湖南大学大学物理刚体习题

合集下载

2021大学物理B-第3章刚体力学练习题 (1)

2021大学物理B-第3章刚体力学练习题 (1)

第三章 刚体力学一、 选择题1、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1 和m 2 的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力[ ](A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断.2、将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将[ ](A) 小于β . (B) 大于β,小于2β. (C) 大于2β. (D) 等于2β.3、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ ](A) 只有机械能守恒. (B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒.4、如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面内自由转动,杆长5/3m 。

今使杆从与竖直方向成︒60角由静止释放(g 取10m/s 2),则杆的最大角速度为 [ ] (A )3rad/s ; (B)πrad/s ; 3.0rad/s ; (D)3/2rad/s 。

5、对一个绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应[ ](A) 增大;(B) 减小;(C) 不变;(D) 无法确定。

6、一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。

现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90°,则v 0的大小为 [ ] (A)34gl m M ; (B)2gl ; (C)gl m M 2; (D)22316mgl M 。

大学物理习题守恒与刚体

大学物理习题守恒与刚体

2
24
13 MRv MRu 8
第二十三页,编辑于星期六:二十一点 四十五 分。
M 1 MgR L 13 MRv MRu
2
8
根据角动量定理有: M dL
dt
1 MgR d (13 MRv MRu)
2
dt 8
du 0 dt
a dv 4 g dt 13
第二十四页,编辑于星期六:二十一点 四十五 分。
(C) 3F0 R 2 (D) 4F0 R 2
第十四页,编辑于星期六:二十一点 四十五分。
习题14:一小珠可以在
半径为 R 的竖直圆环上作
无摩擦滑动。今使圆环以
角速度 w 绕圆环竖直直径转
动。要使小珠离开环的底部 而停在环上某一点,则角速
m
度 w 最小应大于:
g/R
O
R
O
第十五页,编辑于星期六:二十一点 四十五分。
mgL = (½)Jω2 + (½)mgL
棒与球碰撞前后,棒、球系统对轴O的角动量守恒
,设 ωˊ为棒碰撞后的角速度,则有:
Jω= Jωˊ+ mυL 此过程中系统机械能守恒,则有:
(½) Jω2 = (½) Jω’2 + (½) mυ2
T m• R o
mg y
解: T mg
cos
周期 2R
v
张力在该过程中虽然大小不变,但方
向改变。
水平方向张力大小为 Tsinθ ,由于对
称性,在一周内水平方向张力冲量之和
为零。
竖直方向张力大小为 Tcosθ=mg 为常量,因而:
I T cos mg 2R 方向向上。
v
第二页,编辑于星期六:二十一点 四十五分。

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

湖南大学大学物理练习册答案(一、二两册全)

湖南大学大学物理练习册答案(一、二两册全)

大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B), 二、填空题(1). sin 2t A ωω,()π+1221n (n = 0,1,… ),(2). 8 m ,10 m. (3). 23 m/s.(4). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R .(7). 2.24 m/s 2,104o(8). )5cos 5sin (50j t i t+-m/s ,0,圆. (9). h 1v /(h 1-h 2) (10). 0321=++v v v三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;(3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt t v = 2t 2v d =x /d t 2=t 2t t x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI)3. 质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v() 2 213 x x +=v4. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt yy t a d d d d d d d d vvv v===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C kyy ky 222121, d d vv v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cb cR t -=6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//sRttk ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=n t a a a m/s 27. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i、j 表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2)由(1)导出速度 v与加速度 a的矢量表示式; (3)试证加速度指向圆心.解:(1) j t r i t r j y i x rs i n c o s ωω+=+=(2) j t r i t r t rc o s s i nd d ωωωω+-==v j t r i t r tas i n c o s d d 22ωωωω--==v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r 方向相反,即a指向圆心8. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v v +=AE v 、 AF v 、EE v 构成直角三角形,可得 ()()k m /h 17022v v v =-=FEAFAE() 4.19/tg1==-AEFEv v θ(飞机应取向北偏东19.4︒的航向).西北θFEv vAF v vAEvv四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答:(1)、(3)、(4)是不可能的.(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心; (4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x =,)(t y y =在计算质点的速度和加速度时: 第一种方法是,先求出22yx r +=,然后根据 td d r =v 及 22d d tr a =而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即 22)d d ()d d (ty t x +=v 和 222222)d d ()d d (ty tx a +=.你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。

大学物理题库-第4章-刚体的转动习题(含答案解析)

大学物理题库-第4章-刚体的转动习题(含答案解析)

刚体习题一、选择题 1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]2、关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]3、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]4、如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ.(D) 不能唯一确定. [ ]5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]8、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针.(D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.[ ]9、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定 [ ]10、(0405)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]11、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为ω 0,后来变为021ω.在上述过程中,阻力矩所作的功为: (A) 2041ωJ . (B) 2081ωJ -. (C) 2041ωJ - (D) 2083ωJ -. [ ] 12、一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O 在竖直平面内转动.杆 m m的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要 (A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ]13、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]14、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ ]15、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题1、如图4-23所示,质量为m 和m 2的两个质点A 和B ,用一长为l 的轻质细杆相连,系统绕通过杆上o 点且与杆垂直的轴转动。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

大学物理(第四版)课后习题及答案 刚体

大学物理(第四版)课后习题及答案 刚体

题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。

(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。

求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。

题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。

大学物理习题答案03刚体运动学

大学物理习题答案03刚体运动学

⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。

若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。

(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。

(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。

(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。

[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。

(1)021 F F,=0合外F ,动量守恒。

(2)2211r F r F A =合。

21F F,但21r r时0A 外,因此E不⼀定守恒。

(3)21F F,2211d F d F M =合。

两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。

2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。

则物体 (A) 动能不变,动量改变。

(B) 动量不变,动能改变。

(C) ⾓动量不变,动量不变。

(D) ⾓动量改变,动量改变。

(E)⾓动量不变,动能、动量都改变。

[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。

r 减⼩,v 增⼤。

因此p 、E k 均变化(m不变)。

3. 有两个半径相同,质量相等的细圆环A 和B 。

A 环的质量分布均匀,B 环的质量分布不均匀。

它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。

[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。

另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

大学物理学第二章刚体力学基础自学练习题

大学物理学第二章刚体力学基础自学练习题

第二章 刚体力学基础 自学练习题、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是: ( )(A )只有( 1)是正确的; ( B )( 1)、(2)正确,( 3)、( 4)错误;(C )(1)、( 2)、(3)都正确,(4)错误; (D )(1)、( 2)、(3)、(4)都正确。

【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定 相同。

对上述说法,下述判断正确的是: ( )B )(1)、(2)是正确的;D )(1)、(2)、(3)都是正确的。

提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为 零,因而不影响刚体的角加速度和角动量; (2)见上提示; (3)刚体的转动惯量与刚体的质量和大小形状 有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力 F v (3i v 5 vj )N 作用于某点上,其作用点的矢径为4-3.均匀细棒 OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴 转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是: ( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大;A )只有( 2)是正确的;C )(2)、( 3)是正r (4i 3 j ) m ,则该力对 坐标原点的力矩为 vv(A ) 3kN m ; (B ) 29kN m ;C )29k v N m ; vD ) 3kN m 。

大学物理刚体习题

大学物理刚体习题

大学物理刚体习题在大学物理的学习中,刚体是一个重要的概念。

刚体是指物体内部各点之间没有相对位移,不发生形变,整体运动状态一致的理想化模型。

在解决物理问题时,刚体的性质为我们提供了极大的便利。

以下是一些常见的大学物理刚体习题。

一、基本概念题1、什么是刚体?列举一些常见的刚体实例。

2、刚体在什么情况下可以被视为刚体?其基本性质是什么?3、描述刚体的运动,并解释相关概念,如转动、角速度、角加速度等。

二、刚体的动力学问题4、一个刚体绕固定轴转动,在某时刻受到一个外力矩的作用,求该刚体接下来的运动状态。

41、一个刚体在平面上做纯滚动,如何计算其加速度和速度?411、一个刚体在重力场中处于平衡状态,求其重心的位置。

三、刚体的静力学问题7、一个刚体受到两个大小相等、方向相反的力作用,求该刚体的平衡状态。

71、一个刚体在平面上受到一个力矩的作用,求该刚体的转动效果。

711、一个刚体在三个不在同一直线上的力作用下处于平衡状态,求该刚体的重心位置。

四、刚体的运动学问题10、一个刚体绕固定轴转动,其角速度与时间成正比,求该刚体的角加速度和转速。

101、一个刚体在平面上做纯滚动,其速度与时间成正比,求该刚体的加速度和转速。

1011、一个刚体受到一个周期性外力矩的作用,求该刚体的运动状态。

以上就是一些常见的大学物理刚体习题。

解决这些问题需要我们深入理解刚体的性质和相关的物理概念,如力、力矩、重心等。

通过这些习题的练习,我们可以更好地掌握刚体的相关知识,提高我们的物理水平。

大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。

而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。

本文将探讨大学物理中的刚体力学。

一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。

在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。

《大学物理》刚体的转动练习题

《大学物理》刚体的转动练习题

《大学物理》刚体的转动练习题一、选择题1. 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

对上述说法下述判断正确的是( )A. 只有(1)是正确的B. (1)、(2)正确,(3)、(4)错误C. (1)、(2)、(3)都正确,(4)错误D. (1)、(2)、(3)、(4)都正确2. 关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的(B) (1)、(2)是正确的(C) (2)、(3)是正确的(D) (1)、(2)、(3)都是正确的3. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )A. 角速度从小到大,角加速度不变B. 角速度从小到大,角加速度从小到大C. 角速度从小到大,角加速度从大到小D. 角速度不变,角加速度为零4. 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.射过来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( )A. L不变,ω增大B. 两者均不变C. L不变,ω减小D. 两者均不确定5. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )A. 角动量守恒,动能守恒B. 角动量守恒,机械能守恒C. 角动量不守恒,机械能守恒D. 角动量不守恒,动量也不守恒6. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,那么其转动加快的依据是:( )A.α> 0B.ω>0,α>0C.ω<0,α>0D.ω>0,α<07. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,那么它们对过盘心且垂直盘面的轴的转动惯量( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小二、填空题1. 半径为30cm的飞轮,从静止开始以0.5rad∙s−2的角加速度匀加速转动,那么飞轮边缘上一点在转过240°时的切向加速度为;法向加速度为。

大学物理第四章习题及答案

大学物理第四章习题及答案

第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。

(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。

(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。

4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。

解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。

《大学物理AⅠ》刚体定轴转动习题、答案及解法

《大学物理AⅠ》刚体定轴转动习题、答案及解法

《大学物理A Ⅰ》刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A A h R h R M ρπρπ22==A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。

1环的质量分布均匀。

2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。

长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。

(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。

(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。

(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。

大学物理刚体力学测试题答案

大学物理刚体力学测试题答案

选择题答案及解析
• 答案:D
• 解析:根据刚体的转动惯量公式,对于一个质量均匀分布的细杆,其转动惯量与质量、长度和质心到转轴的距离有关。故 D选项正确。
选择题答案及解析
• 答案:A • 解析:根据刚体的动能定理,当刚
体受到的合外力矩不为零时,刚体 的角速度会发生变化。故A选项正 确。
填空题答案及解析
有挑战性
部分题目难度较大,需要学生具备较强的分 析问题和解决问题的能力。
测试题答案解析总结
要点一
详细解析
每道题目都附有详细的答案解析,帮助学生理解解题思路 和方法。
要点二
举一反三
答案解析中还提供了相关题型的解题技巧,有助于学生触 类旁通。
THANKS
感谢观看
难题
考查学生的综合运用能力和创新思维,难度较大,需要较高的解题技巧。
测试题目的目标
01
检验学生对刚体力学基本概念和公式的掌握程度。
02
评估学生对刚体力学知识的应用能力。
提高学生的综合运用能力和创新思维。
03
02
测试题内容选Leabharlann 题选择题1答案:C1
选择题2答案:B
2
选择题3答案:D
3
填空题
填空题1答案
• 答案
10 N·m
• 解析
根据刚体的转动动能公式,当刚体的转动惯量为1 kg·m²,角速度为10 rad/s时,其转 动动能为0.5×1×10²=50 J。由于题目中要求的是力矩,因此需要将动能转换为力矩,
即50 J=10 N·m。故填空题1的答案是10 N·m。
填空题答案及解析
• 答案
2 kg·m²
04
测试题总结
测试题特点总结

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。

设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。

02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。

03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。

04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。

大学物理刚体的定轴转动习题及答案()

大学物理刚体的定轴转动习题及答案()

⼤学物理刚体的定轴转动习题及答案()第 4 章刚体的定轴转动习题及答案1.刚体绕⼀定轴作匀变速转动,刚体上任⼀点是否有切向加速度?是否有法向加速度?切向和法向加速度的⼤⼩是否随时间变化?答:当刚体作匀变速转动时,⾓加速度不变。

刚体上任⼀点都作匀变速圆周运动,因此该点速率在均匀变化,v l ,所以⼀定有切向加速度a t l ,其⼤⼩不变。

⼜因该点速度的⽅向变化,所以⼀定有法向加速度2a n l 2,由于⾓速度变化,所以法向加速度的⼤⼩也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是⼀个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形dL 2式为M z z,M z表⽰刚体对Z 轴的合外⼒矩,L z表⽰刚体对Z轴的动量矩。

L z m i l i2I ,其中dtI m i l i2,代表刚体对定轴的转动惯量,所以M z dLz d I I d I 。

既M z I 。

z dt dt dt z 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理⽤于刚体时在刚体转轴⽅向的分量表达式。

3.两个半径相同的轮⼦,质量相同,但⼀个轮⼦的质量聚集在边缘附近,另⼀个轮⼦的质量分布⽐较均匀,试问:(1)如果它们的⾓动量相同,哪个轮⼦转得快?(2)如果它们的⾓速度相同,哪个轮⼦的⾓动量⼤?答:(1)由于L I ,⽽转动惯量与质量分布有关,半径、质量均相同的轮⼦,质量聚集在边缘附近的轮⼦的转动惯量⼤,故⾓速度⼩,转得慢,质量分布⽐较均匀的轮⼦转得快;(2)如果它们的⾓速度相同,则质量聚集在边缘附近的轮⼦⾓动量⼤。

4.⼀圆形台⾯可绕中⼼轴⽆摩擦地转动,有⼀玩具车相对台⾯由静⽌启动,绕轴作圆周运动,问平台如何运动?如⼩汽车突然刹车,此过程⾓动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台⾯由静⽌启动,绕轴作圆周运动时,平台将沿相反⽅向转动;⼩汽车突然刹车过程满⾜⾓动量守恒,⽽能量和动量均不守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档