履带式工程机械行走系介绍 ppt课件
履带式工程机械行走系介绍
履带式工程机械行走系介绍驱动轮的分类 A按齿圈结构分为整体式齿圈式齿块式 B按驱动轮轮毂与最终传动输出轴的联接方式分为锥形渐开线花键联接如红旗100锥形六平键联接如TY150螺栓联接如移山180 按驱动轮轮齿节距t 分为173203216mm三种齿圈结构以齿圈式比整体式为好而齿块式拼合轮圈图8-14使用更加方便驱动轮轮齿磨损超限即可在工地拆装更换不必解开履带更无需拉出驱动轮但在工艺上要保证安装精度一般认为车速小于15~20kmh驱动轮后置有利车速大于20kmh时驱动轮前置有利驱动轮的计算载荷与履带相同即驱动链轮所传递的最大驱动力P075Gt并假设扭矩只由一个齿传递计算驱动轮轮齿抗弯强度式中h –齿高假设力作用在齿顶[] –许用弯曲应力 [] 400-500MPa 计算驱动轮轮齿齿面抗挤压强度式中 b –轮齿宽度cm d –履带销套外径cm Gt –推土机重力KN [j] –许用挤压应力 [j] 500-1000MPa 六支重轮与托链轮作用支重轮用来支承车辆的重量并在履带的导轨链轨节面上移动此外它还用来夹持履带不使履带横向滑脱并在车辆转向时迫使履带在地面上滑动工作环境支重轮经常在泥水中工作且受到强烈冲击工作条件很差要求密封可靠轮圈耐磨一支重轮支重轮分类 1按支重轮轴的型式可分为中间凸肩式轴如TY150中间无凸肩式直轴如宣化T-120 2按轴承型式可分为双金属套如TY150尼龙轴套如移山180铜套如移山80非标准滚柱轴承如红旗100 3按密封型式可分为浮动油封式如TY150油封式如红旗100皮碗式如移山80 在我国为数不多的履带式铲土运输机械中先后出现了近二十种支重轮单边支重轮和双边支重轮的基本结构型式如右图8-15所示二托链轮作用用来托住履带的上方部分防止履带下垂过大以减少履带运动时的振跳现象并防止履带侧向滑落托链轮的个数一般是每边两个托轮与支重轮相比它受力较小工作时少受污物侵蚀工作条件较好故其结构较简单尺寸较小对材质的要求也低曾规定托链轮采用锥柱轴承及浮动油封如图8-16所示三支重轮及托链轮的设计为了使接地压力均匀支重轮数目最好等于履带支承区段的履带板数即支重轮间距t1履带节距td 支重轮太小滚动阻力增加如支重轮数目为履带支承区段履带板数的一半即t12td则将使支重轮下履带板的接地压力很不均匀导致在松软地面下陷深度增加运行阻力加大一般取td t1 2td通常t114~17 td支重轮直径D与履带节距td之比大致为Dtd1 ~125D 200mm而一侧支重轮数目一般为5 ~7个支重轮有双边支重轮和单边支重轮之分轮缘高度为20~25mm顶部厚度为6 ~10mm为减少支重轮轮面摩擦支重轮轮缘靠踏面一侧常做成倾斜的200~300 为减少支重轮轮面磨损支重轮与轨链节间的接触应力在许用范围内可按下式计算式中Gt –推土机总重kN b –支重轮轮面与轨链节的接触宽度mm r –支重轮半径mm n –支重轮总数 [j] –许用接触应力MPa [j] 230 MPa 当推土机越过突起的障碍物时整机重量有可能由每边各一个支重轮承受即一个支重轮上的最大径向载荷是推土机整机重量的一半当推土机在越过突起的障碍物转弯此支重轮还将受到最大的轴向力AGt2为履带沿地面横向滑动摩擦系数一般取07因此推土机支重轮轴应具有中间凸肩以承受此轴向力凸肩大小可根据此力之值予以确定按照上述最大径向载荷由轴的抗弯强度确定支重轮轴的尺寸支重轮轴承宜采用滑动轴承轴承载荷按经常载荷计算不应按偶而受到的最大载荷计算经常载荷是按压力中心偏移受力最大的一个支重轮进行计算按滑动轴承一般计算方法计算其单位压力P及发热pv值当履带接地长度L 2m时每侧用一个托链轮当L 2m时每侧用两个托链轮托链轮上侧应与引导轮及驱动轮上侧在一条直线上有的机械将托链轮适当抬高以减小履带振跳七张紧缓冲装置与引导轮作用使履带保持一定的张紧度从而可以减少履带在运动中的振跳现象振跳的危害引起冲击载荷和额外地消耗功率加快履带销和销套的磨损履带张紧后还可防止在工作过程中脱落太紧也不好也会加快履带销和销套的磨损所以要调整合适在一般的履带式拖拉机上由于驱动轮都在拖拉机的后部所以张紧轮都布置在前部导向轮直径一般较大以使履带的卷绕较为均匀减少冲击当今工程机械常见的张紧装置为润滑脂调整滑块式见图8-17 引导轮的结构和支承轮托轮一样也有多种结构轴承结构有滚柱轴承如红旗100双金属套如TY150等油封结构也有浮动油封TY150弹簧胶碗密封如红旗100等双金属套和浮动油封结构见右图8-18所示引导轮尺寸较大一般仅略小于驱动轮目的是为了减少履带卷绕时的功率损失其上方位置比驱动轮轮缘低30~80mm以使这一段履带运动时顺势前滑引导轮轮轴设计按机械倒档行驶履带上作用有最大轮周牵引力进行设计计算此值为附着条件所限即 P05G05G 近似取引导轮上下边履带平行则引导轮轴的计算载荷2PG引导轮的许用弯曲应力[]250~300MPa 当引导轮兼起支重轮作用时应计入地面反力动载荷的影响这时动载荷系数可取为2 中南大学杨忠炯第二篇工程机械行走系第八章履带式工程机械行走系履带式行走系是在工程机械中仅次于轮胎式广泛采用的行走系常见的履带式工程机械有拖拉机推土机装载机铺管机单斗多斗挖掘机钻孔机凿岩台车等第一节铲土运输机械的履带式行走系一组成与特点如右图8-1所示履带式拖拉机的行走系由驱动轮1履带2支重轮3履带张紧装置和导向轮5托链轮7以及连接支重轮和机体的悬架等组成主要功能 1将由发动机传到驱动轮上的驱动扭矩变为拖拉机在地面上的行走移动扭矩变成驱动力转速变成车辆移动速度 2支承拖拉机的全部重量特点 1履带拖拉机的驱动轮只卷绕履带而不在地面上滚动机器全部重量经支重轮压在多片履带板上履带式机器的牵引附着性能要好得多 2与同马力的轮式机器相比由于履带支承面大接地压力小一般小于01MPa所以在松软土壤上的下陷深度小因而滚动阻力小有利于发挥较大的牵引力 3履带销子销套等运动副使用中要磨损要有张紧装置调节履带张紧度它兼起一定的缓冲作用导向轮既是张紧装置的一部分也引导履带正确卷绕但不能引导机器转向 4履带式行走系重量大运动惯性大缓冲减振作用小结构中最好有某些弹性元件 5履带式行走系结构复杂金属消耗多磨损严重维修量大运动速度受到限制特点二车架型式全梁式半梁式两种全梁架式车架是一完整的框架如东方红75拖拉机Caterpillar后置发动机式装载机等采用这种全梁式车架半梁架式车架一部分是梁架而另一部分则利用传动系的壳体这种车架广泛用于工程机械履带拖拉机中如图7-1为两根箱形纵梁和后桥桥体焊成一体其前部用横梁相连由于铲土运输机械特别是履带式推土机的作业环境恶劣上述结构车架的纵梁容易变形因此国内外很重视加强此类机械车架的强度与刚度故多采用箱形断面的纵梁以增强其抗弯抗扭强度断面高度也适当增加三悬架悬架或悬挂在工程机械中机架车架与行走系之间的连接装置弹性悬架机架的全部重量经过弹性元件传递给履带架的悬架三种悬挂刚性悬架半刚性悬架和弹性悬架弹性元件可以是弹性橡胶块弹簧装置或油气悬架半刚性悬架机架的重量一部分经过弹性元件另一部分经过刚性元件传递给履带架的悬架如工业用履带拖拉机之悬架刚性悬架机架上的重量全部不经弹性元件传递到履带的悬架如单斗挖掘机其底架与履带架之间的悬架刚性悬架结构简单适合于行走速度低不经常行走的工程机械履带架的传统形式八字架式如下图8-2所示半刚性悬架较刚性悬架能更好地适应地面的高低不平在松软不平地面接地压力较均匀附着性能好半刚性悬架中的弹性元件能部分地缓和行驶时的冲击但其非弹性支承部分重量很大高速行驶时冲击大故其行驶速度一般不超过15kmh 设计履带架时要妥善确定履带架摆动轴线驱动轮轴线导向轮轴线间的距离图8-3为TY150推土机行走系布置图其履带架铰接中心线与驱动轮轴线重合右图8-4为D10推土机行走系布置图其履带架铰接中心线与驱动轮轴线不重合现代结构的半刚性悬架履带拖拉机中广泛采用平衡梁如右图8-5所示半刚性悬架中的履带架图8。
第4章 行走机构
G —整机重量
α—坡角 ω1—运行阻力系数
②坡道阻力:
W2 G sin
㈡. 履带式行走装置牵引计算
1.各种阻力的计算
W1 1 G cos ①土壤变形阻力:
dpmax 0 d
L 2L ( cos )2 tg B 3B
2 ~ 4 一般近似认为: 0
pmax 2Q 2Q L 3b( L B ) 3bB ( 1) B
L与B不能太接近
L 一般取:
B
1.2 ~ 1.4,否则pmax太大
二. 行走装置的牵引力计算
四轮一带
是行走装置的重要零部件, 关系到挖掘机的工作性能和行走性能。
行走架 行走装置结构
行走装置的骨架 钢板、型材焊接
回转支承底座
安装四轮一带
通过回转支承与
行走架
平台连接
承受、传递工作 载荷到履带 X型底架 履带架
履 带
履 带
轨链节
履带板
长安大学
履 带
左轨链节
右轨链节
履带板
四. 履带节距和履带板宽度选 择
1. 履带节距 ——二个相邻履带销之间的距离。
2. 节距确定原则:
在满足行走装置结 构尺寸强度和刚度情况下, 选择选择较小的履带节距。
t
173 203 1~1.6 216 228.5 262 4~6
t mm
101
125
135
154
标 准 <0.1 0.1~0.25 斗容量
用于平台与底盘、
行走马达之间油 路连接。
上部平台转动时, 避免油管扭绞。
四. 履带节距和履带板宽度选 择
培训学习液压履带挖掘机结构ppt课件
回转支承
工作装置
四 工作装置
工作装置是液压挖掘机的主要组成部分,目前SY系列挖掘 机配置的是反铲工作装置,它主要用于挖掘停机面以下的 土壤,但也可以挖掘最大切削高度以下的土壤。 反铲工作装置包括: 1、动臂、斗杆、铲斗 2、四连杆机构(摇杆、连杆)
3、动臂油缸、斗杆油缸、铲斗油缸和液压管路等。
工作装置
连杆机构
动
臂
提升负载
提升负载
铲斗
•
五 液压系统
液压系统
• 液压元件组成: 动力元件、控制元件、执行元件、
辅件 动力元件:主泵(上车部分) 控制元件:主控制阀组(上车部分) 执行元件:回转马达(上车部分)、行走马达(下车部 分)、动臂油缸、斗杆油缸、铲斗油缸(工作装置)。 辅件:油箱、油冷却器、蓄能器、电磁阀、比例阀、先 导滤清器、中央回转接头、液压管接件等。
配重
下车部分
•
三 下车部分
下车部分功能:支承挖掘机的重量,并把驱动轮传递 的动力转变为牵引力,实现整机的行走。 下车部分包括:
1、底盘 2、中央回转接头 3、回转支承
下车部分
回转支承 中央回转接头
引导轮 支重轮
张紧装置 托链轮
履带 驱动轮
行走马达+减速机
底盘
1、底盘 (1)、履带架 (2)、行走机构(行走马达+减速机) (3)、四轮一带(履带、引导轮、支重轮、托轮、 驱动轮) (4)、张紧装置
二 上车部分
1、上平台 2、动力系统 3、驾驶室 4、配重 5、液压系统的主要部分主泵、主 阀、回转机构、液压油箱等 6、电器部件
平 台
• 1、平台
履带行走系
悬架;履带行走系统结构布置;行走装置主要构件设计
第一节 概 述
履带式底盘行驶系由机架,悬架和行走装置组成,其主 要功用是连接、承重、传力和缓和冲击与振动。 功用:
行走装置,支承整机重量,并利用履带与地面的作用产生牵引力。包 括驱动轮、引导轮、支重轮、托链轮、履带、台车架等。
• 履带式推土机用 • 用于速度小于15Km/h的机械。
➢α=0°,纯压缩
橡胶承压能力强,但 弹簧变形量小,因此吸 收能量的能力较小。
➢α=90°,纯剪切
弹簧变形量大,但橡 胶抗剪能力差,因此吸 收能量的能力较小。
橡胶弹簧受力简图
当α=60°,弹簧的弹性变形和承载能力都比较大,弹簧的压缩变形 能和剪切变形能都得到了较充分的利用,因此这时弹簧吸收的能量最大。
➢ 摆动铰点位置:台车架摆动轴与驱动轮轴有两种布置形式,同 轴布置和分置布置。为减小动载荷冲击,大、中型履带车辆多采 用同轴布置。 ➢ 驱动轮布置:有后置,前置和高置三种形式。一般大多采用后 置,履带驱动段短,摩擦损失小,行走效率高,且重心低。 ➢ 离去角和接近角:保证履带行走装置有一定越过障碍的能力。 ➢ 支重轮布置:个数和布置应有利于履带接地压力分布均匀以及 增大履带的接地长度。个数随车重的增加而增多。 ➢ 托链轮布置:用来限制上方区段履带下垂量。为减少与履带间 的摩擦损失,托链轮数目不易过多。
四、托链轮
功 用:用来拖住上部的履带,防止履带下垂过大,以减 少履带运动时的跳振现象。
设计要求:与支重轮相比,受力小,不易受泥水侵蚀,因此 结构简单,尺寸较小。
五、引导轮和张紧装置
功 用:引导轮能支撑和引导履带正确卷绕。它与张紧装 置一起使履带保持一定张紧度并缓和地面冲击。
履带车辆行驶理论ppt
滑转速度
履带在地面上的向后运动速度称为滑转速度vj则 可用单位时间内的滑转距离来表示:
vj=lj÷t 或vj=lj÷t=(lT-l) ÷t 式中:l—在时间t内,车辆的实际行驶距离; lj—在时间t内,履带相对地面向后运动的距离; lT—在同一时间t内,车辆的理论行驶距离,它可
ηm=PK÷Pe=( MK×ωK )÷( Me×ωe )=(MK÷Me) ×im 式中:ωK——驱动的角速度;
ωe——发动机曲轴的角速度; Me——发动机的有效力矩。 im——传动系总传动比,它是变速箱、中央传动和最终传动 各部分传动比的乘积。 当车辆在水平地段上作等速直线行驶时,其驱动力矩MK可由下式求得:
包权
人书友圈7.三端同步
切线牵引力产生
为了便于说明行驶原理,参看图1-1所示 图1-1履带式拖拉机行驶原理图
车辆行驶时,在驱动力矩MK作用下,驱动段内产生拉 力Ft即: Ft=MK÷rK。
对车辆来说,拉力Ft是内力,它力图把接地段从支重 轮下拉出,致使土壤对接地段产生水平反作用力。这 些反作用力的合力FK叫做履带式车辆的驱动力,其方 向与行驶方向相同。
第一章履带车辆行驶理论
§1-1履带车辆行驶原理 §1-2履带行走机构的运动学和动力学 §1-3履带接地比压和履带接地平面和心域 §1-4履带车轮的行驶阻力 §1-5履带车辆的附着性能
§1-1履带车辆行驶原理
一、驱动力距与传动系效率 二、履带车辆的行驶原理
一、驱动力距与传动系效率
驱动力矩MK:发动机通过传动系传到驱动轮上的力矩称。 传动系效率ηm :
参看(图1-6)
根据履带等速运转的平衡条件,在驱动力 矩M K与切线牵引力之
第十三章履带式工程机械行走系
插销座
托链轮
驱动轮
支重轮 底架 张紧装置 张紧弹簧
行走马达
行 走 减 速
引导轮
浮动油封
轴套
加油塞
弹性销
支重轮座
引导轮
连接叉
张紧缸
缓冲弹簧
驱动轮
太 阳 轮
圆柱齿轮减速
行走制动
行走马达 行 星 轮
齿圈
小齿轮 驱动轮
作业: 1 .履带式机械行走系的功用是什么?由 哪几部分构成? 2 .履带式机械车架、悬架有什么作用? 可分为哪几类? 3 .试叙述履带、驱动轮、支重轮的功用 和分类。 4.履带式行走系比之轮式行走系的有什 么特点?
链轨节套
链轨节
润滑油孔 链轨销
履带板
中刀片
驱动轮 齿块
一级被动 齿轮 二级输出 右刀角 齿轮 左刀角 引导轮
二级齿轮轴
终传动输入齿轮轴
转向离合器 输出接盘
对履带板(跑板)的要求: 较低的接地比压,足够的附着力,较高的 抗弯强度和耐磨性;搭接弧面二清洁孔通过驱动 轮卷绕自动清除链轨泥污。 7 驱动轮——用来卷绕履带,装在终传动从动轴 或从 动毂上。 分类:整体式、齿圈式、齿块式。 驱动轮(中碳钢)磨损后的堆焊(使用牙 形规与506焊条)。 8 支重轮——支承机重;夹持履带(使履带转弯 滑移、防脱轨)。 规定用中间头肩式、浮封双金属衬套。
2.履齿不易打滑,附着性能好,牵引力大; 3.结构复杂,重量大,运动惯性大,减振 功能差,零件易损坏,速度较低,机动性差。
引导轮 托带轮 驱动轮 台车架
支 重 轮
履带
驱动轮
跑板 托带轮 支架
引导轮
链轨 张紧弹簧 张紧油缸
平衡梁 引导轮 托架
《工程机械设计》第5章-履带式工程机械行走系
1.主要参数 (1)节距,应与履带节距一致。工程机械上常用的节距数值有173mm、 203mm 、216mm和228.5mm四种。 (2)齿数,增加驱动轮齿数Zd ,能使履带速度均匀性改善,摩擦损失减少, 但导致驱动轮直径增大,引起机重和整机高度的增加。驱动轮的齿数通常 Zd =23~27。
5.2.4驱动轮设计
驱动轮将传动系统的动力传至履带,以产生使车辆运动的驱动力。驱动轮 有组合式和整体式两种。 性能要求: 1)驱动轮与履带的啮合性能要良好,即在各种不同行驶条件和履带不同磨损程 度下啮合应平稳,进入和退出啮合要顺利,不发生冲击、干涉和脱落履带的现 象; 2)要耐磨且便于更换磨损元件(如齿圈)。
W100型挖掘机的刚性悬架 (小台车架设计)
WY60型挖掘机(无台车架设计)
5.2.2悬架设计
2)半刚性悬架
机体重量部分经刚性元件而另一部分经弹性元件传给支重轮,可以部分地 缓和冲击与振动。一般机体前部与行走装置弹性连接,后部刚性连接。弹性元件 有悬架弹簧和橡胶弹性块两种型式。
单位重力 贮能量较小
组合式履带的缺点:结构较复杂,重量大,拆装不便,连接螺栓易折断。
5.2.3履带设计
1. 组合式履带 组合式履带广泛应用于中低速、大功率、经常行走的工程机械上。目前,关 于组合式履带的标准有《工程机械组合式履带总成》(JB/T2602—1979)。
图5-17为D80型推土机的组合式履带结构,它由履带板、链轨节、履带销和销套 组成。其履带板用螺栓1固定在链轨节上,链轨节用履带销6等零件铰接在一起。
5.2.2悬架设计
2.钢板弹簧的设计
钢板弹簧主要用作半刚性悬架的弹性元件。钢板弹簧由一些不同长度的弹簧钢 板组成,采用长度递减的钢板,可以使整个弹簧接近于等强度梁以节约钢材如 图5-8所示。
第1章 履带车辆行驶理论
第1章 履带车辆行驶理论1.1 履带车辆行驶原理履带车辆的行驶原理可以通过履带行走机构来进行分析。
履带行走机构主要是指履带车辆两侧的台车,台车由驱动轮、导向轮、支重轮、托链轮、履带(简称四轮一带)和台车架等组成,如图1-1所示。
履带直接和地面接触,并通过支重轮支撑着履带车辆的重量。
在驱动轮的驱动下,履带相对台车架做卷绕运动。
由于台车架和机体相连,所以,台车架的运动就代表履带车辆的运动。
1.1.1 驱动转矩与传动系效率发动机通过传动系传到驱动轮上的转矩M K 称为驱动转矩。
发动机的功率经过传动系传往驱动轮时,有一定的损失.。
对于机械传动的履带车辆,这一功率损失主要由齿轮啮合的摩擦阻力、轴承的摩擦阻力、油封和转轴之间的摩擦阻力以及齿轮搅油阻力等原因所造成。
一般用传动系效率ηm 来考虑上述功率损失。
传动系效率可用车辆等速直线行驶时,传到驱动轮上的功率P K 与经传动系输出的发动机有效功率P ec 之比来表示,即:e ce K K e ce K K ec K m n M n M M M P P ===ωωη (1-1)式中:M ec ——发动机经传动系输出的有效转矩;ωK 、n K ——驱动轮的角速度和转速;ωe 、n e ——发动机曲轴的角速度和转速。
假定离合器不打滑,则上式可表示为:m ec K m i M M =η (1-2)式中:i m ——传动系的总传动比,它是变速箱、中央传动和最终传动各部分传动比的乘积,即:i m = ωe /ωK = n e /n K = i g ⋅ i 0⋅ i s (1-3)式中:i g ——变速箱某挡的传动比;i 0——主减速器的传动比;i s ——轮边减速器的传动比。
由式(1-2)可知,当车辆在水平地面上作等速直线行驶时,其驱动转矩M K 可由下式求得:M K = ηm i m M ec (1-4)对于液力机械传动的履带车辆,将上述公式中的P ec 和M ec 换成涡轮轴上的功率P T 和转矩M T 即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、履带作用于引导轮的拉力,如设P为每边履带的张力, 引导轮受力可视为2P,则
ql 3 P
8f
式中 q – 履带单位长度的重力; l – 引导轮和第一个托链轮间的履带长度; f – 引导轮和第一个托轮间履带的垂度。
在倒档行驶时,履带作用于引导轮的拉力最大,这
时,一侧履带引导轮上作用的P力为倒档时最大牵引力的
1、履带式机械倒档越过沟渠,其全部重量支承在最前或 最后的一对支重轮上;
与履带架有关的元件受力情况复杂,如半刚性悬架的履带架受以下力和力 矩作用:
1、机架202经0/1弹1/29性元件作用到履带架上的重量G1,每一侧为0.5G1; 中南大学14 杨忠炯
2、机架经铰接轴刚性作用到悬架上的重力G2,每一侧为 0.5G2,显然机架以上的重量为G=G1+G2;
3、地面的重力反力,它在各轮上的分配,随地面情况而 变;
2、与同马力的轮式机器相比,由于履带支承面大,接地 压力小(一般小于0.1MPa),所以在松软土壤上的下陷深 度小,因而滚动阻力小,有利于发挥较大的牵引力;
2020/11/29
中南大学5 杨忠炯
特点:
3、履带销子、销套等运动副使用 中要磨损,要有张紧装置调节履带 张紧度,它兼起一定的缓冲作用。
4、履带式行走系重量大,运动惯性大,缓冲减振作用小, 结构中最好有某些弹性元件;
2020/11/29
中南大学2 杨忠炯
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式? 教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……” “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/11/29
中南大学10 杨忠炯
半刚性悬架中的弹性元件能部分地缓和行驶时的冲击, 但其非弹性支承部分重量很大,高速行驶时冲击大,故其 行驶速度一般不超过15km/h。
设计履带架时,要妥善确定履带架摆动轴线、驱动轮 轴线、导向轮轴线间的距离。
图8-3为TY150推土机行走系布置图。其履带架铰接中 心线与驱动轮轴线重合。
刚性悬架:机架上的重量全部不经弹性元件传递到履带的 悬架。如单斗挖掘机其底架与履带架之间的悬架。
刚性悬架结构简单、适合于行走速度低,不经常行
走的2工020/程11/29机械。
中南大学9 杨忠炯
履带架的传统形式:八字架式,如下图8-2所示。
半刚性悬架较刚性悬架能更好地适应地面的高低不平, 在松软不平地面接地压力较均匀,附着性能好。
一半。 2020/11/29
中南大学15 杨忠炯
5、转向时,地面对于履带机械作用有转向阻力矩Mz,一 侧履带的转向阻力矩M为
M 1GL
2 4
式中L – 履带接地长度。 (二)、履带架的计算
要求:履带架应有足够的强度和刚度,使不易损坏或因变 形发生啃轨和脱轨。
履带架的纵梁在以下三种工况时受力最严重:
导向轮既是张紧装置的一部分,也引导履带正确卷绕, 但不能引导机器转向;
5、履带式行走系结构复杂,金属消耗多,磨损严重,维 修量大,运动速度受到限制。
2020/11/29
中南大学6 杨忠炯
二、车架 型式:全梁式、半梁式两种。
全梁架式车架是一完整的框架,如东方红75拖拉机, Caterpillar后置发动机式装载机等采用这种全梁式车架。
第二篇 工程机械行走系
第八章 履带式工程机械行走系
履带式行走系是在工程机械中仅次于轮胎式广泛采用 的行走系。 常见的履带式工程机械有:拖拉机、推土机、装载机、铺 管机、单斗多斗挖掘机、钻孔机、凿岩台车等。
2020/11/29
中南大学1 杨忠炯
第一节 铲土运输机械的履带式行走系
一、组成与特点
如右图8-1所示, 履带式拖拉机的行走 系由驱动轮1、履带2、 支重轮3、履带张紧装 置和导向轮5、托链轮 7以及连接支重轮和机 体的悬架等组成。
半梁架式车架一部分是梁架,而另一部分则利用传动 系的壳体。这种车架广泛用于工程机械履带拖拉机中。
如图7-1为两根箱形纵梁和后桥桥体焊成一体,其前 部用推土机的作业环境恶劣,上 述结构车架的纵梁容易变形,因 此国内外很重视加强此类机械车 架的强度与刚度,故多采用箱形 断面的纵梁以增强其抗弯抗扭强 度,2断020/面11/29高度也适当增加。
中南大学7 杨忠炯
三、悬架 悬架或悬挂:在工程机械中,机架(车架)与行走系之间 的连接装置。
三种悬挂:刚性悬架、半刚性悬架和弹性悬架。
弹性悬架:机架的全部重量经过弹性元件传递给履带架的
悬架。
2020/11/29
中南大学8 杨忠炯
弹性元件可以是弹性橡胶块、弹簧装置或油气悬架。
半刚性悬架:机架的重量一部分经过弹性元件、另一部分 经过刚性元件传递给履带架的悬架。如工业用履带拖拉机 之悬架。
2020/11/29
中南大学11 杨忠炯
右图8-4为D10推土 机行走系布置图,其履 带架铰接中心线与驱动 轮轴线不重合。
现代结 构的半刚性 悬架履带拖 拉机中,广 泛采用平衡 梁,如右图 8-5所示。
2020/11/29
中南大学12 杨忠炯
半刚性悬架中的履带架(图8-2)是行走系中一个很重要 的骨架,支重轮、张紧装置等都要安装在这个骨架上,它 本身的刚度对履带行走系的使用可靠性和寿命有很大影响。
2020/11/29
中南大学13 杨忠炯
刚度不足,作业时容易变形,引起 四轮(驱动轮、支重轮、导向轮、托链 轮)中心点不在同一垂直面内或各轴线 不能保证平行度和垂直度的要求等,最 终导致跑偏、啃轨或脱轨等多种使用故 障。
国外的履带式推土机很重视加强履带架的结构,使之坚固耐用,尤其注意 加强后托架(一般称作八字架的斜撑),增加其尺寸与壁厚并加以热处理,以承 受不良作业面引起的扭矩和振动。 (一)、悬架受力分析
中南大学4 杨忠炯
主要功能:
1、将由发动机传到驱动轮上的驱 动扭矩变为拖拉机在地面上的行走 移动(扭矩变成驱动力,转速变成车 辆移动速度.)。
2、支承拖拉机的全部重量。 特点:
1、履带拖拉机的驱动轮只卷绕履带而不在地面上滚动, 机器全部重量经支重轮压在多片履带板上,履带式机器 的牵引附着性能要好得多;