车牌识别开题报告

合集下载

车牌识别技术研究开题报告

车牌识别技术研究开题报告

车牌识别技术研究开题报告一、研究背景和意义随着汽车数量的快速增长和交通管理的要求不断提高,车辆识别技术日益成为一个重要研究领域。

车牌识别是在交通管理、违章监测、停车场管理、智能交通系统等方面具有广泛应用前景的一项技术。

车牌识别技术可以通过车牌与车主信息的关联,实现车辆的快速准确识别和信息管理,并有效提升交通管理和公共安全水平。

二、研究目标和内容本研究旨在深入探索和研究车牌识别技术的关键技术和方法,为实现车牌的自动识别和信息管理提供有效的解决方案。

具体研究内容包括以下几个方面:1. 车牌定位与分割技术:通过图像处理和模式识别等方法,实现对车辆图像中车牌位置的精确定位和分割,为后续的车牌识别提供基础。

取和判别分析,通过模式匹配和机器学习等方法实现车牌的准确识别。

3. 车牌信息管理和数据库设计:将识别出的车牌与车主信息进行关联,构建有效的车辆信息数据库,并研究车牌信息的查询和管理方法。

4. 实验验证和性能评价:通过实际数据采集和实验测试,验证所提方法的有效性和可行性,并对其性能进行评价和改进。

三、研究方法和步骤本研究将采用以下方法和步骤:1. 调研和理论分析:通过对车牌识别技术的相关文献和现有方法的调研,分析其原理和技术特点,为后续研究提供理论支持。

2. 数据采集和预处理:通过车载摄像头或公共摄像头采集车辆图像数据,并进行图像预处理,包括去噪、灰度化、二值化等操作。

3. 车牌定位与分割:采用图像处理算法,如边缘检测和形态学运算,对车辆图像进行定位和分割,提取出车牌图像。

如颜色、纹理和形状等特征,通过模式匹配或机器学习方法实现车牌的识别。

5. 车牌信息管理和数据库设计:将识别出的车牌与车主信息进行关联,构建完整的车辆信息管理系统,并设计合适的数据库结构和查询方式。

6. 实验验证和性能评价:通过真实场景的数据采集和实验测试,验证所提方法的有效性和可行性,并对其性能进行评价和改进。

四、预期成果和创新点1. 高效准确的车牌识别算法:通过对车牌定位与分割、特征提取与识别等关键问题的研究,设计出高效准确的车牌识别算法。

汽车车牌识别系统研究--开题报告

汽车车牌识别系统研究--开题报告

汽车车牌识别系统研究--开题报告汽车车牌识别系统研究开题报告一、选题背景随着社会的快速发展,汽车数量急剧增加,交通管理面临着巨大的挑战。

传统的人工车牌识别方式效率低下,容易出错,且难以满足大规模数据处理的需求。

因此,汽车车牌识别系统的研究具有重要的现实意义。

车牌识别系统作为智能交通系统的重要组成部分,能够自动识别车辆的车牌号码,实现车辆的快速通行、交通流量监测、违法车辆追踪等功能。

它不仅提高了交通管理的效率和准确性,还为智慧城市的建设提供了有力的技术支持。

二、研究目的本研究旨在开发一种高效、准确、稳定的汽车车牌识别系统,以满足实际应用中的需求。

具体目标包括:1、提高车牌识别的准确率,减少误识别和漏识别的情况。

2、缩短车牌识别的时间,提高系统的实时性。

3、增强系统对不同环境条件(如光照、天气、车牌污损等)的适应性。

4、降低系统的成本,提高其性价比,便于广泛推广应用。

三、研究内容1、车牌图像采集与预处理研究合适的图像采集设备和方法,确保获取清晰、高质量的车牌图像。

对采集到的车牌图像进行去噪、增强、倾斜校正等预处理操作,提高图像质量,为后续的识别工作奠定基础。

2、车牌定位算法探索有效的车牌定位方法,能够准确地从复杂的背景中定位出车牌区域。

考虑车牌的形状、颜色、纹理等特征,结合边缘检测、形态学处理等技术,提高车牌定位的准确性和鲁棒性。

3、字符分割算法研究如何将车牌上的字符准确地分割出来,为字符识别做好准备。

针对字符粘连、断裂等情况,采用合适的算法进行处理,确保字符分割的准确性。

4、字符识别算法比较不同的字符识别方法,如模板匹配、神经网络、支持向量机等,选择最适合的算法进行车牌字符识别。

对识别算法进行优化和改进,提高识别的准确率和速度。

5、系统性能评估与优化建立一套科学的系统性能评估指标,如准确率、召回率、识别时间等。

根据评估结果,对系统进行优化和改进,不断提高系统的性能。

四、研究方法1、文献研究法广泛查阅国内外相关文献,了解车牌识别系统的研究现状和发展趋势。

车牌文字识别开题报告

车牌文字识别开题报告

车牌文字识别开题报告车牌文字识别开题报告一、研究背景随着社会的发展,汽车的普及程度越来越高,车辆管理也变得越来越重要。

而车牌作为车辆的唯一标识,对于交通管理、追踪违法行为等方面起着至关重要的作用。

然而,由于车牌上的文字种类繁多、字体不规则、环境复杂多变,传统的车牌识别方式已经无法满足实际需求。

因此,车牌文字识别技术的研究和应用成为了当前热门的课题之一。

二、研究目的和意义本研究旨在开发一种高效准确的车牌文字识别系统,以提高车牌识别的准确性和效率。

具体目标如下:1. 实现对不同类型车牌的文字识别,包括普通车牌、特种车牌等;2. 提高车牌文字识别的准确性,尤其是在复杂环境下的识别率;3. 提高车牌文字识别的速度,以应对大规模车辆的快速通行。

本研究的意义在于:1. 为交通管理部门提供一种高效准确的车牌识别技术,帮助他们更好地进行车辆管理和追踪违法行为;2. 为智能交通系统提供支持,提升交通流量监控、自动收费等方面的效率;3. 推动图像识别技术的发展,为其他领域的研究和应用提供借鉴。

三、研究内容和方法本研究主要包括以下内容:1. 车牌图像预处理:对车牌图像进行灰度化、二值化、去噪等预处理操作,以提高后续处理的效果。

2. 车牌定位与分割:通过图像处理和机器学习的方法,将车牌从图像中定位出来,并对车牌进行分割,以便后续文字识别。

3. 车牌文字识别:采用深度学习的方法,建立车牌文字识别模型,通过训练和测试,实现对车牌上文字的准确识别。

4. 性能评估与优化:对所设计的车牌文字识别系统进行性能评估,分析其准确性、效率等指标,并针对问题进行优化和改进。

本研究的方法主要包括以下几个方面:1. 图像处理技术:包括灰度化、二值化、去噪等预处理操作,以及边缘检测、形态学处理等车牌定位与分割方法。

2. 机器学习技术:通过训练样本,建立车牌定位与分割模型,以提高定位和分割的准确性。

3. 深度学习技术:采用卷积神经网络等深度学习方法,建立车牌文字识别模型,以提高识别准确性。

车牌识别技术研究开题报告

车牌识别技术研究开题报告
①将图像录入电脑的MATLAB软件里。
②对原始图像进行一系列的预处理,包括彩色图像转灰度图像、图像的灰度拉伸以及图像的二值化处理。
③对图像的定位和切分处理,先对图像中牌照区域定位,以便显示截下的牌照区域,在对牌照字符进行切分,分割出单个字符出来。
④对牌照字符的识别,此过程采用模板匹配法。
可行性论证:本课题是基于MATLAB软件的研究,研究样本为自己拍摄的汽车图片(包括牌照),通过以上一系列的图像处理过程得到文字形式的车牌,通过查阅书籍、翻查资料这一技术路线是可行的。
进度
2013.8-2013.9.24,完成选题。
2013.9.25-2013.10.4,了解课题的基本知识收集资料,写好开题报告。
2013.10.5-2013.11.5,完成车牌图片的预处理和定位分割,理清论文思路。
2013.11.6-2013.12.6,完成牌照字符的识别,和写好论文。
2013.12.7-2013.12.8,对论文和毕业设计进行最后检查。
2013.12.9-2013.12.22,做好毕业答辩的准备,顺利完成毕业答辩。
汽车牌照识别技术,不仅可以应用于停车场管理系统、高速公路超速管理系统、城市十字路口的“电子警察”、小区车辆管理系统等,还可以实现对交通流量的统计和查询,道路负荷的测定和管理,而且可以对肇事车、走私车辆、走丢车辆进行辨别和追查。
国内外研
究现状和
发展趋势
车牌识别技术研究在国外起步比较早,早在20世纪80年代,便有一些零零散散的图像处理方法用于车牌识别的某些具体应用。在这个阶段,车牌识别技术的研究还没有形成完整的系统体系,一般采用简单的图像处理方法来解决某些具体问题,并且最终结果需要人工干预。
拟采用的研究思路(方法、技术路线、可行性论证等)

汽车牌照识别系统中的牌照定位方法研究的开题报告

汽车牌照识别系统中的牌照定位方法研究的开题报告

汽车牌照识别系统中的牌照定位方法研究的开题报告一、选题背景随着社会的不断发展和城市化的加速推进,交通拥堵问题逐渐凸显,交通安全问题成为社会关注的焦点。

为了提高交通管理水平和交通安全性,各国都陆续推出了基于视频监控和图像识别技术的交通管理系统。

在这些系统中,车牌识别系统是一个非常重要的部分,能够准确地把车辆的识别信息传递给交通管理部门,帮助管理部门高效地进行交通管控、追踪违法行为等,有助于缓解拥堵、提升交通安全。

车牌识别系统中,牌照定位技术是其中的一个重要环节,其作用是对车辆牌照的位置进行定位和提取,从而为后续的牌照识别提供可靠的数据。

如何准确快速地实现牌照定位,是车牌识别系统设计的一个关键问题。

二、选题意义传统的车牌识别系统需要人工标注,然后才能进行车牌的识别,耗时、耗力。

而现代的车牌识别系统利用计算机视觉技术,能够实现自动化检测和识别车牌。

因此,车牌识别系统具有工作效率高、准确率高、操作简单等优点。

同时,车牌识别技术还广泛应用于人脸识别、安防监控、智能交通等领域。

本研究旨在探究车牌定位技术的具体实现方式,提升车牌识别系统的效率和准确性,为智能交通的发展做出贡献。

三、研究内容本研究的主要内容将包括以下几个方面:1.分析车牌定位的原理,综述目前国内外车牌定位技术的研究现状和应用情况。

2.设计和实现基于卷积神经网络的车牌定位系统,通过大量的样本数据训练和优化模型,实现车牌定位的自动化。

3.在模型搭建的过程中,选取几种不同的卷积神经网络结构进行比对,对比各种结构的优缺点和适用场景。

4.对比分析传统的车牌定位方法和基于卷积神经网络的车牌定位方法的优势和劣势,探究基于卷积神经网络的车牌定位方法的可行性。

5.根据实验结果,结合实际应用场景,对车牌定位系统进行性能评估和功能完善,提高系统的实用性和稳定性。

四、研究方法本研究将采用文献调研、算法设计、模型实现和实验分析等多种研究方法,具体步骤如下:1.通过查阅相关文献、研究报告等资料,全面了解车牌识别系统和牌照定位技术的发展现状和应用情况。

车载式车牌识别系统的研究与应用的开题报告

车载式车牌识别系统的研究与应用的开题报告

车载式车牌识别系统的研究与应用的开题报告一、课题背景和意义车牌识别系统是现代交通管理中非常重要的一项技术,能够有效地帮助交通管理部门实现对车辆的自动识别、监控和管理。

目前,车牌识别系统已经广泛应用于高速公路收费、交通违法监控、停车场管理等领域。

现有的车牌识别系统主要有两种类型,一种是固定式车牌识别系统,另一种是车载式车牌识别系统。

固定式车牌识别系统主要用于停车场管理和路口监控等固定场所,而车载式车牌识别系统则主要应用于车辆巡检和巡逻等移动场所。

本论文研究的是车载式车牌识别系统。

由于车载式车牌识别系统需要在移动中对车辆进行识别,所以需要考虑到移动过程中光照和摄像头晃动等因素对车牌识别精度的影响。

因此,设计一套高效、准确的车载式车牌识别系统对于提高交通管理水平、缓解交通拥堵具有重要的现实意义。

二、研究内容和目标本论文拟研究车载式车牌识别系统的关键技术,包括图像采集、图像处理、车牌定位、字符分割和字符识别等。

具体研究内容如下:1. 对车载式车牌识别系统的原理和关键技术进行深入研究,了解车牌识别系统的主要算法和应用场景。

2. 根据车载式车牌识别系统的特点,设计采用的摄像头和处理器,保证系统的稳定性和高效性。

3. 研究车牌定位算法,根据车牌形状和颜色的特征,实现车牌的自动定位,保证车牌识别精度。

4. 研究字符分割算法,对车牌上的字符进行有效分割,以便进行后续的字符识别。

5. 研究字符识别算法,实现车牌上字符的准确识别,并进行车牌号码的验证、比对及记录。

三、研究方法和技术路线本论文采用实验室研究和算法仿真相结合的方法,具体技术路线如下:1. 设计并实现车载式车牌识别系统的硬件和软件框架,搭建实验环境。

2. 利用MATLAB等软件平台,对车牌识别系统的图像处理算法进行仿真和验证。

优化算法,提高车牌识别精度。

3. 利用C++等编程语言,实现车牌识别系统的软件程序,完成对所有算法的实现。

4. 进行实际测试,对车牌识别系统的性能进行评价,验证系统的可行性和实用性。

车牌识别论文开题报告

车牌识别论文开题报告

车牌识别论文开题报告车牌识别论文开题报告一、研究背景与意义车牌识别技术是计算机视觉领域的研究热点之一,其在交通管理、智能交通系统、车辆追踪等方面具有广泛的应用价值。

随着城市化进程的加快和车辆数量的急剧增长,传统的人工车牌识别方式已经无法满足实际需求。

因此,开发一种高效准确的车牌识别系统对于提高交通管理效率和智能交通系统的发展具有重要意义。

二、研究目标本论文旨在设计和实现一种基于深度学习的车牌识别系统,通过对车牌图像进行自动识别和分析,实现对车辆的快速准确识别,以提高交通管理和智能交通系统的效率。

三、研究内容1. 车牌图像预处理在车牌识别系统中,车牌图像的预处理是非常重要的一步。

本论文将探索不同的图像处理算法,如图像增强、去噪和图像分割等,以提高车牌图像的质量和准确性。

2. 车牌定位与分割车牌定位与分割是车牌识别系统的核心环节。

本论文将研究和设计一种基于深度学习的车牌定位与分割算法,以实现对车牌区域的准确提取和分割。

3. 车牌字符识别车牌字符识别是车牌识别系统中的关键环节。

本论文将探索不同的字符识别算法,如卷积神经网络(CNN)、循环神经网络(RNN)等,以实现对车牌字符的准确识别和分类。

4. 系统性能评估与优化本论文将通过大量的实验和测试,对设计的车牌识别系统进行性能评估,并针对性能较差的地方进行优化,以提高系统的准确性和鲁棒性。

四、研究方法本论文将采用深度学习算法作为主要的研究方法,结合图像处理和模式识别的技术,设计和实现一个高效准确的车牌识别系统。

具体方法包括但不限于:卷积神经网络、循环神经网络、图像增强、图像分割等。

五、研究预期结果1. 设计和实现一种基于深度学习的车牌识别系统;2. 提高车牌图像的质量和准确性;3. 实现对车牌区域的准确提取和分割;4. 实现对车牌字符的准确识别和分类;5. 提高系统的准确性和鲁棒性。

六、研究意义本论文的研究成果将具有以下意义:1. 提高交通管理的效率:通过快速准确地识别车辆的车牌信息,可以实现对交通违法行为的及时处理和管理,提高交通管理的效率。

车牌识别系统中关键技术的研究的开题报告

车牌识别系统中关键技术的研究的开题报告

车牌识别系统中关键技术的研究的开题报告一、选题背景随着城市交通管理的不断完善和汽车数量的不断增加,车辆管理问题成为亟待解决的难题。

而车牌识别系统可以在车辆进出口管理、违停监管以及交通拥堵控制等方面发挥重要作用。

车牌识别技术是通过对车辆的数字图像进行处理,提取车牌中有用的信息,对车牌上的字符进行识别和分析,从而实现对车辆信息的识别。

目前车牌识别系统已经广泛应用于道路交通管理、停车场管理、高速公路电子收费等领域,其主要组成部分包括图像采集、图像预处理、车牌检测、字符分割和字符识别等环节。

而车牌识别系统中的关键技术,尤其是字符识别技术,是实现车牌识别准确率的关键。

二、研究目的和意义本课题的主要目的是探究车牌识别系统中的关键技术,重点研究字符识别技术,通过对车牌图像进行处理和分析,提高车牌识别的准确率和可靠性。

本研究的意义在于:1.提高车牌识别准确率和可靠性,实现对车辆信息的快速、准确、稳定的识别;2.为城市交通管理、停车场管理、高速公路等领域提供更加先进、高效的监管手段。

三、研究内容和方法1.研究车牌识别系统的基本原理和关键技术;2.分析车牌图像上的字符特征,确定最优的字符识别算法;3.开发车牌识别系统,在该系统中实现字符识别算法的应用。

本研究将采用以下方法:1.文献调研法。

通过查找文献资料,了解车牌识别技术的发展状况和现有的关键技术。

2.实验方法。

通过对车牌图像的处理和分析,确定最优的字符识别算法,实现车牌识别系统。

四、预期结果本研究预期通过实验,提高车牌识别系统的准确率和可靠性,实现对车辆信息的快速、准确、稳定的识别。

五、研究进度安排1. 前期准备:调研相关文献并进行分析、了解车牌识别技术的基本原理和关键技术,确定研究目标。

2. 方案设计:确定研究内容和方法,设计实验方案和算法。

3. 实验和分析:通过车牌图像的处理和分析,确定最优的字符识别算法。

4. 系统开发:开发车牌识别系统,在该系统中实现字符识别算法的应用。

车牌识别技术研究开题报告

车牌识别技术研究开题报告

车牌识别技术研究开题报告摘要:车牌识别技术是一种基于计算机视觉和图像处理技术的应用,可以自动识别并提取车辆上的车牌信息。

随着交通管理的日益重要和车辆数量的不断增加,车牌识别技术应运而生。

本文将对车牌识别技术的研究进行探讨,包括其发展历程、相关技术原理、应用场景以及存在的问题和挑战。

通过对车牌识别技术的研究,我们可以为相关领域的研究和应用提供理论和技术支持。

一、引言车牌识别技术是近年来计算机视觉领域的研究热点之一,它与交通管理、车辆安全和智能交通系统等相关。

传统的车牌识别方法通常基于模板匹配、特征提取和机器学习等技术,但在复杂的实际应用场景中仍然存在一些问题。

近年来,随着深度学习技术的兴起,基于卷积神经网络的车牌识别方法取得了令人瞩目的成果。

在本文中,我们将对车牌识别技术的研究进行探讨,旨在提供理论和技术支持。

二、车牌识别技术的发展历程车牌识别技术的起源可以追溯到20世纪80年代,当时主要依靠传统的图像处理和模式识别技术。

随着计算机视觉和机器学习的发展,车牌识别技术在90年代取得了重要突破,尤其是在泛化能力和抗干扰能力方面。

进入21世纪,随着深度学习技术的兴起,基于卷积神经网络的车牌识别方法取得了巨大的进步和发展。

三、车牌识别技术的原理车牌识别技术的基本原理包括图像预处理、车牌定位、字符分割和字符识别等步骤。

首先,对输入的图像进行预处理,包括灰度化、滤波和增强等操作,以提高后续处理的效果。

然后,通过车牌定位算法,确定图像中的车牌位置。

接下来,使用字符分割算法将车牌中的字符单独分割出来。

最后,利用字符识别算法对分割后的字符进行识别,提取并输出车牌上的字符信息。

四、车牌识别技术的应用场景车牌识别技术广泛应用于交通管理、治安监控和智能交通系统等领域。

在交通管理中,车牌识别技术可以用于违章抓拍和车辆管理;在治安监控中,车牌识别技术可以用于车辆实时监控和犯罪侦测;在智能交通系统中,车牌识别技术可以用于车辆通行记录和收费系统。

车牌识别技术研究的开题报告

车牌识别技术研究的开题报告

车牌识别技术研究的开题报告一、选题意义随着社会的发展,交通系统逐渐向数字化和智能化方向迈进,而现代化道路交通管理离不开车辆信息的高效采集和分析。

车牌识别技术作为智能交通系统中基础的技术之一,已经成为车辆信息采集的主要方法,具有广泛的应用价值。

车牌识别技术的发展不仅可以提高城市道路交通的安全性、交通流畅性和管理效率,而且对于防范和打击交通违法犯罪、提高治安管理水平以及便民服务等方面也有很大的推动作用。

二、研究目标本论文旨在针对车牌识别技术的关键技术研究展开深入探讨,重点利用深度学习等先进技术,提出高效准确的车牌识别算法,为实现车辆信息的快速识别和管理提供技术支持。

三、主要内容(1)车牌识别技术的研究现状和发展趋势;(2)深度学习等先进技术在车牌识别中的应用与分析;(3)采用卷积神经网络对车牌进行特征提取与识别的方法;(4)系统实现与测试分析。

四、研究思路(1)首先,对车牌识别技术的研究现状和发展趋势进行详细介绍,分析车牌识别技术的关键问题和挑战;(2)其次,结合深度学习技术,提出基于卷积神经网络的车牌识别算法;(3)然后,利用TensorFlow等开源深度学习框架实现车牌识别系统,并对其进行实验和测试;(4)最后,对实验结果进行分析和总结,提出未来的研究方向和优化改进的建议。

五、研究难点(1)车牌识别算法的设计问题;(2)车牌图像的提取和预处理问题;(3)车牌识别系统的实时性要求;(4)对复杂场景下车牌的识别能力。

六、研究方法(1)文献调研:通过阅读相关文献,了解车牌识别技术的发展现状和创新点;(2)算法设计:针对现有车牌识别算法的不足,提出基于深度学习的车牌识别算法,进行分析和优化;(3)系统实现:基于开源深度学习框架完成车牌识别系统的开发和实现;(4)系统测试:对车牌识别系统进行实验和测试,评估其性能和准确度。

七、预期结果(1)提出基于卷积神经网络的车牌识别算法,准确率达到90%以上;(2)搭建车牌识别系统,能够处理图像数量较大、品质较差的车牌数据;(3)对比不同算法的优缺点,为今后的研究提供借鉴。

车辆牌照识别系统关键技术研究的开题报告

车辆牌照识别系统关键技术研究的开题报告

车辆牌照识别系统关键技术研究的开题报告一、选题背景及意义车辆牌照识别系统(Automatic License Plate Recognition,ALPR)是一种基于计算机视觉技术开发的能够自动获取并识别车辆牌照信息的系统。

该系统具有广泛的应用前景,包括交通管理、安防监控、停车场管理等领域。

在交通管理领域,该系统能够通过牌照信息获取车辆的行驶路线、违规行驶情况等信息,有助于交通管理部门监测道路交通状况、实施交通规范,并对违规行驶行为进行处罚。

在安防监控领域,该系统能够通过识别车牌获取车辆的入出场时间、地点等信息,有助于维护公共安全和治安秩序。

在停车场管理领域,该系统能够通过识别车牌实现自动计费、快捷进出停车场等功能。

因此,研究车辆牌照识别系统的关键技术,有助于推动该领域的发展,提高系统的识别率和准确率,满足社会的需求。

二、研究内容和方法本研究旨在探究车辆牌照识别系统的关键技术。

具体研究内容和方法如下:1. 车辆牌照区域的提取技术。

该技术是车辆牌照识别系统的关键之一,需要通过对车辆图像的处理,对牌照区域进行定位和提取。

2. 车牌字符分割技术。

该技术是识别车牌字符的前提,需要对车牌图像进行预处理,将车牌上的字符进行分割,以便后续的识别工作。

3. 车牌字符识别技术。

该技术是车辆牌照识别系统的核心部分,需要通过对车牌字符进行识别,获取车牌上的文字信息。

4. 系统综合效能的评估。

对开发的车辆牌照识别系统进行综合效能评估,包括识别率、准确率、速度等指标,以便优化系统性能。

本研究将采用文献调研、实验研究和数据分析等方法进行。

三、预期成果和意义本研究预计取得的成果如下:1. 设计并开发一套高效的车辆牌照识别系统,提高识别率和准确率,满足社会日益增长的需求。

2. 研究车辆牌照识别系统的关键技术,包括车牌区域提取、车牌字符分割和字符识别等技术,并对不同技术方案进行比较和分析,为后续的研究提供参考。

3. 对车辆牌照识别系统进行综合效能评估,以便优化系统性能,提高识别准确率和效率。

车牌识别硬件系统的研究与设计的开题报告

车牌识别硬件系统的研究与设计的开题报告

车牌识别硬件系统的研究与设计的开题报告一、选题背景随着城市化进程不断加快,车辆数量大幅增长,交通管理和安全变得越来越重要。

其中,车牌识别技术作为一种高效、准确、自动化的交通管理手段被广泛应用。

车牌识别系统可以对车辆进行跟踪、管理,提高道路安全和交通流畅度,具有广泛的应用前景。

目前,在车牌识别技术方面,国内外研究较为成熟,已经有许多成熟的算法和技术可以应用于车牌识别。

但是,实际应用中,不同场景的车牌识别要求有所不同,需要根据实际需要进行系统设计和硬件开发。

因此,本课题旨在研究与设计一种车牌识别硬件系统,以满足实际应用需求。

二、选题目的本课题的主要目的是研究与设计一种车牌识别硬件系统,通过硬件系统的设计与开发,实现快速准确地对车辆进行识别,提高交通管理的效率和安全性。

三、选题内容本课题的研究内容主要包括以下几个方面:1. 车牌识别算法的研究。

在车牌识别技术中,首先需要对车辆的图像进行处理,提取出车牌区域,并对车牌图像进行处理、分割和字符识别等操作。

因此,本课题将从车牌识别算法研究入手,选择最适用的算法,并实现相应的程序。

2. 车牌识别硬件系统的设计。

硬件系统是车牌识别技术的重要组成部分,对系统性能和效率有着重要的影响。

本课题将根据需求设计车牌识别硬件系统,并实现相应的电路、机械和软件系统。

3. 车牌数据存储和管理系统的设计。

在车牌识别系统中,需要将识别的车牌数据存储在本地或云端,方便后续的管理和分析。

因此,本课题将设计相应的车牌数据存储和管理系统,并实现数据的统计、查询和导出等操作。

四、预期成果本课题的预期成果主要包括以下几个方面:1. 车牌识别算法的实现与优化。

2. 车牌识别硬件系统的设计与开发,并能够实现车牌的快速准确识别。

3. 车牌数据存储和管理系统的设计与开发,并能够实现数据的存储、查询和统计等操作。

4. 在实际应用中进行测试和调试,验证系统的性能和可靠性。

五、研究方法本课题的研究方法主要包括以下几个方面:1. 文献调研。

车牌识别 开题报告

车牌识别 开题报告

车牌识别开题报告车牌识别开题报告一、背景介绍车牌识别技术是指通过计算机视觉和模式识别技术,对车辆上的车牌进行自动识别和提取。

随着交通管理和安全需求的不断增加,车牌识别技术成为了智能交通系统中的重要组成部分。

本文将对车牌识别技术的发展、应用和挑战进行探讨。

二、发展历程车牌识别技术起源于上世纪90年代,最初是由人工进行车牌识别,但效率低下且容易出错。

随着计算机技术的不断进步,车牌识别技术逐渐实现了自动化。

早期的车牌识别系统主要基于模板匹配和特征提取算法,但由于车牌的多样性和复杂性,这些方法往往无法达到较高的准确率。

随着深度学习技术的兴起,卷积神经网络(CNN)被广泛应用于车牌识别领域。

CNN可以通过学习大量车牌样本,自动提取车牌的特征,并实现高准确率的车牌识别。

此外,还有一些基于端到端的车牌识别系统,如基于循环神经网络(RNN)的方法,可以直接从车牌图像中提取文本信息。

三、应用领域车牌识别技术在各个领域都有广泛的应用。

在交通管理方面,车牌识别可以用于违章监控、交通流量统计和智能停车场管理等。

在安防领域,车牌识别可以用于车辆追踪、盗窃车辆识别和恐怖分子追踪等。

此外,车牌识别还可以应用于智能支付系统、智能门禁系统和智能物流等领域。

四、挑战与未来发展尽管车牌识别技术取得了很大的进展,但仍然存在一些挑战。

首先,车牌的多样性和复杂性使得车牌识别系统容易受到光照、遮挡和变形等因素的影响。

其次,车牌识别技术在大规模场景下的实时性和准确性仍然有待提高。

此外,隐私保护也是一个需要关注的问题,如何在车牌识别过程中保护个人隐私是一个重要的研究方向。

未来,车牌识别技术有望在以下几个方面得到进一步发展。

首先,随着深度学习技术的不断发展,车牌识别的准确率将进一步提高。

其次,随着计算机硬件的不断提升,车牌识别系统的实时性将得到改善。

此外,随着人工智能和大数据技术的发展,车牌识别技术将与其他技术相结合,实现更广泛的应用。

总结:车牌识别技术在智能交通系统和安防领域中发挥着重要作用。

车牌识别--开题报告

车牌识别--开题报告

毕业设计开题报告学生姓名:学号:专业:计算机科学与技术设计题目:车牌识别系统指导教师:2011 年 3 月 18 日毕业设计开题报告1.本课题的研究意义,国内外研究现状、水平和发展趋势牌照自动识别系统是现代社会智能交通系统(ITS)的重要组成部分,是图像处理和模式识别技术研究的热点,应用也越来越普遍。

车牌识别主要包括以下三个主要步骤:车牌定位,车牌字符分割,车牌字符识别。

近年来,许多学者对其进行了较为深入的研究和探讨,提出了基于纹理特征、颜色信息和运用数学工具的车牌定位法,基于投影分析、连通域分析的字符分割方法和基于模板匹配、神经网络等的字符识别方法。

根据国内外汽车牌照的字符特征,对近年来出现的车牌识别方法进行综述并提出建议,在现有方法的基础上,取其优点,相互补充,结合数学工具,提高系统的速度和精度。

智能交通系统(ITS)为解决当前紧迫的交通问题提供了关键的技术,其中汽车牌照识别(LPR)是ITS中最关键技术之一,已广泛应用于各级公路和城市交通管理,具有巨大的经济价值和现实意义。

车牌定位是一个复杂背景的图像找到车牌素在的区域,作为车牌识别的第一步,定位的结果直接影响到整个系统的性能。

车牌字符识别作为车牌识别得到结果的重要部分其准确性直接关系到整个系统的效率。

毕业设计开题报告2.本课题的基本内容,预计可能遇到的困难,提出解决问题的方法和措施1汽车牌照的定位方法汽车牌照定位(LPL)是在具有复杂背景的图片上进行图像预处理、汽车牌照区域搜索和汽车牌照定位3部分。

图像预处理是对原始图像进行滤波和怎强后,搜索整幅图像中可能包含汽车的若干区域,剔除非牌照区域,找到真实位置。

即车牌定位是从一张复杂背景的图像中找到车牌所在的区域,其关键在于寻找最有效的车牌特征。

目前,根据车牌本身两种比较明显的特征,将车牌定位方法分为基于纹理特征和基于颜色特征。

车牌纹理特征可以用不同的方法来描述:车牌灰度图像的边缘、图像水平方向上的方差、水平方向上的梯度等。

车牌识别系统的研究与实现开题报告

车牌识别系统的研究与实现开题报告

车牌识别系统的研究与实现开题报告一课题来源及选题依据(一)课题名称智能交通车牌识别技术研究及软件设计(二)课题来源及选题依据随着城市人口、机动车辆拥有量和交通流量的大幅度增长,刺激了交通需求的迅猛增长,对交通基础设施建设,交通控制、安全管理的要求也日益提高。

目前,国内外大多数城市交通路口交通灯控制系统,仍然遵循着固定的时间控制通行模式,造成了空闲时路面的浪费和车辆拥挤现象。

因此,如何发挥道路交通设施的最大效益和提高交通管理效率实现交通管理的自动化和智能化成为各国交通部门一个重要的研究课题。

目前各国推崇的办法是发展智能交通系统。

ITS,即智能交通系统,最早是由美国智能交通学会CITS America提出的。

智能交通系统对于城市交通问题以及高速公路系统等问题都有十分广泛的应用前景。

在经济与科技高速发展的今天,道路运输早已成为我国交通运输业中重要的运输方式。

随着近年来汽车的普及,其数量在短时间内呈现直线增长的趋势,随着而来的交通问题也日趋严重,所以对交通管理的要求正在日益提高。

车牌号码是汽车的识别标志,使车牌号码的管理自动化成为交通自动化的关键。

车牌识别技术涉及到模式识别、图像处理、人工智能、信息论、计算机等诸多学科。

车牌识别具有长远广泛的发展前景,可以在停车场,高速公路收费站,电子警察,超速抓拍,闯红灯抓拍等领域运用。

车牌识别系统(LPR)作为智能交通系统关键技术之一,具有对车辆进行自动化监视,验证,登记与报警等功能,可应用于高速公路管理系统,停车场收费管理,小区车辆管理与电子警察等领域当中。

二国内外研究现状及发展趋势国外对车牌识别系统的研究比较早,早在上世纪70年代,国外的研究人员就开始对车牌号码的识别进行了研究,到目前为止,在国外车牌识别系统已经做得比较成熟了。

国际上车牌识别目前已成为“平安城市”建设中重要的组成部分,为道路交通管理提供帮助,其不仅应用于闯红灯抓拍、超速行驶违章抓拍、车辆旅行时间统计、高速公路车辆管理应用等道路交通应用中,还在治安安防监控中如治安卡口车牌识别、盗抢车辆通缉、刑事案件辅助侦破等应用中都得到了广泛的使用。

车牌定位识别算法研究的开题报告

车牌定位识别算法研究的开题报告

车牌定位识别算法研究的开题报告一、选题背景车牌识别技术是计算机视觉领域中的重要研究方向之一,其应用范围涵盖了智能交通、安防监控、车辆管理等多个领域。

其中,车牌定位算法作为车牌识别的重要前置环节,其准确性和鲁棒性对整个车牌识别系统的性能影响非常大。

二、研究内容本文将以车牌定位算法为研究对象,深入探究基于深度学习的车牌定位算法的优化方法和应用。

具体研究内容如下:1. 调研已有的车牌定位算法,对比各算法的优缺点,确定待研究的算法。

2. 基于卷积神经网络(CNN)和循环神经网络(RNN)等深度学习算法,构建针对车牌定位的神经网络模型。

3. 探究数据增强方法对车牌定位算法性能的影响,设计针对该算法的数据增强方案。

4. 提出基于深度学习的车牌定位算法的优化方案,并在数据集上进行实验验证。

5. 在实际应用场景中,测试车牌定位算法的鲁棒性和准确性。

三、研究意义车牌定位算法是车牌识别系统的重要前置环节,其准确性和鲁棒性对整个识别系统的性能影响非常大。

本文对基于深度学习的车牌定位算法进行了研究和优化,其主要意义在于:1. 提高车牌识别系统的准确性和鲁棒性。

2. 为智能交通、车辆管理等领域提供更加先进的技术支持。

3. 推进深度学习在计算机视觉领域的应用和发展。

四、研究方法本文主要采用以下研究方法:1. 调研文献,了解已有的车牌定位算法,并分析各算法的优缺点。

2. 基于Python编程语言,使用深度学习框架TensorFlow构建车牌定位算法模型。

3. 使用数据增强技术提高数据集的多样性,增强模型的泛化能力。

4. 在各种实验条件下,对模型进行训练和测试,并对结果进行评估和分析。

5. 针对实际应用场景进行模型的优化和调整。

五、预期结果1. 基于深度学习的车牌定位算法在测试数据集上的准确率将大于90%。

2. 采用本文提出的数据增强方案,可显著提高算法的鲁棒性和准确性。

3. 针对实际应用场景进行优化调整后,算法可应用于实际的车牌识别系统中,提高整个系统的性能。

车牌识别毕设开题报告

车牌识别毕设开题报告

车牌识别毕设开题报告车牌识别毕设开题报告摘要:车牌识别技术是计算机视觉领域的热门研究方向,具有广泛的应用前景。

本毕设旨在设计和实现一种高效准确的车牌识别系统,以解决现有系统在复杂环境下的识别率低、速度慢等问题。

本文将介绍车牌识别技术的研究背景、意义和目标,以及研究方法和预期结果。

1. 引言车牌识别技术是一种将图像处理和模式识别技术应用于交通管理和智能交通系统中的重要技术。

随着车辆数量的增加和交通管理的需求,车牌识别系统在安全监控、违法行为监测、停车管理等方面发挥着重要作用。

然而,由于车牌图像的复杂性和环境的多变性,现有的车牌识别系统在复杂环境下的识别率低、速度慢等问题亟待解决。

2. 研究背景车牌识别技术起源于20世纪90年代,经过多年的发展,已取得了显著的进展。

然而,现有的车牌识别系统仍然存在一些问题。

首先,复杂环境下的车牌识别率较低,尤其是在夜间、雨雪天气或车牌变形的情况下。

其次,现有系统的处理速度较慢,无法满足实时监控和大规模车辆管理的需求。

因此,设计一种高效准确的车牌识别系统具有重要意义。

3. 研究意义本毕设旨在设计和实现一种高效准确的车牌识别系统,以解决现有系统存在的问题。

该系统将采用深度学习算法和图像处理技术,结合车牌特征提取和模式识别方法,提高车牌识别的准确率和处理速度。

通过研究和实验,可以验证该系统在复杂环境下的性能,并为实际应用提供参考。

4. 研究方法本毕设将采用以下研究方法:(1) 数据采集:收集大量不同环境下的车牌图像,并进行标注和预处理。

(2) 特征提取:使用深度学习算法提取车牌图像中的特征信息,如颜色、纹理等。

(3) 模式识别:采用机器学习算法对提取的特征进行分类和识别。

(4) 系统设计与实现:设计和实现一个高效准确的车牌识别系统,包括图像预处理、特征提取、模式识别和结果输出等功能模块。

(5) 实验与评估:通过对实际车牌图像进行测试和评估,验证系统的性能和效果。

5. 预期结果预计本毕设的主要结果包括:(1) 设计和实现一个高效准确的车牌识别系统,能够在复杂环境下实现高识别率和快速处理速度。

车牌识别算法开题报告

车牌识别算法开题报告

车牌识别算法开题报告车牌识别算法开题报告摘要:车牌识别算法是一种基于计算机视觉技术的应用,它可以自动识别车辆的车牌信息。

本文将介绍车牌识别算法的研究背景和意义,并提出了研究的目标和方法。

通过对车牌识别算法的优化和改进,可以提高车牌识别的准确性和效率,为交通管理、车辆追踪等领域提供支持。

1. 引言车牌识别技术在交通管理、安防监控等领域具有广泛的应用前景。

传统的车牌识别方法主要基于模板匹配和特征提取,但在复杂的环境下容易受到光照、角度等因素的干扰,导致识别准确率低。

因此,研究车牌识别算法的优化和改进具有重要意义。

2. 研究目标本研究的目标是提高车牌识别算法的准确性和效率。

具体来说,我们将通过以下几个方面进行研究:- 提取车牌区域:使用图像处理技术,通过分析图像的颜色、纹理等特征,提取出车牌区域,减少干扰因素对识别结果的影响。

- 车牌字符分割:将车牌区域中的字符进行分割,以便后续的字符识别。

- 字符识别:使用机器学习算法,对分割后的字符进行识别,获取车牌的具体信息。

3. 研究方法本研究将采用以下方法来优化和改进车牌识别算法:- 深度学习模型:使用深度学习模型,如卷积神经网络(CNN),对车牌区域进行特征提取和分类,提高车牌识别的准确性。

- 数据增强:通过对车牌图像进行旋转、缩放、平移等操作,增加训练数据的多样性,提高模型的泛化能力。

- 多尺度检测:采用多尺度的滑动窗口方法,对图像进行多次检测,以适应不同尺寸的车牌。

- 字符识别算法:使用支持向量机(SVM)等机器学习算法,对分割后的字符进行训练和识别,提高字符识别的准确性。

4. 研究计划本研究将按照以下计划进行:- 数据收集:收集大量的车牌图像数据,包括不同角度、光照条件下的车牌图像。

- 数据预处理:对收集到的车牌图像进行预处理,包括去噪、增强等操作,以提高后续算法的效果。

- 车牌区域提取:使用图像处理技术,提取出车牌区域。

- 字符分割:对车牌区域中的字符进行分割。

车牌自动识别系统的设计开题报告

车牌自动识别系统的设计开题报告

车牌自动识别系统的设计开题报告毕业设计(论文)开题报告题目名称:车牌自动识别系统的设计学生姓名专业自动化班级一、选题的目的意义随这图形图像技术的发展,车牌识别技术也越来越趋于成熟,现在的车牌识别技术准确率越来越高,识别速度越来越快。

今天来介绍一下车牌识别系统有哪些关键技术以及发展趋势,希望对大家认识车牌识别系统带来启示。

无论何种形式的车牌识别系统,它们都是由触发、图像采集、图像识别模块、辅助光源和通信模块组成的。

车牌识别系统是典型的光电一体化的智能产品,涉及光学、电器、电子控制、数字图像处理、计算视觉、人工智能等多项技术。

技术流程。

从技术路线的角度看,车牌识别系统按触发方式不同可分为视频触发和外触发;按成像条件可分为可见光成像和红外成像;按运行平台不同可分为硬件式和软件式。

不同的技术路线决定了系统的性能和使用条件。

车牌识别系统运行时,光学系统要经过事先调整,使到达指定位置的车牌成像最清晰且成像大小、方位符合要求。

触发模块负责在车辆到达合适位置时,给出触发信号,控制抓拍。

辅助光源提供辅助照明,保证系统在不同的光照条件下都能拍摄到高质量的图像。

图像预处理程序对抓拍的图像进行处理,去除噪声,并进行参数调整。

然后通过车牌定位、字符识别,最后将识别结果输出。

这是一个典型的图像识别流程,但由于应用的要求和实际运行条件的影响,其中许多环节还会有特殊的要求。

二、国内外研究综述国际上车牌识别目前已成为“平安城市”建设中重要的组成部分,为道路交通管理提供帮助,其不仅应用于闯红灯抓拍、超速行驶违章抓拍、车辆旅行时间统计、高速公路车辆管理应用等道路交通应用中,还在治安安防监控中如治安卡口车牌识别、盗抢车辆通缉、刑事案件辅助侦破等应用中都得到了广泛的使用。

以下为目前车牌识别系统较为常见的功能应用。

1、监测报警一些被通缉或挂失的车辆、欠缴费车辆、未年检车辆、肇事逃逸及违章车辆等都会被录入监控“黑名单”,将这些车牌号码输入到车牌识别系统中,利用安装在各个路口的车牌识别系统摄像机进行采集、读取来往车辆的车牌号,并与名单中的车牌号进行比对等,一旦发现“黑名单”车辆即立刻发出报警信息。

车牌识别开题报告

车牌识别开题报告
④系统实现流程图。
研究阶段二(2015年3月9日——2015年4月26日)
①分析整个系统的二次开发代码构架;
②对每一个功能模块,通过具体的操作步骤,实现系统的所有功能。
研究阶段三(2015年4月27日——2015年5月29日)
①系统实现、优化、调试阶段
②论文终稿
五、拟查阅的主要参考文献
[1]李贞培,李平,郭新宇等. 三种基于GDI+的图像灰度化实现方法[J].计算机技术与发展,2009,19(7).
[6]邹星. 车牌识别中的图像提取和分割算法[J].重庆工学院学报(自然科学版)2009(08).
[7]李战明,徐锦钢. 车牌识别系统中的车牌图像预处理研究[J]2008(08).
[8]何铁军,张宁,黄卫. 车牌识别算法的研究与实现[J].公路交通技术.2006(08).
[9]冯慧娜.车牌识别系统中车辆定位与字符分割技术的研究[D].电子科技大学 2010.
(2)图像预处理
图像预处理过程需要把图像转换成便于定位的二值化图像。需要经过图像灰度化、图像增强、边缘提取、二值化操作。
(3)车牌定位
车牌定位方法的出发点是利用车牌区域的特征来判断车牌,将车牌区域从整幅车牌图像中分割出来。车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。
(4)字符分割
字符的分割要求能够准确地定位字符边界,进而将车牌内的所有字符
3.设计目标:
车牌识别系统是图像处理和模式识别技术研究的热点,应用也越来越普遍。车牌识别主要包括以下三个主要步骤:车牌定位,车牌字符分割,车牌字符识别。近年来,许多学者对其进行了较为深入的研究和探讨,提出了基于纹理特征、颜色信息和运用数学工具的车牌定位法,基于投影分析、连通域分析的字符分割方法和基于模板匹配、神经网络等的字符识别方法。根据国内外汽车牌照的字符特征,对近年来出现的车牌识别方法进行综述,在现有方法的基础上,取其优点,结合数学工具,提高系统的速度和精度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于上述背景,本文的主要创新点是采集车辆的多种信息(包括车牌,车标,外形,大小,颜色等),采用优化的识别算法和信息融合技术,自动识别出车辆的各种信息。本文研究的关键问题主要是两个方面:一是,分析现有的车标识别方法,进一步寻找更优的车标识别算法,实现车标的准确定位和识别;二是,在完成车标,车辆颜色,和车牌识别的基础上,建立一个数据库,针对车牌遮挡,模糊的情况下,仅用车牌识别判断车辆的身份的正确率低的情况,利用车辆各种信息之间的互补特性以及信息的优先级排序,寻找信息融合算法,利用决策级融合算法,设计分类器,最终实现车辆身份的确定。
1.车标的形状千差万别,可以由生产厂商自主决定。有类圆形的,类方形的,
还有字母的等等。
2.图像采集设备的低像素导致所得车辆图像分辨率低,而且车标的尺寸差别很大。
3.车标周围一般都有散热网干扰,而且散热网的纹理多种多样,致使车标区域前景和背景难以区分,给定位带来了困难。
4.车标受天气变化影响严重,晚间车牌能够反光易于捕获,但车标几乎不能辨识。
在传统的车辆识别技术中,车牌作为车辆的唯一“”,其识别技术一直是人们研究的热点和重点。
车牌识别包括车牌定位,车牌字符切割与车牌字符识别。其中车牌定位一直是车牌识别的重点和难点。近年来相关文献提出许多车牌定位算法,其中比较典型的算法有基于边缘法,基于彩色分割法,基于小波变换和基于遗传算法的方法等;在车牌字符切分方面,主要的方法有[2]:基于二值(灰度)图像水平(垂直)投影分布的车牌字符的切分方法,基于二值图像字符区域上下轮廓分布的车牌字符切分算法,基于模板匹配的车牌字符切分算法,基于聚类分析的车牌字符切分算法,基于车牌二值图像字符连通性的字符切分算法,基于颜色分类的车牌字符切分算法等;在车牌字符分类器的设计方面采取的主要方法有:神经网络分类器(包括BP神经网络,SOFM网络等),模板匹配分类器,基于概率统计的Bayes分类器,几何分类器等。
传统的车辆识别是指根据车辆的外貌特征,将车辆自动归类(如卡车,轿车或公共汽车),这些特征包括车体外形,车身颜色等,而且一般只是利用单一的特征进行车辆识别。
本文中的车辆自动识别技术[1]是指当车辆通过某一特定的地点时(如自动收费站,小区进出口管理等),系统自动识别出车辆本身的代表符号以及固有属性(如车牌号,车辆的颜色,车型特征及车标等)的一种技术。车辆识别技术的容一般包括车牌识别,车型识别,车标识别以及车辆颜色识别等技术。车辆识别技术是实现车辆自动化管理的基础,它广泛应用于公路和桥梁收费站,公路流量观测站,城市监控系统,停车场管理系统,港口和机场等车牌认证的实际交通系统中,以提高交通系统的车辆监控和管理的自动化程度。
5.随着车辆种类的不断增加,识别系统的模板库也要随之丰富,否则识
别效果会受到严重的影响。
车辆识别技术中,车辆身份的确定是一个复杂的问题,然而靠单一信息源提供的参数,不能准确保证其作为车辆身份的确定的可靠性。如果车辆识别能最大限度的利用车辆信息对目标车辆进行确认划分,那将会极提高车辆识别的可靠性。例如,用车型识别,车标识别或车牌识别的结果作为依据,其可靠性往往是比较低的。但是,将车标识别,车辆颜色识别和牌照识别的结果经过某种算法融合(称为信息融合)后,作为依据,其可靠性将大大提高。例如文献[5]就是将车型识别与车牌识别通过信息融合中的D-S证据理论进行融合的车辆识别算法,具体实现方法是:首先进行车型识别,提取车型的7个不变矩特征,用SVM和决策树多分类器相结合的策略进行分类;然后是车牌识别,采用基于先验知识的二叉树结构组合多个二值分类支持向量机(称为SVM决策树)来进行车牌识别的多分类识别;最后将车牌识别,车型识别与IC卡中的数据经过D-S证据理论的融合算法进行融合,分别计算各种情况下的信任度函数,结果发现联合作用下的可信度比单个证据的可信度要高。文献[6]采用车辆颜色和车型的辅助性车牌识别,在公路不停车收费系统中,对各种情况采用不同的车辆识别方法。
信息融合是基于智能化的思想,它的一个很重要的模型就是人的大脑,它要实现的功能也就是模仿大脑对来自多方面信息的综合能力。
信息融合[7]就是由多种信息源,如传感器,数据库,知识库和人类本身来获取有关信息,并进行滤波,相关和集成,从而形成一个表示构架,这种构架适合于获得有关决策,对信息的解释,达到系统目标(如识别或跟踪运动目标),传感器管理和系统控制等。
选题报告会日期
论文术研究
研究方向
一、选题的意义和目的
近年来随着经济的快速增长,人们的生活水平不断提高,机动车的规模和数量也急剧增加,机动车在给人们带来经济利益和生活方便的同时,也给人们带来了很多的困扰,如交通阻塞,环境污染和能源浪费等问题,因此,进一步加强车辆的自动化管理日趋重要。
学校代码:11906
编号:
青岛大学
硕士学位论文开题报告
论文题目:基于信息融合的车辆识别系统关键技术研究
姓名:文文
专业名称:信号与信息处理
研究方向:智能信息处理
指导教师:国为教授
日期:2011年12月1日
大学硕士研究生学位论文开题报告
专业
信号与信息处理
论文起止日期
课题来源
国家自然科学基金、省自然科学基金
此外实践证明仅仅通过车牌和车型信息还不能完全达到确认车辆身份的目的。除了车牌和车型信息外,车辆还有车标这一重要的信息。车标包含了车辆的车型信息,此外它还包含了难以更换的生产厂家信息。然而,现在许多学者都把重点放在了车牌识别和车型识别上,使得车标这一重要信息被遗忘,目前车标识别还存在着很多的问题没有解决,主要表现在以下四个方面[3][4]:
尽管现在的车牌识别技术已经发展到相当完善的地步,国外的许多学者也研究了很多成熟的车牌识别算法,国许多的企业也已生产出许多的车牌识别软件,但是现有的车牌识别技术仍有很多的不足之处,主要表现在现有的车牌识别算法只是在解析度较高和图像比较清晰的车牌,才能够有效地识别车辆,而对于较低解析度和较为模糊的车牌,特别是车牌有较为严重的污迹,锈迹,遮挡或变形时,却没有有效的识别方法,而且对于车辆盗窃发生长时间后,犯罪分子更换车牌等情况,只应用车牌识别很难发现被盗车辆。因此进一步寻找更加完善的车辆识别方法仍是我们亟待解决的问题。
相关文档
最新文档