点的特殊割线,作直线AO交小圆于E,F,作直线BO交小圆于C,D,则出现了割线定理的基本图形.于是有AX·AY=AE·AF,BP·BQ=BC·BD.易证AE=BC,AF=BD,所以AE·AF=BC·BD.从而AX·AY=BP·BQ.通过对以上方法的分析,将“和圆有关的比例线段”这一节的几个定理紧密结合起来,沟通了知识间的联系,最后可启发学生联想基本图形,思考还有哪些辅助线的作法来证明此题?三、强化练习练习1 已知P为⊙O外一点,OP与⊙O交于点A,割线PBC与⊙O交于点B,C,且PB =BC.如果OA=7,PA=2,求PC的长.练习2 如图7-175,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,交⊙O′于Q,M,交AB的延长线于N.求证:PN2=NM·NQ.四、小结用投影重新打出圆幂定理的基本图形(如图7-176),让学生观察并说出相应的定理.教师指出:以上定理形式虽然不同,但实质相同,它们是相互统一的.五、布置作业课本p.133习题7.4A组13、14题.思考题:课本p.130.想一想,p.134B组6题板书设计课堂教学设计说明这份教案为1课时.课本没有给出“圆幂定理”这一名称,而是以“和圆有关的比例线段”的形式出现的,教学时可根据学生的程度而定.圆幂定理十分重要,它是进行几何论证、计算和作图常用定理,但是应用难度较大,所以在教学时应时刻注意启发学生进行思考,培养学生的发散思维能力.例题和练习题可根据学生实际选用.。
圆中的重要模型-圆幂定理模型(解析版)
圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。
可能是在19世纪由德国数学家施泰纳(Steiner )或者法国数学家普朗克雷(Poncelet )提出的。
圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。
模型1.相交弦模型条件:在圆O 中,弦AB 与弦CD 交于点E ,点E 在圆O 内。
结论:△CAE ∼△BDE ⇒EC EB =EA ED⇒EC ⋅ED =EB ⋅EA 。
1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,两圆组成的圆环的面积是.【答案】36π【分析】连接AC ,BD ,OP ,OA ,先根据切线的性质定理和垂径定理证出PA =PB ,再证明△APC ∽△DPB ,得到AP DP =CP BP,代入数据求得AP =BP =6,最后根据圆环的面积公式进行计算即可求解.【详解】解:如图,连接AC ,BD ,OP ,OA ,∵大圆的弦AB 与小圆相切于点P ,∴OP ⊥AB ,∴PA =PB ,OA 2-OP 2=AP 2,∵CD =13,PD =4,∴PC =13-4=9,∵∠BAC =∠BDC ,∠C =∠B ,∴△APC ∽△DPB ,∴AP DP =CP BP ,即AP 4=9BP,解得:AP =BP =6(负值舍去),∴圆环的面积为:π⋅OA 2-π⋅OP 2=π⋅AP 2=36π,故答案为:36π.【点睛】此题综合运用了切线的性质定理、垂径定理、勾股定理、圆周角定理、圆环的面积公式,分别求出大圆和小圆的半径是解题的关键.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.【答案】20.【分析】连接AC,BT,AT,易证∆CAD~∆BTD,得到TD=6,易证:∆BTP~∆TAP,得:TP2=AP⋅BP,设PB=x,则AP=x+7,TP2=(x+7)⋅x,PD=x+4,根据勾股定理,即可求解.【详解】连接AC,BT,AT,∵∠CAD=∠BTD,∠ADC=∠TDB,∴∆CAD~∆BTD,∴CD BD =ADTD,即:24=3TD∴TD=6,∵PT是⊙O的切线,T为切点,∴∠BTP+∠BTD=90°,∵CT是直径,∴∠CAD+∠TAP=90°∵∠CAD=∠BTD,∴∠BTP=∠TAP,∵∠P=∠P,∴∆BTP~∆TAP,∴TPAP =BPTP,即:TP2=AP⋅BP,设PB=x,则AP=x+7,TP2=(x+7)⋅x,PD=x+4,∵在Rt∆DPT中,DT2+PT2=PD2,∴62+(x+7)x=(x+4)2,解得:x=20,故答案是:20.【点睛】本题主要考查相似三角形的判定和性质定理与圆的性质的综合,根据题意,添加辅助线,构造相似三角形,是解题的关键.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.【答案】(1)PA ⋅PB =PC ⋅PD ,证明见解析(2)103【分析】(1)先证明△ACP ∽△DBP ,再利用相似的性质即可;(2)利用(1)可知PA ⋅PB =PC ⋅PD ,求出PD ,再证明△OPD ∼△DPE ,利用相似的性质求出PE ,求差即可得到AE 的长.【详解】(1)求证:PA ⋅PB =PC ⋅PD .证明:连接AC 、BD .如图①.∵∠A =∠D ,∠C =∠B .∴△ACP ∽△DBP .∴AP PD =PC BP.∴PA ⋅PB =PC ⋅PD .(2)解:∵AP =2,OA =5,PB =10-2=8.由(1)可知PA ⋅PB =PC ⋅PD .∴PC ⋅PD =16.∵AB ⊥CD ,AB 是⊙O 的直径,PC =PD ,PD =4.连接OD .如图②.∵DE 为切线.∴∠EDO =90°.∵∠1+∠2=90°.∠E +∠2=90°.∴∠1=∠E .∴△OPD ∼△DPE .∵OP PD =PD PE,∴OP ⋅PE =PD ⋅PD .∴16=3PE ,PE =163.又∵AP =2.∴AE =163-2=103.【点睛】本题考查了圆的相关性质,三角形相似的判定与性质,严格的逻辑思维和严密的书写过程是解题的关键.模型2.双割线模型条件:如图,割线CH 与弦CF 交圆O 于点E 和点G 。
九年级下册圆幂定理
圆幂定理一、圆幂的定义假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP2-R2即为P点到圆O的幂;若P点在圆内,则圆幂为R2-OP2;综上所述,圆幂为|OP2-R2|。
圆幂恒大于或等于零。
二、圆幂的由来过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。
则PA·PB=PC·PD。
若圆半径为R,则P C·PD=(PO-R)·(PO+R)=PO2-R2=|PO2-R2| 为定值,这个值称为点P到圆O的幂。
若点P在圆内,类似可得定值为R2-PO2=|PO2-R2|。
故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。
三、圆幂定理圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长(这一点和切点之间的线段长)是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
切线长定理:从圆外一点引圆的两条切线,它们的切线长(这一点和切点之间的线段长)相等,并且圆心与这一点的连线平分两条切线的夹角。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
圆幂定理的所有情况:考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有四、圆幂定理的证明1、相交弦定理如图,⊙O中,弦AB,CD相交于点P,则AP·BP=CP·PD。
证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。
圆幂定理
圆幂定理圆幂定理就是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。
ﻩﻩﻩﻩ圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线与割线,切线长就是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。
∴△PAC∽△PDB∴PA/PD=PC/PB∴PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于A、B.C、D 则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD证明:(令A在P、B之间,C在P、D之间)∵ABCD为圆内接四边形∴∠CAB+∠CDB=180°又∠CAB+∠PAC=180°∴∠PAC=∠CDB∵∠APC公共∴△APC∽△DPB∴PA/PD=PC/PB∴PA·PB=PC·PD切割线定理:从圆外一点引圆的切线与割线,切线长就是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT切⊙O于点T,PBA就是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC就是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。
初中数学中被删掉的有用知识(圆幂定理及其应用)-推荐下载
圆幂定理及其应用教学目标1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题;2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方法;3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的观点的教育.教学重点和难点相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点.教学过程设计一、从学生原有的认知结构提出问题1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容.2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系?提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程,从相交弦定理出发,用运动的观点来统一认识定理.(1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例:一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD 是直径,相交弦定理当然成立.(如图7-164)二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165)(2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的切割线定理的推论(割线定理).(图7-166)(3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋转,使C,D两点在圆上逐渐靠近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD=PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168)至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和切线长定理之间有着密切的联系.3.启发学生理解定理的实质.经过一定点P作圆的弦或割线或切线,如图7-169.观察图7-169,可以得出:(设⊙O半径为R)在图(1)中,PA·PB=PC·PD=PE·PF=(R-OP)(R+OP)=R2-OP2;在图(2)中,PA·PB=PT2=OP2-OT2=OP2-R2在图(3)中,PA·PB=PC·PD=PT2=OP2-R2.教师指出,由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.二、例题分析(采用师生共同探索、讲练结合的方式进行)例1 如图7-170,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆于D,E,AB=12,AO=15,AD=8,求两圆的半径.分析:结合图形和已知条件,根据勾股定理容易求出大圆的半径OB.求OC也可考虑用上述方法,但AC未知,此时则可根据切割线定理先求出AE,再利用垂径定理便可求出AC,于是问题得解.(由学生讨论、分析,得出解决)例2 如图7-171,在以O为圆心的两个同心圆中,A,B是大圆上任意两点,过A,B作小圆的割线AXY和BPQ.求证:AX·AY=BP·BQ分析:在平面几何比较复杂的图形中,往往都是由几个简单的图形组合而成的.但本题不直接含有这样的图形,我们应考虑通过添加适当的辅助线来构造出这样的图形,以此为出发点,师生共同探索,得出以下几种不同的辅助线的添法.方法1 在图7-172中,过点A,B分别作小圆的切线AC,BD,C,D为切点.这时就出现了切割线定理的基本图形,于是有AC2=AX·AY,BD2=BP·BQ.再连结CO,AO,DO,BO,易证Rt△AOC≌△Rt△BOD,得出AC=BD所以AX·AY=BP·BQ.方法2 在图7-173中,作直线XP交大圆于E,F,分别延长AY,BQ,交大圆于C,D.这样就出现了相交弦定理的基本图形.于是有AX·XC=EX·XF,BP·PD=FP·PE.易证AX=CY,BP=DQ,EX=FP.所以AX·XC=AX·AY,BP·PD=BP·BQ,EX·XF=FP·PE.所以AX·AY=BP·BQ.方法3 如图7-174,由于点O是圆内的特殊点,考虑过O点的特殊割线,作直线AO交小圆于E,F,作直线BO交小圆于C,D,则出现了割线定理的基本图形.于是有AX·AY=AE·AF,BP·BQ=BC·BD.易证AE=BC,AF=BD,所以AE·AF=BC·BD.从而AX·AY=BP·BQ.通过对以上方法的分析,将“和圆有关的比例线段”这一节的几个定理紧密结合起来,沟通了知识间的联系,最后可启发学生联想基本图形,思考还有哪些辅助线的作法来证明此题?三、练习练习1 已知P为⊙O外一点,OP与⊙O交于点A,割线PBC与⊙O交于点B,C,且PB=BC.如果OA=7,PA=2,求PC的长.练习2 如图7-175,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,交⊙O′于Q,M,交AB的延长线于N.求证:PN2=NM·NQ.四、小结用投影重新打出圆幂定理的基本图形(如图7-176),让学生观察并说出相应的定理.教师指出:以上定理形式虽然不同,但实质相同,它们是相互统一的.五、习题1、求证:相交两圆的公共弦的延长线上任一点到两圆所作的切线长相等。
圆幂定理
圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。
编辑本段定义圆幂=|PO^2-R^2|(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
编辑本段进一步升华(推论)过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B (可重合,即切线),L2与圆交于C、D。
则PA·PB=PC·PD。
若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。
这个值称为点P到圆O的幂。
(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。
(这就是“圆幂”的由来)编辑本段证明圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。
∴△PAC∽△PDB,∴PA:PD=PC:PB,PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD 证明:(令A在P、B之间,C在P、D之间)因为ABCD为圆内接四边形,所以角CAB+角CDB=180度,又角CAB+角PAC=180度,所以角PAC=角CDB,又角APC公共,所以三角形APC与三角形DPB相似,所以PA/PD=PC/PB,所以PA*PB=PC*PD 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT 切⊙O于点T,PBA是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。
圆幂定理在几何计算中的应用
圆幂定理在几何计算中的应用
圆幂定理(Pascal's theorem)是非常经典的几何定理,它是按照法
国数学家吕克·帕斯卡(Blaise Pascal)在1640年发表的文章而得名。
圆幂定理指出,如果一个几何图形由六角形的六条边所形成,那么这六条
边在同一个平面上会连接到彼此的折点,并且它们会构成一个边数为四的
正方形。
圆幂定理在几何计算中有着重要的应用。
首先,它可以应用在构建多
边形的场合。
在构建几何图形时,需要判断形成的外形是否满足圆幂公式,这就是圆幂定理的重要应用。
此外,圆幂定理也可以应用在求解多边形内
角和的计算中。
一般情况下,如果多边形的边数为n,那么它的内角和就是(n-2)π,但是有时候,我们需要计算复杂的多边形的内角和,这就需要求
解使用圆幂定理的相关公式,才能得出正确的结果。
圆幂定理也应用到曲面几何学中。
它可以用来描述一个曲面的顶点和
它构成的多边形的拓扑关系,并可以准确地求出曲面中多边形与多边形之
间拓扑上的连接关系。
同时,圆幂定理还可以用来推导椭圆曲线的拓扑关系,以及它们彼此之间的联系,比如哈密顿环的存在。
另外,圆幂定理还可以用来解决数学中的多种问题,比如几何变换、几何线性模型、矩阵变换等,用圆幂定理的方法求解这些问题时,能够更加准确和有效地得到正确的答案。
总之,圆幂定理在几何计算中有着重要的应用,它可以用来构建多边形,计算多边形内角和,描述曲面顶点的拓扑关系,以及解决数学中的多种问题。
它为几何计算提供了更加准确可靠的方法,使几何学成为更加实用的工具,从而为人类社会的发展做出了积极的贡献。
圆幂定理‘-概述说明以及解释
圆幂定理‘-概述说明以及解释1.引言1.1 概述部分:圆幂定理作为几何学中重要的定理之一,其内容涉及到圆和直线之间的关系。
通过圆幂定理,我们可以推导出在圆内或圆外的点与圆的关系,从而解决相关的几何问题。
该定理的基本概念和证明方法将在后续章节进行详细介绍。
圆幂定理在数学研究和实际问题解决中具有重要的应用价值,我们将在文章的后续部分探讨其具体应用案例。
通过本文的学习,读者将对圆幂定理有更深入的理解,从而提升数学知识和解题能力。
1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,首先概述了圆幂定理的基本概念和意义,接着介绍了文章的结构和目的,为读者提供了全文的概览。
在正文部分,将详细阐述圆幂定理的基本概念,包括定义、原理和相关定理等内容;然后介绍圆幂定理的证明方法,探讨其推导过程和逻辑;最后探讨圆幂定理在几何学和其他领域中的应用,展示其在实际问题中的作用和意义。
在结论部分,将对全文进行总结,回顾圆幂定理的重要性和实际应用,同时展望未来对该定理的进一步研究和应用方向。
整个结构清晰,逻辑严谨,希望能为读者提供全面深入的了解和思考。
1.3 目的圆幂定理是几何学中的重要定理之一,它可以帮助我们理解圆的性质和与其他几何图形之间的关系。
本文的目的在于深入探讨圆幂定理的基本概念、证明方法以及应用,以便读者能够更全面地了解这一定理的内容和意义。
通过学习圆幂定理,我们可以更好地解决与圆相关的几何问题,拓展我们的数学思维,提高我们的解题能力。
同时,深入理解圆幂定理还可以为我们之后学习更高级的几何知识打下良好的基础。
除此之外,通过探讨圆幂定理的重要性和应用,我们也可以更好地体会到数学在现实生活中的应用,激发我们对数学的兴趣和热情。
希望本文能够为读者带来启发,并引起他们对数学的思考和探索欲望。
2.正文2.1 圆幂定理的基本概念圆幂定理是几何学中的一项重要定理,它描述了圆与直线之间的关系。
在介绍圆幂定理之前,我们需要了解一些基本概念。
圆幂定理及其证明
1 / 1圆幂定理圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
图1 图2图3 图4一、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
(如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PC PD ⋅=⋅).1、证 明:如图1,AB 、CD 为圆O 的两条任意弦。
相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。
所以△APD ∽△BPC 。
所以AP PDAP BP PC PD PC BP=⇒⋅=⋅ 2、练习:如图2,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .二、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。
(如图,PT 是O 的切线,PB 是O 的割线,则有PT 2=PA PB)1、证明:如图3,PT 为圆切线,PAB 为割线。
连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以2PT PAPT PA PB PB PT=⇒=⋅ 2、练习 如图4,PC 是半圆的切线,且PB OB =,过B 的切线交PC 与D ,若6PC =,则O ⊙半径长= ,:CD DP =__________.三、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
(从圆外一点P 引两条割线与圆分别交于A.B.C.D 则有 PA·PB=PC·PD )1、证明:这个证明就比较简单了。
可以过P 做圆的切线,也可以连接CB 和AD 。
证相似。
存在:PA PB PC PD ⋅=⋅2、练习如下图,过点P 作O ⊙的两条割线分别交O ⊙于点A B 、和点C D 、,已知32PA AB PC ===,,则PD 的长是( )A .3B .7.5C .5D .5.5。
课本没有,但十分好用的初中数学定理公式
几何篇平行四边形(实用度:★★)两边长为a和b,两对角线长为m和n,可以拿这个公式和托勒密定理对比记忆。
三角形A.勾股数(实用度:★★)常见的最简勾股数有:3、4、55、12、138、15、177、24、259、40、41B.面积公式(实用度:★★)边角边公式:利用两边及其夹角求面积。
S=1/2SinB*ac。
两边对应于ac,夹角是B,边边边公式公式中a,b,c分别为三角形三边长,p为半周长,S为三角形的面积。
PS:几何中的三角形面积公式只需要记这两个个,其他的公式连竞赛都很难用得上。
C.三角恒等式(实用度:★)这几个公式对于初中来说确实没什么用,很少能用到。
不过如果有兴趣,记下来了,高中需要背的时候就会少一些麻烦。
D.正余弦定理(实用度:★★)在遇到45度、60度、75度之类的非直角三角形题目时,我们可以用上这两个公式。
其他时候很少能用得上。
所以要记得:E.重心(质量法)(实用度:★★★)三角形的重心将中线分为2:1的两段。
质量法:(填空压轴题重点!!)两个小球A、B,如果质量相等,如(1),那么它们的重心是AB的中点D。
如果质量不等,质量比为m/n,如(2),那么重心D仍在AB上,而AD/DB=n/m。
(即杠杆原理)如果三个质量相等(都等于1)的小球A、B、C构成三角形ABC要求它们的重心可以分为两步:先求出B、C的重心,即B、C的中点D,可以用质量为2(=1+1)的小球放在D点,以取代B、C两个小球。
再求A、D的重心,由于D处的质量为2,A处的质量为1,所以重心G在AD上,且分AD为2:1(即AG:GD=2:1)。
下面,我们举一个简单的例子。
例:如图△ABC,AB上有一点E,BC上有一点D,AD交CE于点G,当AE:EB=1:2,BD:DC=1:2时,AG:GD等于多少?解:我们在C处放质量为1的小球,B处放质量为2的小球,A处放质量为4的小球。
此时AB、BC 的重心E、D满足AE:EB=1:2,BD:DC=1:2。
圆幂定理相交弦定理
圆幂定理相交弦定理圆幂定理和相交弦定理,那可都是数学王国里的奇妙宝藏啊!圆幂定理就像是一个神秘的魔法规则,统治着圆与直线之间的奇妙关系。
它有好几种形式呢,每一种都像是一把独特的钥匙,能打开圆中隐藏的秘密之门。
相交弦定理就是其中特别闪亮的一颗明珠。
在一个圆里,有两条相交的弦,就像两个交叉的手臂一样。
这两条弦把圆分成了不同的部分,这时候相交弦定理就开始发挥它的魔力啦。
它告诉我们,一条弦被交点分成的两段的乘积,等于另一条弦被交点分成的两段的乘积。
这多神奇啊?就好像这两条弦之间达成了一种神秘的默契,不管它们在圆里怎么交叉,都要遵守这个规则。
这难道不是一种奇妙的数学现象吗?把这个定理应用到实际问题中,就像是给我们配备了一个超级导航。
比如在设计一些圆形的建筑结构或者圆形的机械零件时,如果涉及到两条交叉的支撑或者连接部分,相交弦定理就能帮我们计算相关的长度和距离。
这就像是我们在黑暗中找到了一盏明灯,不用再盲目地猜测和尝试啦。
再看看圆幂定理的其他情况,比如割线定理。
割线就像是圆的两条触手,从圆外伸进来。
这里面也有类似相交弦定理的神奇关系。
一条割线与圆相交的两段长度的乘积,和另一条割线与圆相交的两段长度的乘积相等。
这感觉就像是圆在对外来的“打扰”有着一种统一的应对策略,不管是从哪个方向来的割线,都要按照这个规则来办事。
还有切线长定理,切线就像是圆的忠诚卫士,只在圆上轻轻触碰一点。
切线长定理说从圆外一点引圆的两条切线,它们的切线长相等。
这就像是圆赋予了这两条切线相同的使命,它们虽然位置不同,但长度却相等,多公平啊?这些定理之间都有着千丝万缕的联系,它们共同构成了圆幂定理这个大家族。
就像一个大家庭里的各个成员,每个成员都有自己的特点,但又都有着共同的基因。
我们在学习这些定理的时候,就像是在探索一个神秘的家族故事,每一个新的发现都像是找到了家族中的一个新秘密。
在解决数学问题时,这些定理就像是我们的秘密武器。
不管是求长度、角度还是其他相关的量,它们都能派上用场。
探究圆幂定理在中考中的应用
探究圆幂定理在中考中的应用发表时间:2020-12-31T12:13:48.317Z 来源:《教学与研究》2020年第26期作者:陈薇薇[导读] 近年来,圆幂定理知识点在中考中频繁出现,陈薇薇湖北省阳新经济开发区白杨中学 435200摘要:近年来,圆幂定理知识点在中考中频繁出现,对于初中生来说,应掌握圆幂定理学习要点,结合自身学习情况探究圆幂定理在与圆有关线段比例问题中的应用技巧。
这既能提高数学分数,又能为日后圆幂定理运用奠定基础。
关键词:中考;圆幂定理;应用分析引言:圆幂定理知识点属于中考的常见考点,初中数学教师围绕“内分”与“外分”含义、弦以及割线的任意性、积的“确定性”与“任意性”重点分析。
解答与圆有关线段比例问题时,圆幂定理灵活运用十分关键,这能降低问题难度,在短时间内准确获得问题答案。
1.中学圆幂定理学习要点1.1“内分”与“外分”含义圆幂定理中的“内分”,主要是指在线段上的分点,需要将一条线段分割成两条线段[1]。
圆幂定理中的“外分”主要是指在线段的延长线上将一条线段分割成两条线段。
如,在⊙O的弦AB和CD延长线中与圆外的点P相交,可知点P不仅在AB延长线上,而且在CD延长线上,其中,点P可将弦AB分成PA和PB两条线段,将CD分成PC和PD两条线段。
1.2弦、割线和切线的任意性在切割线定理中,主要是指从圆外一点引圆的切线和割线,经过一点的任意割线与两条中的任意一条切线[2]。
两条割线主要是指从切割线定理中进行推论,同时,切割线又指任意的两条割线,主要是指从圆外的一点引圆的两条割线而形成,是圆外的任意点。
1.3积的“确定性”与“任意性”在圆幂定理中,确定性主要是指“两条线段的比例中项”和“两条线段长的积”,在同一圆中,若分点不变,则“两条线段的积相等”。
若两条线段的比例中项,则为切线的长。
但是这些量本身也具有任意性,若分点出现变动,或圆的大小出现变化,量也会随之出现变化,可任意选取分点,量也会随之而发生变化。
圆幂定理三大结论
圆幂定理三大结论
圆幂定理广泛应用于解决各种数学问题,其结论是这样的:
(一)若幂指数为正整数,那么圆形的幂等于该圆的周长的平方。
也就是说,若一个圆的周长为P,那么这个圆的面积将是P²,即:πr²=p²。
(二)若幂指数为负整数,那么圆形的幂等于该圆的重心的距离的平方。
也就是说,若一个圆的重心距离为Q,那么这个圆的半径将是Q²,即:π r²= Q²。
(三)若幂指数为零,那么圆形的幂等于该圆的直径的平方。
也就是说,若一个圆的直径为D,那么这个圆的面积将是D²,即:π r²= D²。
总之,圆幂定理的三大结论是:若一个圆的周长为P,重心距离为Q,直径为D,则该圆的面积均等于πr²,其中r²分别等于P²,Q²,D²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆幂定理及其应用
教学目标
1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题;
2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方法;
3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的
观点的教育.
教学重点和难点
相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点.
教学过程设计
一、从学生原有的认知结构提出问题
1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容.
2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系?
提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程,从相交弦定理出发,用运动的观点来统一认识定理.
(1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例:
一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD 是直径,相交弦定理当然成立.(如图7-164)
二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165)
(2)点P继续运动,运动到圆外时,两弦的延长线交于圆外
一点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过
的切割线定理的推论(割线定理).(图7-166)
(3)在图7-166中,如果将割线PDC按箭头所示方向绕P点
旋转,使C,D两点在圆上逐渐靠
近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD
=PC2,这就是我们学过的切割线定理.(图7-167)
(4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可
得PA=PB,这就是我们学过的切线长定理.(图7-168)
至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和切线长定理之间有着密切的联系.
3.启发学生理解定理的实质.
经过一定点P作圆的弦或割线或切线,如图7-169.
观察图7-169,可以得出:(设⊙O半径为R)
在图(1)中,PA·PB=PC·PD=PE·PF
=(R-OP)(R+OP)
=R2-OP2;
在图(2)中,PA·PB=PT2=OP2-OT2
=OP2-R2
在图(3)中,PA·PB=PC·PD=PT2
=OP2-R2.
教师指出,由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.
二、例题分析(采用师生共同探索、讲练结合的方式进行)
例1 如图7-170,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆
于D,E,AB=12,AO=15,AD=8,求两圆的半径.
分析:结合图形和已知条件,根据勾股定理容易求出大圆的半径OB.求OC也可考虑用上述方法,但AC未知,此时则可根据切割线定理先求出AE,再利用垂径定理便可求出AC,于是问题得解.
(由学生讨论、分析,得出解决)
例2 如图7-171,在以O为圆心的两个同心圆中,A,B是
大圆上任意两点,过A,B作小圆的割线AXY和BPQ.
求证:AX·AY=BP·BQ
分析:在平面几何比较复杂的图形中,往往都是由几个简单
的图形组合而成的.但本题
不直接含有这样的图形,我们应考虑通过添加适当的辅助线来构
造出这样的图形,以此为出
发点,师生共同探索,得出以下几种不同的辅助线的添法.
方法1 在图7-172中,过点A,B分别作小圆的切线AC,BD,C,D为切点.这时就出现了切割线定理的基本图形,于是有
AC2=AX·AY,BD2=BP·BQ.
再连结CO,AO,DO,BO,
易证Rt△AOC≌△Rt△BOD,得出AC=BD
所以AX·AY=BP·BQ.
方法2 在图7-173中,作直线XP交大圆于E,F,分别延
长AY,BQ,交大圆于C,D.这样就出现了相交弦定理的基本图形.于
是有
AX·XC=EX·XF,BP·PD=FP·PE.
易证AX=CY,BP=DQ,EX=FP.
所以AX·XC=AX·AY,BP·PD=BP·BQ,EX·XF=FP·PE.
所以AX·AY=BP·BQ.
方法3 如图7-174,由于点O是圆内的特殊点,考虑过O点的特殊割线,作直线AO 交小圆于E,F,作直线BO交小圆于C,D,则出现了割线定理的基本图形.于是有
AX·AY=AE·AF,BP·BQ=BC·BD.
易证AE=BC,AF=BD,
所以AE·AF=BC·BD.
从而AX·AY=BP·BQ.
通过对以上方法的分析,将“和圆有关的比例线段”这一节的几个定理紧密结合起来,沟通了知识间的联系,最后可启发学生联想基本图形,思考还有哪些辅助线的作法来证明此
题?
三、练习
练习1 已知P为⊙O外一点,OP与⊙O交于点A,割线PBC与⊙O
交于点B,C,且PB=BC.如果OA=7,PA=2,求PC的长.
练习2 如图7-175,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,
交⊙O′于Q,M,交AB的延长线于N.求证:PN2=NM·NQ.
四、小结
用投影重新打出圆幂定理的基本图形(如图7-176),让学生观
察并说出相应的定理.
教师指出:以上定理形式虽然不同,但实质相同,它们是相互统一的.
五、习题
1、求证:相交两圆的公共弦的延长线上任一点到两圆所作的切线长相等。
已知:如图5,⊙O1和⊙O2相交于点A、B,P为BA延长线上任意一点,且PC、PD与⊙O1和⊙O2分别切于C、D两点。
求证:PC=PD。
2、如图6,过点P作⊙O的切线PA,A为切点,过PA中点B作割线交⊙O于C、D,连结PC 并延长交⊙O于E,连结PD,交⊙O于F。
求证:EF∥PA。
3、如图7,已知PBD是⊙O的割线,PA、PC是⊙O的切线,A、C为切点,求证:
(1)PA·AB=PB·AD;
(2);
(3)AD·BC=AB·DC。
提示:(1)要证PA·AB=PB·AD,只要证得就可以了。
而PA、AD、PB、
AB分别是△PAD和△PBA的两条边,因此只根证得这两个三角形相似即可。
显然∠APD=∠BPA,∠ADP=∠BAP,因此△PAD∽△PBA。
(2)由问题(1)可知,因此要证,只需证。
而PA2=PB·PD,故有。
(3)要证AD·BC=AB·DC,只需证得即可。
由问题(1)可知,类似问题(1)可证得。
因PA=PC,故。
因此有。