1975~2002匈牙利奥林匹克数学竞赛(英文版)

合集下载

海量电子书下载

海量电子书下载

海量电子书下载(包括刘培杰数学工作室的大部分书籍)0点哈尔滨工业大学出版社的刘培杰数学工作室出版的书籍在024-026系列001——《从单位圆谈起》华罗庚002——丘成桐中学数学奖推荐参考书(英文版的都没有传,以下同)由高等教育出版社出版,目前已出版了5本:1.《莫斯科智力游戏359 道数学趣味题》(俄)Б. А. 柯尔捷姆斯基著2.《趣味密码术与密写术》M·加德纳著3.《著名几何问题及其解法尺规作图的历史》B. 波尔德(Benjamin Bold)著4.《第一届丘成桐中学数学奖获奖论文集(英文版)》5.《恒隆数学奖获奖论文集(英文版)》003——好玩的数学,目前已经出了13种:1.《不可思议的e》2.《幻方及其他》第二版3.《乐在其中的数学》4.《七巧板、九连环和华容道》5.《趣味随机问题》6.《数学聊斋》7.《数学美拾趣》8.《数学演义》9.《说不尽的π》10.《中国古算解趣》11.《数学志异》12.《进位制与数学**》13.《古算诗题探源》14.《幻方与素数》第三版注:前10本xuguoyun 于“数学丛书”帖上传;《幻方及其他》第二版已经改成《幻方与素数》第三版004——科普作家别莱利曼,三类一、中国青年出版社最近出版的1.《趣味代数学第4版》(俄)别莱利曼著丁寿田朱美琨译2.《趣味几何学第3版》(俄)别莱利曼著符其珣译(将2个压缩文件放在一起解压!)3.《趣味物理学第5版》(俄)别莱利曼著符其珣译4.《趣味物理学:续编第3版》(俄)别莱利曼著滕砥平译二、中国青年出版社5、60年代出版的(有的是繁体字)5.《趣味代数学》(俄)别莱利曼著丁寿田朱美琨译(无)6.《趣味几何学(上册)》(俄)别莱利曼著符其珣译(无)7.《趣味几何学(下册)》(俄)别莱利曼著符其珣译(无)8.《趣味力学》(苏)别莱利曼著;符其珣译9.《趣味天文学》(苏)别列利曼撰;滕砥平,唐克译10.《趣味物理学》(苏)别莱利曼撰;符其珣译(无)11.《趣味物理学续编》(苏)别莱利曼撰;腾砥平译(无)12.《行星际的旅行》(苏)别莱利曼著;符其珣译三、其他出版社出版的13.《物理万花筒》(苏)别莱利曼著;王昌茂译14.《趣味思考题》(苏)别莱利曼著;符其珣译15.《有趣的游戏》(苏)别莱利曼原著;王昌茂翻译005——《数学试卷分析方法》华东师范大学出版社,许世红,胡中锋编著006——《七彩数学》专辑,科学出版社第一批1.《数学走进化学与生物》姜伯驹钱敏平龚光鲁著2.《数论与密码》冯克勤著3.《迭代浑沌分形》李忠著4.《数学的力量——漫话数学的价值》李文林任辛喜著5.《古希腊名题与现代数学》张贤科著第二批6.《离散几何欣赏》宗传明著7.《通信纠错中的数学》冯克勤著8.《趣话概率》安鸿志著9.《画图的数学》齐东旭著10.《整数分解》颜松远著007——《中学数学教学参考书》,1956年新知识出版社编辑出版,初中部分一、算术:1.《整数》2.《分数》3.《小数与百分数》4.《比例》二、代数5.《有理数》6.《有理整式的恒等变换》7.《分式与比例》8.《一元一次方程》9.《一次方程组及开平方》三、几何10.《体面线点》11.《全等三角形》12.《基本轨迹与作图》13.《平行四边形》14.《圆》(缺)008——《中学数学教学参考书》,1956年新知识出版社编辑出版,高中部分一、代数:1.《无理数与无理式》2.《一元二次方程》3.《函数图象及二元二次联立方程》4.《数列与极限》(缺)5.《指数与对数》6.《联合二项式定理及复数》7.《不等式》8.《高次方程》二、几何9.《相似形》10.《勾股定理》11.《多边形面积》12.《正多边形与圆》13.《直线与平面》14.《多面体》(缺)15.《回转体》(缺)三、三角16.《三角函数》17.《加法定理》18.《解三角形》19.《三角方程》(缺)注:部分书籍以内容完全相同的上教版代替009——《中学数学教学参考丛书》,上海教育出版社1.《多项式的乘法和因式分解》茅成栋编2.《一元二次方程》赵宪初编3.《绝对值》陈汝作编(缺,这里该书的封面用附件传上)4.《代数方程组》李大元武成章等编5.《指数函数和对数函数》徐美琴许三保编6.《三角函数》姚晶编7.《幂的运算和幂函数》顾鸿达朱成杰王致平编8.《解不等式》张福生赵国礼编9.《实数》张镜清霍纪良编10.《直线形》陶成铨编11.《圆与正多边形》黄承宏编12.《相似形和比例线段》杨荣祥黄荣基编13.《轨迹》毛鸿翔左铨如编14.《解三角形》黄汉禹编15.《直线与平面》夏明德编16.《排列和组合》翟宗荫编17.《高次方程》李传芳陈汝作陈永明编18.《复数》顾忠德管锡培编19.《数列与极限》刘文编20.《直线和圆》陈森林揭方琢编21.《二次曲线》张泽湘编22.《参数方程和极坐标方程》刘世伟编23.《概率初步》上海师范大学数学系应用数学组编24.《矩阵初步》张弛编25.《集合论初步》沈石山俞鑫泰编010——教学工具书1.《代数学辞典问题解法上》笹部贞市郎编蒋声等译2.《代数学辞典问题解法下》笹部贞市郎编张明梁等译3.《三角学辞典问题解法》笹部贞市郎编肖乐编译4.《几何学辞典问题解法》笹部贞市郎编高清仁等译5.《解析几何辞典问题解法》笹部贞市郎编关桐书等译6.《微积分辞典问题解法》笹部贞市郎编蒋声等译011——《中学生数学课外读物》,上海教育出版社1.《速算与验算》姚人杰著2.《数学归纳法》华罗庚著3.《不等式》张驰著4.《谈谈怎样学好数学》苏步青著5.《π和е》夏道行著6.《复数的应用》莫由著7.《怎样用复数解题》程其坚著8.《圆和二次方程》马明著9.《怎样列方程解应用题》赵宪初著10.《怎样应用数学归纳法》洪波著11.《最大值和最小值》谷超豪著12.《图上作业法》管梅谷著13.《谈谈怎样编数学墙报》华东师范大学第一附属中学数学教研组编012——上海教育出版社1978年12月到2002年5月出版一套初等数学小丛书,一共29本,如下:1.《抽屉原则及其他》常庚哲2.《谈谈怎样学好数学》苏步青3.《函数方程》田增伦4.《几何不等式》单壿5.《一百个数学问题》[波兰]史坦因豪斯6.《又一百个数学问题》[波兰]史坦因豪斯7.《从单位根谈起》蒋声8.《从正五边形谈起》严镇军9.《集合论与连续统假设浅说》张锦文10.《矩阵对策初步》张盛开11.《趣味的图论问题》单壿12.《母函数》史济怀13.《代数方程与置换群》李世雄14.《中学生数学分析》[苏]庞特里亚金15.《覆盖》单壿16.《计数》黄国勋李炯生17.《对称和群》朱水林18.《平方和》冯克勤19.《不定方程》单壿余红兵20.《凸函数与琴生不等式》黄宣国21.《有趣的差分方程》李克大李尹裕22.《柯西不等式与排序不等式》南山23.《组合几何》单壿24.《奇数、偶数、完全平方数》南秀全余石25.《棋盘上的组合数学》冯跃峰26.《十个有趣的数学问题》单壿27.《染色:从**到数学》柳柏濂28.《集合及其子集》单壿29.《平面几何中的小花》单壿013——《中学生文库》数学部分:1.《怎样列方程解应用题》赵宪初2.《面积关系帮你解题》张景中3.《怎样用配方法解题》奚定华4.《根与系数的关系及其应用》毛鸿翔5.《怎样添辅助线》余振棠谢传芳6.《圆和二次方程》马明7.《几何作图不能问题》邱贤忠沈宗华8.《从勾股定理谈起》盛立人严镇军9.《从√2谈起》张景中10.《不等式》张弛11.《不等式的证明》吴承鄫李绍宗12.《奇数和偶数》常庚哲苏淳13.《射影几何趣谈》冯克勤14.《数学万花镜》[波]史坦因豪斯著裘光明译15.《递归数列》陈家声徐惠芳16.《从平面到空间》蒋声17.《平面向量和空间向量》吕学礼18.《几何变换》蒋声19.《一些不像“几何”的几何学》沈信耀20.《复合推理与真值表》戴月仙21.《数学归纳法》华罗庚22.《凸图形》吴立生庄亚栋23.《三角恒等式及应用》张运筹24.《三角不等式及应用》张运筹25.《抽屉原则及其他》常庚哲26.《初等极值问题》程龙27.《图论中的几个极值问题》管梅谷28.《趣味的图论问题》单墫29.《矩阵对策初步》张盛开30.《从单位根谈起》蒋声31.《形形色色的曲线》蒋声32.《反射和反演》严镇军33.《极坐标与三角函数》陈福泰34.《反证法》孙玉清35.《棋盘上的数学》单墫程龙36.《谈谈数学中的无限》谷超豪37.《模糊数学》刘应明任平38.《人造卫星轨道的分析和计算》俞文陈守吉39.《谈谈怎样学好数学》苏步青40.《世界数学名题选》陆乃超袁小明41.《生物数学趣谈》李金平苏淳42.《漫话电子计算机》张根法43.《运动场上的数学》黄国勋李炯生44.《SOS编码纵横谈》谈祥柏45.《数学探奇》(西班牙)米盖尔.德.古斯曼著周克希译46.《三角形趣谈》杨世明47.《思维的技巧》吴宣文48.《魔方》朱兆毅沈庆海著在/thread-23988-1-10.html/thread-29576-7-1.html这两个帖子中传有部分书籍014——《初中学生课外阅读系列》,上海教育出版社1.《漫游勾股世界》吴深德2.《绝对值》陈汝作3.《多项式的乘法和因式分解》刘渝瑛4.《怎样列方程解应用题》赵宪初5.《怎样解不等式》张福生赵国礼6.《怎样用配方法解题》奚定华7.《面积关系帮你解题》张景中8.《怎样添辅助线》余振棠射传芳9.《根与系数的关系及其应用》毛鸿翔10.《反证法》孙玉清015——《高中学生课外阅读系列》,上海教育出版社1.《从平面到空间》蒋声2.《三角恒等式及其应用》张运筹3.《直线和平面》夏明德4.《不等式的证明》吴承鄫李绍宗5.《参数方程和极坐标方程》刘世伟6.《从单位根谈起》蒋声7.《二次曲线》张泽湘8.《排列与组合》翟宗荫9.《数列与极限》刘文10.《集合和映射》康士凯张海森(缺)11.《随机世界探秘概率统计初步》茆诗松魏振军016——《自然科学小丛书》,北京出版社出版1.《轨迹》赵慈庚编著2.《三角形内角和等于180°吗?》梅向明著3.《谈勾股定理》严以诚孟广烈编著4.《有趣的偶然世界》张文忠著5.《中学数学中的对称》张文忠著017——《北京市中学生数学竞赛辅导报告汇集》,北京出版社1.《谈谈与蜂房结构有关的数学问题》华罗庚著2.《无限的数学》秦元勋著3.《谈谈解答数学问题》赵慈庚著018——数学中译本,科学普及出版社1.《高次方程解法》程乃栋编译2.《力学在数学上的一些应用》高天青编译3.《怎样作图象》刘远图编译4.《逐次逼近法》赵根榕编译5.《最简单的极值问题》潘德松编译019——趣味数学书籍,上海教育出版社1.《趣味算术》蒋声陈瑞琛编2.《趣味代数》蒋声陈瑞琛编3.《趣味几何》蒋声陈瑞琛编4.《趣味代数(续)》蒋声陈瑞琛编5.《趣味立体几何》蒋声陈瑞琛编6.《趣味解析几何》蒋声陈瑞琛编020——《数学精品库》,民主与建设出版社1.《决策致胜思维训练》郑应文著2.《难题精解思维训练》王志雄汪启泰余文竑詹方玮著3.《平面几何思维训练》余文竑詹方玮著4.《数学宫趣游》王志雄著5.《数学竞赛题的背景》王志雄汪启泰著6.《组合几何思维训练》林常著7.《诺贝尔奖中的数学方法》高鸿桢等著(缺)021——由一些数学专家写的小册子,上海教育出版社1.《初等数论100例》柯召孙琦编著2.《复数计算与几何证题》常庚哲编著3.《运动群》张远达编著022——《数学奥林匹克命题人讲座》,上海科技教育出版社1.《解析几何》陆洪文著(缺)2.《代数函数与多项式》施咸亮著(缺)3.《函数迭代与函数方程》王伟叶熊斌著(缺)4.《代数不等式》陈计季潮丞著(缺)5.《重心坐标与平面几何》曹纲叶中豪著(缺)6.《初等数论》冯志刚著7.《集合与对应》单壿著8.《数列与数学归纳法》单壿著9.《组合问题》刘培杰,张永芹著著(缺)10.《图论·组合几何》任韩田廷彦著(缺)11.《向量与立体几何》唐立华著(缺)12.《复数·三角函数》邵嘉林著(缺)023——反例相关书籍1.《初中数学中的反例》朱锡华编2.《高中数学中的反例》马克杰编3.《从反面考虑问题反例·反证·反推及其他》严镇军陈吉范编4.《代数中的反例》胡崇慧编5.《高等代数的265个反例》李玉文编著6.《高等数学中的反例》朱勇编7.《数学分析中的问题和反例》汪林编8.《数学分析中的反例》王俊青编著9.《分析中的反例》(美)盖尔鲍姆(美)奥姆斯特德著高枚译10.《实分析中的反例》汪林编11.《实变函数论中的反例》程庆汪远征编著12.《泛函分析中的反例》汪林编13.《概率统计中的反例》张文忠但冰如编14.《概率论与数理统计中的反例》陈俊雅王秀花编著15.《概率统计中的反例》张尚志刘锦萼编著16.《概率论中的反例》张朝金编17.《图论的例和反例》(美)卡波边柯(美)莫鲁卓著聂祖安译18.《拓扑空间中的反例》汪林杨富春编著19.《点集拓扑学题解与反例》陈肇姜编著024——精品书系第一批,哈尔滨工业大学出版社1.《最新世界各国数学奥林匹克中的平面几何试题》刘培杰主编2.《走向国际数学奥林匹克的平面几何试题诠释:历届全国高中数学联赛平面几何试题一题多解上》沈文选主编杨清桃步凡昊凡副主编3.《走向国际数学奥林匹克的平面几何试题诠释:历届全国高中数学联赛平面几何试题一题多解下》沈文选主编杨清桃步凡昊凡副主编4.《世界著名平面几何经典著作钩沉几何作图专题卷上》刘培杰主编5.《世界著名平面几何经典著作钩沉几何作图专题卷下》刘培杰主编(缺)6.《历届CMO中国数学奥林匹克试题集1986-2009》刘培杰主编7.《历届IMO试题集》刘培杰主编8.《全国大学生数学夏令营数学竞赛试题及解答》许以超陆柱家编著9.《历届PTN美国大学生数学竞赛试题集1938-2007》冯贝叶许康侯晋川等编译10.《历届俄罗斯大学生数学竞赛试题及解答》(即将出版)11.《数学奥林匹克与数学文化第1辑》刘培杰主编12.《数学奥林匹克与数学文化第2辑文化卷》刘培杰主编13.《数学奥林匹克与数学文化第2辑竞赛卷》刘培杰主编14.《数学奥林匹克与数学文化第3辑竞赛卷》刘培杰主编(即将出版)15.《500个最新世界著名数学智力趣题》刘培杰马国选主编16.《400个最新世界著名数学最值问题》刘培杰主编17.《500个世界著名数学征解问题》冯贝叶编译18.《400个中国最佳初等数学征解老问题》刘培杰主编(缺)19.《500个世界著名几何名题及1000个著名几何定理》(即将出版)20.《从毕达哥拉斯到怀尔斯》刘培杰主编21.《从迪利克雷到维斯卡尔迪》刘培杰主编22.《从哥德巴赫到陈景润中国解析数论群英谱》刘培杰主编23.《从庞加莱到佩雷尔曼》刘培杰主编(即将出版)24.《精神的圣徒别样的人生:60位中国数学家成长的历程》刘培杰主编25.《数学我爱你大数学家的故事》(美)吕塔·赖默尔维尔贝特·赖默尔著26.《俄罗斯平面几何问题集原书第6版》波拉索洛夫编著025——精品书系第二批,哈尔滨工业大学出版社1.《初等数学研究Ⅰ》甘志国著—数学·统计学系列2.《初等数学研究Ⅱ上》甘志国著—数学·统计学系列3.《初等数学研究Ⅱ下》甘志国著—数学·统计学系列4.《数学眼光透视》沈文选杨清桃编著—中学数学拓展丛书5.《数学思想领悟》沈文选杨清桃编著—中学数学拓展丛书6.《数学应用展观》沈文选杨清桃编著—中学数学拓展丛书7.《数学建模导引》沈文选杨清桃编著—中学数学拓展丛书8.《数学方法溯源》沈文选杨清桃编著—中学数学拓展丛书9.《数学史话览胜》沈文选杨清桃编著—中学数学拓展丛书10.《博弈论精粹》刘培杰执行主编11.《初等数论难题集第1卷》刘培杰主编12.《多项式和无理数》冯贝叶著—数学·统计学系列13.《数学奥林匹克不等式研究》杨学枝著—数学·统计学系列14.《解析不等式新论》张小明,褚玉明著—数学·统计学系列15.《模糊数据统计学》王忠玉吴柏林著—数学·统计学系列16.《三角形的五心》贺功保叶美雄编著17.《中国初等数学研究2009卷第1辑》杨学枝主编18.《高等数学试题精选与答题技巧》杨克劭主编19.《运筹学试题精选与答题技巧》徐永仁主编20.《空间解析几何及其应用》徐阳,杨兴云编著026——精品书系第三批,哈尔滨工业大学出版社1.《中考数学专题总复习》陈晓莉主编2.《中考几何综合拔高题解法精粹》李双臻李春艳编著3.《数学奥林匹克超级题库初中卷上》刘培杰数学工作室编著(缺)4.《新编中学数学解题方法全书初中版上》刘培杰主编5.《新编中学数学解题方法全书高中版上》刘培杰主编6.《新编中学数学解题方法全书高中版中》刘培杰主编7.《新编中学数学解题方法全书高中版下1》刘培杰主编8.《新编中学数学解题方法全书高中版下2》刘培杰主编9.《新编中学数学解题方法全书高考真题卷》张广民王世堑主编(缺)10.《新编中学数学解题方法全书高考复习卷》张永辉主编(缺)11.《最新全国及各省市高考数学试卷解法研究及点拨评析》邵德彪主编12.《高考数学真题分类解读第1册》刘松丽张坯东杨婷婷等本册主编13.《高考数学真题分类解读第2册》高考真题研究组编14.《高考数学真题分类解读第3册》阎丽红孙宏宇牟晓永等本册主编15.《高考数学真题分类解读第4册》王小波董亮本册主编16.《高考数学真题分类解读第5册》高考真题研究组编17.《向量法巧解数学高考题》赵南平编著18.《高考数学的理论与实践》高慧明著19.《中学数学解题方法》吕凤祥主编20.《中学数学方法论》鲍曼主编027——《当代数学园地》,科学出版社出版1.《Kac-Moody代数导引》万哲先著2.《哈密顿系统的指标理论及其应用》龙以明著3.《分形-美的科学复动力系统图形化》(德)派特根(德)P.H.里希特著井竹君章祥荪译4.《哈密顿系统与时滞微分方程的周期解》刘正荣李继彬著5.《群类论》郭文彬著6.《代数几何码》冯贵良吴新文著7.《正规形理论及其应用》李伟固著8.《测度值分枝过程引论》赵学雷著9.《完备李代数》孟道骥朱林生姜翠波著028——《通俗数学名著译丛》,上海教育出版社出版1.《数学:新的黄金时代》2.《数论妙趣:数学女王的盛情款待》3.《数学娱乐问题》4.《数学趣闻集锦》上、下册5.《数学与联想》6.《计算出人意料:从开普勒到托姆的时间图景》7.《当代数学为了人类心智的荣耀》8.《近代欧氏几何学》9.《站在巨人的肩膀上》10.《无穷之旅:关于无穷大的文化史》11.《数:科学的语言》12.《20世纪数学的五大指导理论》13.《数学**与欣赏》14.《数学旅行家:漫游数王国》15.《蚁迹寻踪及其他数学探索》16.《圆锥曲线的几何性质》17.《拓扑实验》18.《数学*国界:国际数学联盟的历史》19.《意料之外的绞刑和其他数学娱乐》20.《稳操胜券》上、下册21.《现代世界中的数学》22.《**:自然规律支配偶然性》23.《解决问题的策略》24.《东西数学物语》25.《黎曼博士的零点》26.《奇妙而有趣的几何》27.《虚数的故事》28.《悭悭宇宙:自然界里的形态和造型》029——《走进教育数学丛书》,科学出版社1.《数学的神韵》李尚志著(缺)2.《数学不了情》谈祥柏著(缺)3.《微积分快餐》林群著4.《走进教育数学》沈文选著5.《数学解题策略》朱华伟钱展望著(缺)6.《绕来绕去的向量法》(缺)7.《直来直去的微积分》张景中著(缺)8.《一线串通的初等数学》张景中著9.《几何新方法和新体系》张景中著10.《从数学竞赛到竞赛数学》朱华伟编030——关于匈牙利奥林匹克数学竞赛的几本书,后两本是台湾出的繁体字书:1.《匈牙利奥林匹克数学竞赛题解》(匈)库尔沙克(Й.Кюршак)等编胡湘陵译2.《匈牙利数学问题详解第1册》王昌锐译(将2个压缩文件放在一起解压!)3.《匈牙利数学问题详解第2册》王昌锐译(将2个压缩文件放在一起解压!)031——原新知识出版社出版的一些老书,书目如下:1.《平面几何作图题解法中的讨论》金品编著2.《上海市1956-57年中学生数学竞赛习题汇编》中国数学会上海分会中学数学研究委员会编3.《什么是非欧几何》吴宗初著4.《数学试题汇集·附解法》(苏)沙赫诺(Шахно.К.У.)编著赵越李伯尘译5.《同解方程》程志国编6.《统计平均数》邹依仁编著7.《因式分解及其应用》郁李编8.《有趣的算术题》(苏)巴梁克(Г.Б.Поляк)编盛帆译9.《整式与分式》郁李编10.《整数四则和分数四则》刘永政著11.《正定理和逆定理》(苏)格拉施坦(И.С.Градштейн)著许梅译12.《中学课程中的无理方程》(苏)吉布什(И.А.Гибш)著管承仲译13.《中学数学课外活动》张运钧编著032——《中学数学奥林匹克丛书》,北京师范学院出版社1.《立体几何向量及其变换》何裕新孙维刚著2.《平面几何及变换》梅向明主编唐大昌等编写3.《代数恒等变形》梅向明主编4.《初等数论初中册》梅向明主编5.《北京市中学生数学竞赛试题解析》梅向明主编6.《数学奥林匹克解题研究初中册》梅向明主编7.《数学奥林匹克解题研究高中册》周春荔等编8.《组合基础》周沛耕张宁生著9.《初等数论高中册》米道生吴建平编写033——《数理化竞赛丛书》数学部分,科学普及出版社1.《北京市中学数学竞赛题解1956-1964》北京市数学会编2.《全国中学数学竞赛题解1978》全国数学竞赛委员会编3.《美国及国际数学竞赛题解1976-1978》(美)格雷特编中国科学院应用数学研究推广办公室译4.《匈牙利奥林匹克数学竞赛题解》(匈)库尔沙克(Й.Кюршак)等编胡湘陵译5.《北京市中学数学竞赛题解1956-1979》北京市数学会6.《全国中学数学竞赛题解1979》科学普及出版社编034——《数学奥林匹克题库》,新蕾出版社1.《美国中学生数学竞赛题解1》(缺)2.《美国中学生数学竞赛题解2》3.《国际中学生数学竞赛题解》4.《中国中学生数学竞赛题解1》(缺)5.《中国中学生数学竞赛题解2》(缺)6.《加拿大中学生数学竞赛题解》7.《苏联中学生数学竞赛题解》035——《中学数学》丛书,湖北省暨武汉市数学会组织编写、湖北人民出版社1.《代数解题引导》杨挥陈传理编2.《初等几何解题引导》江志著3.《三角解题引导》车新发编4.《解析几何解题引导》刘佛清张硕才编5.《国际数学竞赛试题讲解Ⅰ》江仁俊编6.《国际数学竞赛试题讲解Ⅱ》江仁俊等编036——《数学圈丛书》,湖南科技出版社1.《数学圈》1 【美】H.W.伊佛斯2.《数学圈》2 【美】H.W.伊佛斯3.《数学圈》3 【美】H.W.伊佛斯4.《数学爵士乐》【美】爱德华.伯格、迈克尔.斯塔伯德5.《素数的音乐》【英】马科斯.杜.索托伊6.《无法解出的方程》【美】马里奥.利维奥7.《数学家读报》【美】约翰·艾伦·保罗斯037——一套数学竞赛书籍,上海科学技术出版社1.《初中数学竞赛妙题巧解》常庚哲编2.《初中数学竞赛辅导讲座》严镇军等编3.《高中数学竞赛辅导讲座》常庚哲等编4.《中、美历届数学竞赛试题精解》刘鸿坤等编038——国外数学奥林匹克俱乐部丛书,湖北教育出版社1.《美国数学邀请赛试题解答与评注》朱华伟编译2.《俄国青少年数学俱乐部》苏淳朱华伟译039——《国内外数学竞赛题解》,陕西师范大学图书馆编辑组编写《国内外数学竞赛题解》上、中、下三册040——开明出版社出版由中国数学奥林匹克委员会编译的两本书,书目如下:1.《环球城市数学竞赛问题与解答第1册》2.《环球城市数学竞赛问题与解答第2册》041——数学奥林匹克试题集锦,华东师范大学出版社,IMO中国国家集训队教练组编写1.《走向IMO 数学奥林匹克试题集锦2003》2003年IMO中国国家集训队教练组编2.《走向IMO 数学奥林匹克试题集锦2004》2004年IMO中国国家集训队教练组,选拔考试命题组编3.《走向IMO 数学奥林匹克试题集锦2005》2005中国国家集训队教练组、选拔考试命题组编4.《走向IMO 数学奥林匹克试题集锦2006》2006年IMO中国国家集训队教练组编5.《走向IMO 数学奥林匹克试题集锦2007》2007年IMO中国国家集训队教练组编6.《走向IMO 数学奥林匹克试题集锦2008》2008年IMO中国国家集训队教练组编(缺)7.《走向IMO 数学奥林匹克试题集锦2009》2009年IMO中国国家集训队教练组编(缺)042——国外、国际数学竞赛试题方面的书籍1.《奥林匹克数学竞赛题集》(苏)罗什柯夫等编著张兴烈刘承明译2.《波兰数学竞赛题解1-27届》(波)耶·勃罗夫金(波)斯·斯特拉谢维奇著朱尧辰译3.《初中中外数学竞赛集锦》刘鸿坤编著4.《第26届国际数学奥林匹克》中国数学会普及工作委员会编5.《第一届至第二十二届国际中学生数学竞赛题解1959-1981》杨森茂陈圣德编译6.《国际奥林匹克数学竞赛题及解答1978-1986》中国科协青少年工作部中国数学会编译7.《国际数学奥林匹克1-20届》江苏师范学院数学系编译8.《国际数学竞赛题解》(德)H.D.霍恩舒赫编潘振亚等译。

历届国际数学奥赛结果

历届国际数学奥赛结果

历届国际数学奥赛结果自从1959年第一届国际数学奥赛举办以来,每年都会有来自世界各地的优秀数学学生参加这一盛会。

这些学生在奥赛中展示了他们的数学才华,为自己的国家争得了荣誉。

下面我们来看看历届国际数学奥赛的结果。

1959年第一届国际数学奥赛在罗马尼亚布加勒斯特举行,共有7个国家的16名学生参加。

苏联队以5金1银的好成绩夺得了团体冠军。

1960年第二届国际数学奥赛在苏联莫斯科举行,共有12个国家的39名学生参加。

苏联队再次夺得团体冠军。

1961年第三届国际数学奥赛在波兰华沙举行,共有16个国家的52名学生参加。

苏联队再次夺得团体冠军。

1962年第四届国际数学奥赛在捷克斯洛伐克布拉格举行,共有17个国家的58名学生参加。

苏联队再次夺得团体冠军。

1963年第五届国际数学奥赛在罗马尼亚布加勒斯特举行,共有19个国家的74名学生参加。

苏联队再次夺得团体冠军。

1964年第六届国际数学奥赛在苏联莫斯科举行,共有20个国家的87名学生参加。

苏联队再次夺得团体冠军。

1965年第七届国际数学奥赛在保加利亚索非亚举行,共有22个国家的105名学生参加。

苏联队再次夺得团体冠军。

1966年第八届国际数学奥赛在捷克斯洛伐克布拉格举行,共有23个国家的123名学生参加。

苏联队再次夺得团体冠军。

1967年第九届国际数学奥赛在古巴哈瓦那举行,共有27个国家的139名学生参加。

苏联队再次夺得团体冠军。

1968年第十届国际数学奥赛在罗马尼亚布加勒斯特举行,共有29个国家的174名学生参加。

苏联队再次夺得团体冠军。

从以上结果可以看出,苏联队在历届国际数学奥赛中表现出色,连续十年夺得团体冠军。

这也反映出苏联在数学领域的强大实力。

随着时间的推移,越来越多的国家开始重视数学教育,参加国际数学奥赛的国家也越来越多,竞争也越来越激烈。

但是,无论如何,国际数学奥赛都是展示数学才华的舞台,也是促进国际数学交流的重要平台。

千余篇数学经典书籍清单汇总欣赏(下)

千余篇数学经典书籍清单汇总欣赏(下)

千余篇数学经典书籍清单汇总欣赏(下)031——原新知识出版社出版的一些老书,书目如下:1.《平面几何作图题解法中的讨论》金品编著2.《上海市1956-57年中学生数学竞赛习题汇编》中国数学会上海分会中学数学研究委员会编3.《什么是非欧几何》吴宗初著4.《数学试题汇集·附解法》(苏)沙赫诺(Шахно.К.У.)编著赵越李伯尘译5.《同解方程》程志国编6.《统计平均数》邹依仁编著7.《因式分解及其应用》郁李编8.《有趣的算术题》(苏)巴梁克(Г.Б.Поляк)编盛帆译9.《整式与分式》郁李编10.《整数四则和分数四则》刘永政著11.《正定理和逆定理》(苏)格拉施坦(И.С.Градштейн)著许梅译12.《中学课程中的无理方程》(苏)吉布什(И.А.Гибш)著管承仲译13.《中学数学课外活动》张运钧编著032——《中学数学奥林匹克丛书》,北京师范学院出版社1.《立体几何向量及其变换》何裕新孙维刚著2.《平面几何及变换》梅向明主编唐大昌等编写3.《代数恒等变形》梅向明主编4.《初等数论初中册》梅向明主编5.《北京市中学生数学竞赛试题解析》梅向明主编6.《数学奥林匹克解题研究初中册》梅向明主编7.《数学奥林匹克解题研究高中册》周春荔等编8.《组合基础》周沛耕张宁生著9.《初等数论高中册》米道生吴建平编写033——《数理化竞赛丛书》数学部分,科学普及出版社1.《北京市中学数学竞赛题解1956-1964》北京市数学会编2.《全国中学数学竞赛题解1978》全国数学竞赛委员会编3.《美国及国际数学竞赛题解1976-1978》(美)格雷特编中国科学院应用数学研究推广办公室译4.《匈牙利奥林匹克数学竞赛题解》(匈)库尔沙克(Й.Кюршак)等编胡湘陵译5.《北京市中学数学竞赛题解1956-1979》北京市数学会6.《全国中学数学竞赛题解1979》科学普及出版社编034——《数学奥林匹克题库》,新蕾出版社1.《美国中学生数学竞赛题解1》(缺)2.《美国中学生数学竞赛题解2》3.《国际中学生数学竞赛题解》4.《中国中学生数学竞赛题解1》(缺)5.《中国中学生数学竞赛题解2》(缺)6.《加拿大中学生数学竞赛题解》7.《苏联中学生数学竞赛题解》035——《中学数学》丛书,湖北省暨武汉市数学会组织编写、湖北人民出版社1.《代数解题引导》杨挥陈传理编2.《初等几何解题引导》江志著3.《三角解题引导》车新发编4.《解析几何解题引导》刘佛清张硕才编5.《国际数学竞赛试题讲解Ⅰ》江仁俊编6.《国际数学竞赛试题讲解Ⅱ》江仁俊等编036——《数学圈丛书》,湖南科技出版社1.《数学圈》1 【美】H.W.伊佛斯2.《数学圈》2 【美】H.W.伊佛斯3.《数学圈》3 【美】H.W.伊佛斯4.《数学爵士乐》【美】爱德华.伯格、迈克尔.斯塔伯德5.《素数的音乐》【英】马科斯.杜.索托伊6.《无法解出的方程》【美】马里奥.利维奥7.《数学家读报》【美】约翰·艾伦·保罗斯037——一套数学竞赛书籍,上海科学技术出版社1.《初中数学竞赛妙题巧解》常庚哲编2.《初中数学竞赛辅导讲座》严镇军等编3.《高中数学竞赛辅导讲座》常庚哲等编4.《中、美历届数学竞赛试题精解》刘鸿坤等编038——国外数学奥林匹克俱乐部丛书,湖北教育出版社1.《美国数学邀请赛试题解答与评注》朱华伟编译2.《俄国青少年数学俱乐部》苏淳朱华伟译039——《国内外数学竞赛题解》,陕西师范大学图书馆编辑组编写《国内外数学竞赛题解》上、中、下三册040——开明出版社出版由中国数学奥林匹克委员会编译的两本书,书目如下:1.《环球城市数学竞赛问题与解答第1册》2.《环球城市数学竞赛问题与解答第2册》041——数学奥林匹克试题集锦,华东师范大学出版社,IMO 中国国家集训队教练组编写1.《走向IMO 数学奥林匹克试题集锦2003》2003年IMO 中国国家集训队教练组编2.《走向IMO 数学奥林匹克试题集锦2004》2004年IMO 中国国家集训队教练组,选拔考试命题组编3.《走向IMO 数学奥林匹克试题集锦2005》2005中国国家集训队教练组、选拔考试命题组编4.《走向IMO 数学奥林匹克试题集锦2006》2006年IMO 中国国家集训队教练组编5.《走向IMO 数学奥林匹克试题集锦2007》2007年IMO 中国国家集训队教练组编6.《走向IMO 数学奥林匹克试题集锦2008》2008年IMO 中国国家集训队教练组编(缺)7.《走向IMO 数学奥林匹克试题集锦2009》2009年IMO 中国国家集训队教练组编(缺)042——国外、国际数学竞赛试题方面的书籍1.《奥林匹克数学竞赛题集》(苏)罗什柯夫等编著张兴烈刘承明译2.《波兰数学竞赛题解1-27届》(波)耶·勃罗夫金(波)斯·斯特拉谢维奇著朱尧辰译3.《初中中外数学竞赛集锦》刘鸿坤编著4.《第26届国际数学奥林匹克》中国数学会普及工作委员会编5.《第一届至第二十二届国际中学生数学竞赛题解1959-1981》杨森茂陈圣德编译6.《国际奥林匹克数学竞赛题及解答1978-1986》中国科协青少年工作部中国数学会编译7.《国际数学奥林匹克1-20届》江苏师范学院数学系编译8.《国际数学竞赛题解》(德)H.D.霍恩舒赫编潘振亚等译9.《国际数学竞赛选载》江西省中小学教材编写组编10.《国内外高中数学竞赛汇编》杭州市第一中学高中数学教研组编11.《基辅数学奥林匹克试题集》(苏)维申斯基等编著刘鸿坤等译12.《加拿大美国历届中学生数学竞赛题解》福建师范大学数学系资料室编译13.《历届奥林匹克数学竞赛试题分析》闫建平编14.《美国历届数学竞赛题解1950-1972》梁伟强编15.《美国中学数学竞赛试题及题解》朱鉴清编译16.《普特南数学竞赛1938-1980》刘裔宏译17.《苏联中学数学竞赛题汇编》(苏)别尔尼克编仁毅志译18.《1981年国内外数学竞赛题解选集》顾可敬编19.《通用数学竞赛100题附:第27届国际数学奥林匹克试题》张运筹刘一宏左宗琰编译20.《最新国外数学竞赛分类题解》王连笑编著21.《国际数学奥林匹克30年为迎接1990年第31届IMO 在我国举办》梅向明主编22.《国外高中数学竞赛真题库》《数学竞赛之窗》编辑部主编23.《全苏数学奥林匹克试题》(苏)Н.Б.瓦西里耶夫(苏)А.А.叶戈罗夫著李墨卿等译24.《数学奥林匹克1987-1988 高中版》单墫胡大同25.《数学奥林匹克1989 第30届国际数学竞赛预选题》单墫等编26.《数学奥林匹克1990 第31届国家集训队资料》单墫葛军编27.《北美数学竞赛100题》(加)威廉(加)哈迪著侯晋川张秀玲译28.《第1-50届莫斯科数学奥林匹克》(苏)Г.А.嘎尔别林(苏)А.К.托尔贝戈编苏淳等译29.《国际数学奥林匹克三十年1959-1988试题集解》胡炳生等编著30.《第一届数学奥林匹克国家集训队资料选编1986》胡大同严镇军编31.《国际中学生数学竞赛试题集粹初中版中英文对照》戴筱逄主编乌实译043——国内数学竞赛试题及方法等方面的书籍部分书目如下:1.《1978年全国部分省市中学数学竞赛试题解答汇集》福建教育学院数学组编2.《1978年全国部分省市中学数学竞赛题解汇集》山西省数学学会编3.《1979年数学竞赛试题解答》襄樊市教育局教研室编4.《奥林匹克数学教程》刘凯年编著5.《奥林匹克数学竞赛解谜初中部分》康纪权主编6.《奥林匹克数学竞赛解谜高中部分》康纪权编著7.《奥林匹克数学引论》赵小云著8.《奥林匹克数学中的真题分析》张垚沈文选著9.《奥林匹克中学数学讲座》中国人民大学附中编10.《北京市1978年中学生数学竞赛题解》北京市中学生数学竞赛委员会编11.《北京市福建省福州市历届中学生数学竞赛题解》福州市数学学会福州市中学数学校际教研组编12.《北京市中学1962年数学竞赛试题汇集》北京市数学会编13.《北京市中学1964年数学物理竞赛题解》北京市数学会北京市物理学会编14.《北京市中学生数学竞赛试题解析》周春荔李延林编15.《北京市中学生数学竞赛试题解析修订本》周春荔等编16.《北京市中学数学竞赛试题汇集》北京市数学会编17.《初一数学奥林匹克竞赛解题方法大全》周春荔王中峰主编18.《初二数学奥林匹克竞赛解题方法大全》周春荔王中峰主编19.《初三数学奥林匹克竞赛解题方法大全》周春荔王中峰主编20.《初中数学竞赛常用解题方法》袁禹门编著21.《初中数学竞赛跟踪辅导》刘诗雄罗琛元主编22.《初中数学竞赛题集解1980-1985》胡礼祥何恩田编23.《初中数学竞赛题集锦》温锡九等编24.《初中数学竞赛题选》浙江师范大学数学系编25.《初中数学竞赛一题多解》张卫兵编26.《初中数学竞赛专题选讲》《中等数学》杂志编辑部编27.《高中数学奥林匹克题集》黄启林主编28.《高中数学竞赛的知识与方法》左宗明编著29.《黑龙江省中学数学竞赛题解》颜秉海等编30.《江苏省中学数学竞赛试题题解》江苏省数学竞赛办公室编31.《竞赛数学教程》陈传理张同君主编十五院校协编组编32.《历届国内数学奥林匹克竞赛试题分析高中》杨乃清阎建平编33.《全国各省、市、自治区联合高中数学竞赛试题汇解1978-1987》安徽省数学竞赛委员会奥林匹克学校编34.《十年全国奥林匹克竞赛试题分类解析高中数学》李开珂张斌主编课堂内外杂志社中国科协奥林匹克竞赛委员会编35.《数学奥林匹克的理论、方法、技巧上》湖南省数学会普及委员会编36.《数学奥林匹克的理论、方法、技巧下》湖南省数学会普及委员会编37.《数学奥林匹克辅导讲座》龚升主编38.《数学奥林匹克竞赛典型试题剖析》叶军编著39.《数学奥林匹克竞赛题精解献给中学同学修订本》中兴等编40.《数学奥林匹克竞赛题详解》湖北省数学会湖北大学数学奥林匹克函授学校编著41.《数学奥林匹克之星的升起数学奥林匹克的理论与实践》哈尔滨市数学会普及工作委员会编42.《数学竞赛试题汇编》江苏省常州师范编43.《数学竞赛试题及解答》许以超陆柱家编44.《数学竞赛习题集1》齐齐哈尔市数学学会45.《数学竞赛中的杂题》周惠贞王楣卿编46.《数学竞赛专题讲座》湖南省数学学会主编47.《四川省中学生数理化竞赛数学讲座上》四川省数学会普及组四川省教育局教材编写组、教学研究室编48.《四川省中学生数理化竞赛数学讲座下》四川省数学会普及组四川省教育局教材编写组、教学研究室编49.《在辨析中学习数学奥林匹克数学百题辨析》殷显华著50.《中学生数学竞赛试题解答汇编》新疆教育局中小学教师进修部51.《中学数学奥林匹克赛辅导》北京数学会中教委员会《中学数学教与学》编辑部编52.《中学数学竞赛辅导讲座附1979年竞赛试题》上海市数学会《中学科技》编辑部编53.《中学数学竞赛基本训练题》许炽雄成宗浩编著54.《中学数学竞赛试题汇编》曲阜师范学院函授部编辑55.《中学数学竞赛习题》杭州大学数学系《中学数学习题》编写组编56.《中学数学竞赛培训题解》欧阳禄著57.《最新初中数学竞赛试题全解汇编1986-1989》谢云荪邓御寇编58.《帮你参加数学竞赛》李自雄等编写59.《初中数学奥林匹克的方法与技巧》张求诚编著60.《初中数学奥林匹克电视讲座》张硕才陈传理主编61.《初中数学奥林匹克竞赛解题方法大全》周春荔王中峰主编62.《初中数学活动课程实验与研究全国初中数学竞赛活动辅导》陈俊辉主编63.《初中数学奥林匹克实用教程第1册》叶军编著64.《初中数学奥林匹克实用教程第2册》叶军编著65.《初中数学奥林匹克实用教程第3册》叶军编著66.《初中数学奥林匹克实用教程第4册报考高中理科实验班专辑》叶军编著67.《初中数学竞赛热点专题》李再湘等编著68.《初中数学升学与竞赛指导》王林主编69.《初中数学中考与竞赛复习指导》许英粟日鸿黄德体主编70.《趣味数学奥林匹克100 数学花园探秘》方金秋著71.《数学奥林匹克初级读本上》四川省数学学会编魏有德主编72.《数学奥林匹克初级读本下》四川省数学学会编魏有德主编73.《数学奥林匹克高级读本上》四川省数学学会《中学生数理化》编辑部编魏有德主编《数学奥林匹克高级读本下》(缺)74.《全国高中数学联赛模拟训练试卷精选》王人伟李延林主编75.《数学奥林匹克教练丛书初中一年级用》魏超群主编76.《数学奥林匹克教练丛书初中二年级用》魏超群主编77.《数学奥林匹克教练丛书初中三年级用》魏超群主编78.《上海市高中数学竞赛试题及解答(1956~2000)》上海市数学会编79.《1956年上海市中等学校学生数学竞赛问题集》1956年上海市第一届中等学校学生数学竞赛委员会编80.《1957年上海市中等学校学生数学竞赛问题集》1957年上海市第二届中等学校学生数学竞赛委员会编81.《2009高中数学联赛备考手册预赛试题集锦》中国数学会普及工作委员会组编82.《奥林匹克竞赛集粹高中数学》胡炳生编著83.《奥林匹克数学方法与解题研究》赵小云著84.《奥林匹克数学教学概论》孙瑞清胡大同著85.《奥林匹克数学解题宝典初一》陈竞新主编86.《奥林匹克数学解题宝典初二》陈竞新主编87.《奥林匹克数学解题宝典初三》陈竞新主编88.《奥林匹克专题讲座新突破高中数学上》齐振东薛遒主编89.《奥林匹克专题讲座新突破高中数学下》齐振东薛遒主编90.《冲刺金牌奥林匹克竞赛解题指导初中数学》邓均主编91.《冲刺金牌奥林匹克竞赛解题指导高中数学》马传渔主编92.《初中奥林匹克竞赛试题分类解析初一数学》课堂内外杂志社编93.《初中奥林匹克竞赛试题分类解析初二数学》课堂内外杂志社编94.《初中奥林匹克竞赛试题分类解析初三数学》课堂内外杂志社编95.《初中数学奥林匹克竞赛全真试题省市精华卷2010详解版》南秀全本册主编96.《初中数学奥林匹克竞赛全真试题全国联赛卷2010详解版》南秀全主编97.《初中数学奥林匹克题解》罗增儒主编98.《初中数学竞赛辅导讲座》数学竞赛指导小组编99.《初中数学竞赛十年1978-1988 试题集解》胡炳生胡礼祥编100.《高中数学竞赛十年1978-1988 试题集解》石涧编林源编赵维新编101.《初中数学竞赛指南上》吕品主编马守成等编著102.《初中数学竞赛指南下》吕品主编马守成等编著103.《初中数学竞赛题典》朱华伟张京明著104.《高中奥林匹克数学初级竞赛示例》沈宇峰张国民编著105.《高中数学奥林匹克基础知识及题解上》陶文中主编106.《高中数学奥林匹克基础知识及题解下》陶文中主编107.《高中数学奥林匹克竞赛解题方法大全》周沛耕王中峰主编108.《高中数学奥林匹克竞赛全真试题全国联赛卷新世纪详解版》南秀全本册主编109.《高中数学奥林匹克专题讲座》张君达主编110.《高中数学竞赛辅导》刘诗雄主编111.《高中数学竞赛解题方法研究》冷岗松著112.《高中数学竞赛一题多解》陈体国等编113.《函数方程函数迭代与数学竞赛》王向东等编著114.《解读国内外初中数学竞赛试题》刘明玉编著115.《历届全国高中数学联赛试题详解》裘宗沪主编中国数学会普及工作委员会编116.《竞赛数学教程第二版》陈传理张同君主编117.《竞赛数学解题研究第二版》张同君陈传理主编118.《巧解数学趣味竞赛题》眭双祥编著119.《全国高中数学联赛模拟试题》单墫主编吴伟朝等编著120.《数学奥林匹克1987-1988 高中版》单墫胡大同121.《数学奥林匹克题典》本书编写组编122.《数学奥林匹克中的不等式研究》蔡玉书主编123.《数学的时间性数学竞赛中年份试题的类型和解法》潘慰亮鲁有专编124.《数学竞赛导论》罗增儒著125.《数学竞赛史话第2版》单墫著126.《挑战IMO 数学奥林匹克十八讲》熊斌等编著127.《新编奥林匹克数学竞赛指导高中》葛军主编128.《中学数学教学竞赛指南》戴国良主编129.《中学数学竞赛专题讲座》廖学余陈荷生张学哲等合编130.《中学应用数学竞赛题萃》上海市中学生数学应用知识竞赛委员会组编131.《最新奥林匹克竞赛试题评析高中数学》葛军主编132.《最新竞赛试题选编及解析高中数学卷》庄燕文编133.《初中数学竞赛中的代数问题》周春荔编著奥林匹克数学普及讲座丛书1134.《初中数学竞赛中的平面几何》周春荔编著奥林匹克数学普及讲座丛书2135.《初中数学竞赛中的思维方法》周春荔编著奥林匹克数学普及讲座丛书4136.《初中数学竞赛辅导》刘诗雄主编137.《初中数学竞赛读本》本书编写组编138.《高中数学奥林匹克竞赛标准教材》周沛耕王博程编著139.《数学奥林匹克初中版新版基础篇》单墫主编孙瑞清傅敬良编撰140.《数学奥林匹克初中版新版知识篇》单墫主编胡大同陈娴编撰141.《数学奥林匹克初中版新版提高篇》单墫主编熊斌编撰142.《数学奥林匹克高中版新版基础篇》单墫主编王巧林刘亚强编撰143.《数学奥林匹克高中版新版知识篇》单墫主编钱展望编撰144.《数学奥林匹克高中版新版竞赛篇》单墫主编严镇军编撰145.《奥数测试高中数学联赛考前训练》单墫等编146.《初中数学竞赛同步辅导》翟连林赵学恒主编147.《初中数学竞赛专题精讲》闻厚贵等编著148.《数学高考到竞赛》罗增儒主编149.《数学100题》[波]施琴高兹(Г. Щтейнгауз)著王宝霁译150.《数学奥林匹克之路我愿意做的事》裘宗沪151.《中学数学奥林匹克平面几何问题及其解答》(俄)波拉索洛夫著周春荔等译044——走向数学丛书1.《波利亚计数定理》肖文强2.《复数、复函数及其应用》张顺燕3.《极小曲面》陈维桓4.《计算的复杂性》王则柯5.《计算密码学》卢开澄6.《拉姆塞理论》李乔7.《滤波及其应用》谢衷洁8.《浅论点集拓扑、曲面和微分拓扑》杨忠道9.《曲面的数学》常庚哲10.《绳圈的数学》姜伯驹11.《数学·计算·逻辑》陆汝钤12.《数学模型选谈》华罗庚王元13.《数学与电脑》杨重骏杨照崑14.《双曲几何》李忠周建莹15.《凸性》史树中16.《信息的度量及其应用》沈世镒17.《有限域》冯克勤18.《走出混沌》方兆本19.《P进数》冯克勤045——《高中数学竞赛专题讲座》浙江大学出版社第一辑1.《高中数学竞赛专题讲座不等式》李世杰主编2.《高中数学竞赛专题讲座初等数论》边红平本书主编3.《高中数学竞赛专题讲座复数与多项式》岑爱国主编4.《高中数学竞赛专题讲座函数与函数方程》黄军华主编5.《高中数学竞赛专题讲座集合与简易逻辑》苏建一张雷主编6.《高中数学竞赛专题讲座解析几何》斯理炯本书主编7.《高中数学竞赛专题讲座立体几何》刘康宁主编8.《高中数学竞赛专题讲座排列组合与概率》王俊明主编9.《高中数学竞赛专题讲座平面几何》虞金龙马洪炎本书主编10.《高中数学竞赛专题讲座三角函数》沈虎跃本书主编11.《高中数学竞赛专题讲座数列与归纳法》韦吉珠本册主编12.《高中数学竞赛专题讲座组合问题》王建中主编第二辑1.《高中数学竞赛专题讲座代数变形》蔡小雄编著2.《高中数学竞赛专题讲座递推与递推方法》李世杰主编3.《高中数学竞赛专题讲座函数不等式》李世杰李盛主编4.《高中数学竞赛专题讲座周期函数学和周期数列》李世杰主编5.《高中数学竞赛专题讲座组合构造》冯跃峰本书主编6.《高中数学竞赛专题讲座初等组合几何》冯跃峰著(缺)7.《高中数学竞赛专题讲座染色与染色方法》王慧兴主编(缺)8.《高中数学竞赛专题讲座图论方法》(待出版)9.《高中数学竞赛专题讲座极值问题》(待出版)10.《高中数学竞赛专题讲座数学结构思想及解题方法》(待出版)046——浙江大学出版社出版的数学竞赛方面的部分书籍如下:1.《高中数学联赛讲义代数分册》周斌蔡玉书王卫华主编2.《高中数学联赛讲义几何分册》黎金传周斌李红主编3.《高中数学联赛讲义组合数学数论分册》黎金传周斌李红编4.《备战全国高中数学联赛》黄琪锋主编5.《高中数学竞赛真题评析》韦吉珠黎金传王卫华主编6.《高中数学省级预赛指南》王卫华主编7.《更高更妙的高中数学思想与方法》蔡小雄著8.《全国高中数学联赛冲刺》曹程锦主编9.《全国高中数学联赛预测卷》蔡小雄10.《冲刺全国高中数学联赛》王卫华吴伟朝主编11.《初中数学竞赛解题方法大全》陶平生张惠东主编12.《高中数学竞赛2000题》虞金龙主编13.《高中数学竞赛解题方法》马洪炎主编14.《冲刺全国初中数学竞赛》许康华陈计主编15.《国内高中数学竞赛真题库》《数学竞赛之窗》编辑部编16.《从中考到竞赛数学精讲精练1000题》陈晓莹张培钰主编17.《高中数学联赛一试知识与方法》全国高中数学联赛试题研究组编18.《竞赛数学解题策略》马兵主编19.《高中奥数培优捷径上》马兵主编20.《高中奥数培优捷径下》马兵主编21.《全国青少年信息学联赛培训教材初赛》倪望跃马茂年主编22.《全国青少年信息学联赛培训教材复赛》李建江马茂年主编23.《高中数学竞赛题典》李我德李胜宏主编24.《高中数学奥林匹克竞赛教程》许芬英主编047——气象出版社出版的“希望杯”全国数学邀请赛的部分书籍如下:1.《第1-15届“希望杯”全国数学邀请赛试题详解初一》“希望杯”全国数学邀请赛组委会编2.《第1-15届“希望杯”全国数学邀请赛试题详解初二》“希望杯”全国数学邀请赛组委会编3.《第1-15届“希望杯”全国数学邀请赛试题详解高一》“希望杯”全国数学邀请赛组委会编4.《第1-15届“希望杯”全国数学邀请赛试题详解高二》“希望杯”全国数学邀请赛组委会编5.《第16届“希望杯”全国数学邀请赛试题·培训题及解答初中》“希望杯”全国数学邀请赛组季会编6.《第16届“希望杯”全国数学邀请赛试题·培训题及解答高中》“希望杯”全国数学邀请赛组委会编7.《第17届“希望杯”全国数学邀请赛试题·培训题及解答初中》周国镇主编8.《第17届“希望杯”全国数学邀请赛试题·培训题及解答高中》“希望杯”全国数学邀请赛组委会编9.《第18届“希望杯”全国数学邀请赛试题·培训题·解答初中》“希望杯”全国数学邀请赛组委会编10.《第18届“希望杯”全国数学邀请赛试题·培训题·解答高中》“希望杯”全国数学邀请赛组委会编11.《第19届“希望杯”全国数学邀请赛试题·培训题·解答初中》“希望杯”全国数学邀请赛组委会编12.《第19届“希望杯”全国数学邀请赛试题·培训题·解答高中》“希望杯”全国数学邀请赛组委会编《第20届“希望杯”全国数学邀请赛试题·培训题·解答初中》“希望杯”全国数学邀请赛组委会编(缺)《第20届“希望杯”全国数学邀请赛试题·培训题·解答高中》“希望杯”全国数学邀请赛组委会编(缺)《第21届“希望杯”全国数学邀请赛试题·培训题·解答初中》“希望杯”全国数学邀请赛组委会编(缺)《第21届“希望杯”全国数学邀请赛试题·培训题·解答高中》“希望杯”全国数学邀请赛组委会编(缺)13.《历届“希望杯”全国数学邀请赛试题精选详解初一》周国镇主编14.《历届“希望杯”全国数学邀请赛试题精选详解初二》周国镇主编15.《历届“希望杯”全国数学邀请赛试题精选详解高一》周国镇主编16.《历届“希望杯”全国数学邀请赛试题精选详解高二》周国镇主编048——大学数学竞赛方面的部分书籍如下:1.《大学奥林匹克数学竞赛试题解答集》2.《大学生数学竞赛试题研究生入学考试难题解析选编》李心灿等编3.《大学生数学竞赛试题研究生入学数学考试难题解析选编》李心灿等编4.《大学生数学竞赛题解汇集》5.《大学数学竞赛指导》国防科学技术大学大学数学竞赛指导组编6.《高等数学竞赛教程2008》卢兴江金蒙伟7.《高等数学竞赛教程》张瑜主编8.《高等数学竞赛题解析》陈仲编著9.《高等数学竞赛与提高》毛京中主编。

奥林匹克数学竞赛简介名词解析

奥林匹克数学竞赛简介名词解析

奥林匹克数学竞赛简介名词解析“奥数”是奥林匹克数学竞赛的简称。

1934年和1935年,苏联开始在列宁格勒和莫斯科举行中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举行第一届国际数学奥林匹克。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

有关专家以为,只有5%的智力超常儿童适合学奥林匹克数学,而能一途经关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。

简介国际奥林匹克数学竞赛奖项名称: 国际奥林匹克数学竞赛其他名称: International Mathematics Olympiad开办时刻: 1959年主办单位: 由参赛国连番主办奖项介绍国际奥林匹克数学竞赛是国际中学生数学大赛,活着界上阻碍超级之大。

国际奥林匹克竞赛的目的是:发觉鼓舞世界上具有数学天份的青青年,为各国进行科学教育交流制造条件,增进各国师生间的友好关系。

这一竞赛1959年由东欧国家发起,取得联合国教科文组织的资助。

第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克、匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。

以后国际奥林匹克数学竞赛都是每一年7月举行(中间只在1980年断过一次),参赛国从1967年开始慢慢从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。

目前参加这项赛事的代表队有80余支。

美国1974年参加竞赛,中国1985年参加竞赛。

通过40连年的进展,国际数学奥林匹克的运转慢慢制度化、标准化,有了一整套约定俗成的常规,并为历届东道主所遵循。

国际奥林匹克数学竞赛由参赛国连番主办,经费由东道国提供,但旅费由参赛国自理。

参赛选手必需是不超过20岁的中学生,每支代表队有学生6人,另派2名数学家为领队。

试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。

东道国不提供试题。

试题确信以后,写成英、法、德、俄文等工作语言,由领队译本钱国文字。

国际奥林匹克数学竞赛试题

国际奥林匹克数学竞赛试题

选择题:在国际奥林匹克数学竞赛中,参赛者主要需要展现哪方面的能力?A. 文学创作能力B. 音乐演奏能力C. 数学解题能力(正确答案)D. 体育运动能力国际奥林匹克数学竞赛通常几年举办一次?A. 每年B. 每隔一年(正确答案)C. 每隔两年D. 每隔三年下列哪个国家是国际奥林匹克数学竞赛的常客,且多次获得优异成绩?A. 巴西B. 俄罗斯(正确答案)C. 澳大利亚D. 墨西哥国际奥林匹克数学竞赛的试题难度通常被描述为:A. 非常简单B. 适中C. 极具挑战性(正确答案)D. 只为天才设计参加国际奥林匹克数学竞赛的学生通常需要经过怎样的选拔过程?A. 随机抽选B. 学校推荐后直接参赛C. 通过多轮数学竞赛选拔(正确答案)D. 无需选拔,自愿报名国际奥林匹克数学竞赛的题目通常涵盖哪些数学领域?A. 仅限基础算术B. 广泛涉及代数、几何、数论等多个领域(正确答案)C. 仅限高等数学D. 仅限概率统计下列哪项不是国际奥林匹克数学竞赛的目标之一?A. 促进国际间数学教育的交流B. 发掘和培养数学天才(正确答案)的反面,即“阻碍数学天才的发展”C. 提升青少年对数学的兴趣和热爱D. 推动数学科学的发展国际奥林匹克数学竞赛的奖牌通常包括哪几种?A. 金牌、银牌、铜牌(正确答案)B. 金牌、银牌、铁牌C. 金牌、铜牌、铝牌D. 银牌、铜牌、锡牌参加国际奥林匹克数学竞赛对参赛者的未来有何潜在影响?A. 必定成为数学家B. 对数学和科学领域的深造有积极影响(正确答案)C. 限定只能从事数学相关工作D. 对未来职业选择无影响。

Fermat滑铁卢数学竞赛(Grade 11)-数学Mathematics-2002-试题 exam

Fermat滑铁卢数学竞赛(Grade 11)-数学Mathematics-2002-试题 exam

Canadian Instituteof Actuaries Chartered AccountantsSybasei Anywhere SolutionsScoring:There is no penalty for an incorrect answer.Each unanswered question is worth 2, to a maximum of 10 unanswered questions.Part A: Each correct answer is worth 5.1.If x =3, the numerical value of 522–x is(A ) –1(B ) 27(C ) –13(D )–31(E ) 32.332232++ is equal to(A ) 3(B ) 6(C ) 2(D )32(E ) 53.If it is now 9:04 a.m., in 56 hours the time will be(A ) 9:04 a.m.(B ) 5:04 p.m.(C ) 5:04 a.m.(D ) 1:04 p.m.(E ) 1:04 a.m.4.Which one of the following statements is not true?(A ) 25 is a perfect square.(B ) 31 is a prime number.(C ) 3 is the smallest prime number.(D ) 8 is a perfect cube.(E ) 15 is the product of two prime numbers.5. A rectangular picture of Pierre de Fermat, measuring 20 cmby 40 cm, is positioned as shown on a rectangular postermeasuring 50 cm by 100 cm. What percentage of the areaof the poster is covered by the picture?(A ) 24%(B ) 16%(C ) 20%(D ) 25%(E ) 40%6.Gisa is taller than Henry but shorter than Justina. Ivan is taller than Katie but shorter than Gisa. Thetallest of these five people is(A ) Gisa (B ) Henry (C ) Ivan (D ) Justina (E ) Katie7. A rectangle is divided into four smaller rectangles. Theareas of three of these rectangles are 6, 15 and 25, as shown.The area of the shaded rectangle is(A ) 7(B ) 15(C ) 12(D ) 16(E) 108.In the diagram, ABCD and DEFG are squares with equal side lengths, and ∠=°DCE 70. The value of y is (A ) 120(B ) 160(C ) 130(D ) 110(E ) 1409.The numbers 1 through 20 are written on twenty golf balls, with one number on each ball. The golfballs are placed in a box, and one ball is drawn at random. If each ball is equally likely to be drawn,what is the probability that the number on the golf ball drawn is a multiple of 3?(A )320(B )620(C )1020(D )520(E )12010.ABCD is a square with AB x =+16 and BC x =3, as shown.The perimeter of ABCD is(A ) 16(B ) 32(C ) 96(D ) 48(E ) 24Part B: Each correct answer is worth 6.11. A line passing through the points 02,−() and 10,() also passes through the point 7,b (). The numericalvalue of b is(A ) 12(B )92(C ) 10(D ) 5(E ) 1412.How many three-digit positive integers are perfect squares?(A ) 23(B ) 22(C ) 21(D ) 20(E ) 1913. A “double-single” number is a three-digit number made up of two identical digits followed by adifferent digit. For example, 553 is a double-single number. How many double-single numbers are there between 100 and 1000?(A ) 81(B ) 18(C ) 72(D ) 64(E ) 9014.The natural numbers from 1 to 2100 are entered sequentially in 7 columns, with the first 3 rows asshown. The number 2002 occurs in column m and row n . The value of m n + isColumn 1Column 2Column 3Column 4Column 5Column 6Column 7Row 1 1 2 3 4 5 6 7Row 2 8 91011121314Row 315161718192021M M M M M M M M(A ) 290(B ) 291(C ) 292(D ) 293(E ) 294x + 163xA BD C15.In a sequence of positive numbers, each term after the first two terms is the sum of all of the previousterms . If the first term is a ,the second term is 2, and the sixth term is 56, then the value of a is(A ) 1(B ) 2(C ) 3(D ) 4(E ) 516.If ac ad bc bd +++=68 and c d +=4, what is the value of a b c d +++?(A ) 17(B ) 85(C ) 4(D ) 21(E ) 6417.The average age of a group of 140 people is 24. If the average age of the males in the group is 21 andthe average age of the females is 28, how many females are in the group?(A ) 90(B ) 80(C ) 70(D ) 60(E ) 5018. A rectangular piece of paper AECD has dimensions 8 cm by 11 cm. Corner E is folded onto point F , which lies on DC ,as shown. The perimeter of trapezoid ABCD is closest to (A ) 33.3 cm (B ) 30.3 cm (C ) 30.0 cm(D ) 41.3 cm (E ) 35.6 cm 19.If 238610a b =(), where a and b are integers, then b a − equals(A ) 0(B ) 23(C )−13(D )−7(E )−320.In the diagram, YQZC is a rectangle with YC =8 and CZ = 15. Equilateral triangles ABC and PQR , each withside length 9, are positioned as shown with R and B on sidesYQ and CZ , respectively. The length of AP is (A ) 10(B )117(C ) 9(D ) 8(E )72Part C: Each correct answer is worth 8.21.If 31537521219⋅⋅⋅⋅+−=L n n , then the value of n is(A ) 38(B ) 1(C ) 40(D ) 4(E ) 3922.The function f x () has the property that f x y f x f y xy +()=()+()+2, for all positive integers x and y .If f 14()=, then the numerical value of f 8() is(A ) 72(B ) 84(C ) 88(D ) 64(E ) 80continued ...Figure 1Figure 223.The integers from 1 to 9 are listed on a blackboard. If an additional m eights and k nines are added tothe list, the average of all of the numbers in the list is 7.3. The value of k m + is(A ) 24(B ) 21(C ) 11(D ) 31(E ) 8924. A student has two open-topped cylindrical containers. (Thewalls of the two containers are thin enough so that theirwidth can be ignored.) The larger container has a height of20 cm, a radius of 6 cm and contains water to a depth of 17cm. The smaller container has a height of 18 cm, a radius of5 cm and is empty. The student slowly lowers the smallercontainer into the larger container, as shown in the cross-section of the cylinders in Figure 1. As the smaller container is lowered, the water first overflows out of the larger container (Figure 2) and then eventually pours into thesmaller container. When the smaller container is resting onthe bottom of the larger container, the depth of the water in the smaller container will be closest to(A ) 2.82 cm (B ) 2.84 cm (C ) 2.86 cm(D ) 2.88 cm (E ) 2.90 cm25.The lengths of all six edges of a tetrahedron are integers. The lengths of five of the edges are 14, 20,40, 52, and 70. The number of possible lengths for the sixth edge is(A ) 9(B ) 3(C ) 4(D ) 5(E ) 6。

小学数学奥林匹克教育研究

小学数学奥林匹克教育研究

第一章绪论1.1数学奥林匹克数学奥林匹克,俗称数学竞赛,是一种有组织的、在规定时间内进行的解数学题的竞赛,是人类智慧技能的较量。

最初的数学竞赛是民间自发进行的一些解数学题的比赛,属于非正式的数学竞赛活动。

第一种形式是“挑战—应战”。

16世纪的欧洲,解方程是数学的核心问题,当然也就是解数学题比赛的主要内容。

1530年—1535年意大利的数学家塔塔利亚在解3次方程的公开挑战比赛中大获全胜,是公认的数学竞赛的开始。

这种类似骑士决斗形式的竞赛对参加者影响巨大:胜者出人头地,令人羡慕;负者则灰头土脸,名声扫地。

第二种形式是“公开征解”。

当有某个问题为大家所关注时,这个问题往往就成为一种“公开征解”的问题。

数学中的费玛大定理、四色定理和哥德巴赫猜想就属于这种问题。

首先是问题难度足够大,具有挑战性;其次该问题面向的参与者没有特定限制;最后,没有时间、地点限制。

显然,这种方式对参与者的正面影响更大。

事实上,很多著名数学家的起步都得益于此,远的如费玛、帕斯卡、伯努力、牛顿、欧拉、高斯,近一点的如华罗庚、怀尔斯、丘成桐。

这种形式甚至成为一种科研方式,如法兰西科学院曾经多次设置公开征解的问题并为之设置奖金,而包括著名数学家柯西、欧拉在内的参与者也曾多次因递交解答而获奖。

这种公开征解的最经典形式莫过于希尔伯特的23个“数学问题”了。

希尔伯特的问题不但催生出大批数学家,同时也取得了大批高水平的数学成果。

事实上,希尔伯特的问题引领了二十世纪的数学发展。

显然,上述的数学竞赛无论从内容还是形式,都只适合成年人,发展到后来甚至只适合专业人士。

十九世纪末,人们认识到数学人才发现培养的重要性,开始把数学竞赛引入中学数学教育。

最早在中学生中开展数学竞赛的国家是匈牙利。

匈牙利为选择有数学才能的学生在中学毕业生中举办的数学竞赛。

开始于1894年,是世界上最早的国家级数学竞赛。

最初由匈牙利文化大臣埃特沃斯(Etövös)男爵提议,匈牙利“物理—数学协会”通过,因此称之为埃特沃斯考试。

历届数学奥林匹克参赛名单

历届数学奥林匹克参赛名单

1985-2012年国际数学奥林匹克中国参赛人数按地区、学校统计国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。

由罗马尼亚罗曼(Roman)教授发起。

1959年7月在罗马尼亚古都布拉索举行第一届竞赛。

我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。

我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。

2012年第53届国际数学奥林匹克竞赛将于今年7月4日至16日在阿根廷马德普拉塔(Mar del Plata , Argentina)举行。

入选国家队的六名学生是:(按选拔成绩排名)陈景文(中国人民大学附属中学)、吴昊(辽宁师范大学附属中学)、左浩(华中师范大学第一附属中学)、佘毅阳(上海中学)、刘宇韬(上海中学)、王昊宇(武钢三中)---------------------------------------------------------历届IMO的主办国,总分冠军及参赛国(地区)数为:年份届次东道主总分冠军参赛国家(地区)数1959 1 罗马尼亚罗马尼亚71960 2 罗马尼亚前捷克斯洛伐克51961 3 匈牙利匈牙利 61962 4 前捷克斯洛伐克匈牙利71963 5 波兰前苏联81964 6 前苏联前苏联91965 7 前东德前苏联81966 8 保加利亚前苏联91967 9 前南斯拉夫前苏联131968 10 前苏联前东德121969 11 罗马尼亚匈牙利141970 12 匈牙利匈牙利141971 13 前捷克斯洛伐克匈牙利151972 14 波兰前苏联141973 15 前苏联前苏联161974 16 前东德前苏联181975 17 保加利亚匈牙利171976 18 澳大利亚前苏联191977 19 南斯拉夫美国211978 20 罗马尼亚罗马尼亚171979 21 美国前苏联231981 22 美国美国271982 23 匈牙利前西德301983 24 法国前西德321984 25 前捷克斯洛伐克前苏联341985 26 芬兰罗马尼亚421986 27 波兰美国、前苏联371987 28 古巴罗马尼亚421988 29 澳大利亚前苏联491989 30 前西德中国501990 31 中国中国541991 32 瑞典前苏联561992 33 俄罗斯中国621993 34 土耳其中国651994 35 中国香港美国691995 36 加拿大中国731996 37 印度罗马尼亚751997 38 阿根廷中国821998 39 中华台北伊朗841999 40 罗马尼亚中国、俄罗斯812000 41 韩国中国822001 42 美国中国832002 43 英国中国842003 44 日本保加利亚822004 45 希腊中国852005 46 墨西哥中国982006 47 斯洛文尼亚中国1042007 48 越南俄罗斯932008 49 西班牙中国1032009 50 德国中国1042010 51 哈萨克斯坦中国1052011 52 荷兰中国101------------------------------------------------------------------历届国际数学奥林匹克中国参赛学生分省市、分学校统计按学校排名(TOP16)1 武汉钢铁三中 152 湖南师大附中 113 华南师范大学附中 104 北大附中 94 人大附中 96 湖北黄冈中学 86 上海中学 88 上海华东师大二附中 5 8 东北育才学校 510 华中师大一附中 410 复旦大学附中 410 深圳中学 410 东北师范大学附中 4 14 上海向明中学 314 长沙市一中 314 哈尔滨师范大学附中 3 以下略。

数学英语竞赛试题及答案

数学英语竞赛试题及答案

数学英语竞赛试题及答案一、选择题(每题2分,共10分)1. What is the value of the expression \( 3x + 5 \) when \( x = 2 \) ?A) 11B) 13C) 15D) 172. If \( \frac{a}{b} = \frac{c}{d} \) and \( b \neq 0 \), then \( ad = \frac{a}{b} \times \) ?A) bB) cC) dD) bd3. The perimeter of a rectangle is 24 cm, and the length is 8 cm. What is the width?A) 4 cmB) 6 cmC) 8 cmD) 10 cm4. Which of the following is not a prime number?A) 2B) 3C) 5D) 95. The equation \( 2x - 3 = 11 \) can be solved by adding 3 to both sides, resulting in:A) \( 2x = 8 \)B) \( 2x = 14 \)C) \( 2x = 16 \)D) \( 2x = 18 \)二、填空题(每题2分,共10分)6. The square root of 64 is _______.7. If \( 5x - 7 = 18 \), then \( x \) equals _______.8. The reciprocal of \( \frac{2}{3} \) is _______.9. A number that is divisible by both 2 and 3 is called a_______ number.10. If the area of a triangle is 24 square meters and the base is 8 meters, the height is _______ meters.三、简答题(每题5分,共15分)11. Solve the equation \( 3x + 4 = 7x - 5 \).12. Convert the fraction \( \frac{5}{8} \) to a decimal.13. What is the greatest common divisor (GCD) of 48 and 64?四、解答题(每题10分,共20分)14. A rectangular garden has a length of 24 meters and a width of 18 meters. Calculate the area and the perimeter of the garden.15. If a car travels 120 kilometers in 2 hours, calculate the speed of the car.五、应用题(每题15分,共15分)16. A company produces 1200 units of a product in a month. Ifeach unit costs $5 to produce and sells for $8, calculate the total cost, total revenue, and profit for the month.答案:一、选择题1. A) 112. D) bd3. B) 6 cm4. D) 95. B) \( 2x = 14 \)二、填空题6. 87. 58. \( \frac{3}{2} \)9. Least common multiple (LCM)10. 6三、简答题11. \( x = 3 \)12. 0.62513. 16四、解答题14. Area = 432 square meters, Perimeter = 72 meters15. 60 kilometers per hour五、应用题16. Total cost = $6000, Total revenue = $9600, Profit = $3600。

初二奥林匹克数学竞赛(10道变态难数学题)

初二奥林匹克数学竞赛(10道变态难数学题)

初二奥林匹克数学竞赛(10道变态难数学题)今天给大家分享的是八年级数学奥林匹克竞赛的知识,也会讲解10道异常难的数学题。

如果你碰巧解决了你现在面临的问题,别忘了关注这个网站,现在就开始!初二奥林匹克数学竞赛始于1894年由匈牙利数学界为纪念数理学家厄特沃什-罗兰而组织的数学竞赛。

而把数学竞赛与体育竞赛相提并论,与科学的发源地–古希腊联系在一起的是前苏联,她把数学竞赛称为数学奥林匹克。

20世纪上半叶,不同国家相继组织了各级各类的数学竞赛,先在学校,继之在地区,后来在全国进行,逐步形成了金字塔式的竞赛系统。

从各国的竞赛进一步发展,自然为形成最高一层的国际竞赛创造了必要的条件。

1975年匈牙利布达佩斯大学数学委员会提倡创立,并于1978年8月在匈牙利举行了第一次世界奥林匹克数学竞赛(Would Mathematical Olympiad 简称WMO)。

随着影响力的扩大,越来越多的国家和地区参与进来。

2006年,中国组委会提出申请,并于2007年8月获准加入该协会。

最近几年中国一直排名第一。

10道变态难数学题1、有六级台阶,小明从下往上走,若每次只能跨一级或两级,她走上去有几种可能?2.如果今天是星期六,从明天算起2的20次方后的第一天是星期几?3.在一个月中,星期二的天数比星期三多,星期一的天数比星期天多。

这个月5号是星期几?4、100的平方-99的平方+98的平方-97的平方+……+2的平方-1的平方是多少?5、1×2+2×3+3×4+……100×1016.某次比赛,一等奖10个,二等奖20个。

现在一等奖最后四个人调整为二等奖,所以二等奖平均分增加2分,也就是一等奖平均分增加1分。

原来一等奖比二等奖平均分多多少分?7.一条公交线路中间有15个站,有快车和慢车两种。

快车的速度是慢车的1.5倍。

慢车每站都停,快车只停中间站,停站时间2分钟。

慢车每次60分钟从同一个始发站发车时,快车刚好到达终点。

历年各杯赛奥数详解

历年各杯赛奥数详解

历年各杯赛奥数详解奥数(Olympiad Mathematics)是指数学界的奥林匹克竞赛,是世界数学界的一次重要盛事。

历年来,各个国家和地区都举办了各种各样的奥数比赛,旨在鼓励和培养年轻学生的数学兴趣和创新能力。

本文将对历年各杯赛奥数进行详细的介绍和分析,以帮助读者深入了解奥数竞赛的发展历程和重要性。

一、国际奥数比赛1. 国际数学奥林匹克竞赛(IMO)国际数学奥林匹克竞赛是世界上最著名的奥数比赛之一,始于1959年,每年一届。

该比赛是针对全球高中学生组织的,其题目难度非常高,需要参赛学生具备深厚的数学知识和解题思维能力。

2. 国际信息学奥林匹克竞赛(IOI)国际信息学奥林匹克竞赛是专门针对计算机科学领域的奥数比赛,旨在培养学生的算法和编程能力。

参赛学生需要通过编程解决一系列复杂的问题,这对于提高他们的逻辑思维和问题解决能力非常有帮助。

3. 国际物理奥林匹克竞赛(IPhO)国际物理奥林匹克竞赛是对物理学方向的奥数比赛,要求参赛学生具备扎实的物理理论知识和实践操作能力。

比赛题目通常涉及到独特的物理实验和复杂的理论计算,对学生的创新思维和实践操作能力提出了很高的要求。

二、地区性奥数比赛1. 亚洲太平洋地区奥林匹克竞赛(APMO)亚洲太平洋地区奥数比赛是针对亚洲国家和太平洋地区的高中学生组织的,与IMO类似,也是一项世界级的奥数竞赛。

该比赛涉及到的数学领域更广泛,要求参赛学生具备更全面的数学知识和解题能力。

2. 欧洲女子数学奥林匹克竞赛(EGMO)欧洲女子数学奥林匹克竞赛以鼓励女性学生参与奥数竞赛为目标,是欧洲地区专门举办的数学比赛。

与其他奥数竞赛不同的是,EGMO 注重鼓励女性学生在数学领域的发展,并提供平等机会来展示她们的数学才能。

三、国内奥数比赛1. 全国青少年数学天才大赛全国青少年数学天才大赛是中国最为著名和权威的奥数比赛之一,吸引了全国各地的优秀数学学生参赛。

该比赛注重考察学生的综合数学素养和解题能力,题目种类多样,既有应用题,也有纯理论题,对学生的数学基础和思维能力提出了较高要求。

奥林匹克数学竞赛国家排名

奥林匹克数学竞赛国家排名

奥林匹克数学竞赛国家排名奥林匹克数学竞赛国家排名一、引言奥林匹克数学竞赛作为一项旨在选拔和培养优秀数学人才的国际性竞赛,自1977年首次举办以来,逐渐在全球范围内掀起了一场数学思维的风暴。

各个国家的参赛选手们经过层层筛选和激烈角逐后,脱颖而出,代表自己的国家参加国际奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO),并为自己的国家争得荣耀。

那么,让我们一起来看看世界各国在奥林匹克数学竞赛中的国家排名吧。

二、亚洲洲家排名1. 中国1977年首届IMO举办以来,中国队一直是亚洲洲家排名的领头羊。

凭借着优秀的数学教育体系和严格的选拔制度,中国队在奥林匹克数学竞赛中取得了惊人的成绩。

无论是团队奖牌数量还是个人奖牌数量,中国队都稳坐榜首。

2. 韩国韩国以其优秀的教育体制和严谨的学习方法,一直在奥林匹克数学竞赛中占据重要的地位。

韩国队在亚洲洲家排名中稳居第二,成绩斐然。

3. 日本作为一个科技大国,日本一直重视数学教育的发展和培养优秀的数学人才。

日本队在奥林匹克数学竞赛中的表现也一直稳定在亚洲洲家排名的前列。

4. 台湾台湾作为一个高度重视教育的地区,其数学教育也一直备受推崇。

台湾队在奥林匹克数学竞赛中多次获得佳绩,一直稳居亚洲洲家排名的前列。

5. 俄罗斯虽然俄罗斯是欧洲国家,但由于其地理位置靠近亚洲,因此在奥林匹克数学竞赛中常与亚洲国家竞争。

俄罗斯队在近年来的竞赛中表现突出,成功位列亚洲洲家排名前五。

三、欧洲洲家排名1. 俄罗斯俄罗斯作为世界数学强国,其队伍实力雄厚。

在欧洲洲家排名中,俄罗斯队经常位列前几名。

2. 塞尔维亚塞尔维亚队在近年来的奥林匹克数学竞赛中取得了亮眼的成绩。

该国在数学教育方面的重视程度和队员的实力逐渐得到国际认可。

3. 罗马尼亚罗马尼亚队在数学竞赛中也有着很高的声誉。

通过对数学奥林匹克团队的培养,罗马尼亚在数学竞赛中始终保持着不错的表现。

国际奥林匹克数学竞赛

国际奥林匹克数学竞赛

国际奥林匹克数学竞赛国际奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO)是世界范围内的一项著名的数学竞赛活动。

该比赛旨在鼓励和发展全球中学生的数学才华和能力。

IMO创立于1959年,由全球各国数学学会联合创建。

每年,来自世界各地的高中生将代表自己的国家参加这一盛会。

在IMO竞赛中,选手们需要在两天的时间内解答6道数学问题,这些问题难度极高,需要综合运用数学知识和创造性的思维。

IMO的题目往往涉及多个数学领域,包括几何、代数、数论和组合数学等等。

这些问题不仅考察了选手的数学能力,还要求他们具备逻辑推理、分析问题、发现规律和解决复杂问题的能力。

在IMO的比赛中,选手需要在限定的时间内独立完成题目,并提交自己的答案。

答案将由专业的评委团队进行评分,评分主要依据解题的正确性、完整性和证明过程的严谨性。

每个问题的满分是7分,选手需要通过严格的评分过程来获得相应的分数。

除了个人竞赛,IMO还设有团队竞赛。

在团队竞赛中,选手需要共同解答4道问题,并将每个问题的答案写成一个小组报告。

团队竞赛不仅考察了个人的数学能力,还要求选手们具备团队合作、沟通和协作解决问题的能力。

IMO是一个能够展示学生才华和努力的舞台。

通过参与IMO,学生们能够接触到高质量的数学问题,与来自不同国家的优秀学生交流学习,提高自己的数学水平。

此外,IMO还推动了全球的数学教育发展,促进了数学研究和交流。

对于参加IMO的学生来说,这项竞赛不仅是一次考验,更是一次成长和锻炼的机会。

在准备和解答问题的过程中,他们将不断提高自己的数学思维能力,发展创新和解决问题的能力,培养自信和坚持不懈的品质。

总的来说,国际奥林匹克数学竞赛是世界各国高中生一场激烈的数学角逐。

通过参与这项竞赛,学生们能够提升自己的数学水平,拓宽视野,锻炼解决问题的能力,更好地应对未来的学习和挑战。

国际奥林匹克数学竞赛

国际奥林匹克数学竞赛
• 选手在竞赛中需要坚持不懈,勇往直前
奥林匹克数学竞赛对选手未来发展的影响
奥林匹克数学竞赛为选手提供了展示自己才能的平台
• 竞赛成绩优秀的选手可以获得名校的青睐和奖学金
• 选手在竞赛中的表现可以为自己的职业发展增加筹码
奥林匹克数学竞赛培养了选手的团队合作精神
• 竞赛过程中,选手需要与队友保持良好的沟通和协作
• 选手在培训过程中需要不断挑战自己,提高解题水平
奥林匹克数学竞赛对选手心理素质的提升
奥林匹克数学竞赛锻炼了选手的心理承受能力
• 竞赛过程中,选手需要面对压力和挑战,调整好自己的心态
• 选手在竞赛中需要保持冷静和自信,发挥出自己的最佳水平
奥林匹克数学竞赛培养了选手的意志力
• 选手在培训过程中需要克服各种困难,不断提高自己的水平
• 竞赛为数学教育改革提供了有益的借鉴和经验
奥林匹克数学竞赛对人才培养模式的探索
奥林匹克数学竞赛培养了具有创新能力的人才
• 竞赛鼓励选手寻求新的解题方法,培养创新思维
• 选手在培训过程中需要不断挑战自己,提高解题水平
奥林匹克数学竞赛培养了具有团队协作能力的人才
• 竞赛过程中,选手需要与队友保持良好的沟通和协作
• 选手在培训过程中可以学习到团队合作和领导力
05
国际奥林匹克数学竞赛的教育意义与价值
奥林匹克数学竞赛对数学教育的推动作用
奥林匹克数学竞赛提高了数学教育的地位
奥林匹克数学竞赛推动了数学教育的发展
• 竞赛吸引了全球范围内优秀的数学教师和选手
• 竞赛促使各国加大对数学教育的投入和支持
• 竞赛为数学教育提供了一个交流和学习的平台
• 选手在培训过程中可以学习到团队合作和领导力
奥林匹克数学竞赛对社会公平与进步的意义

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。

自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。

这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。

在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。

1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。

解析:我们可以通过代入不同的整数n来验证这个结论。

当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。

我们可以继续代入更多的整数,发现每次结果都是素数。

虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。

2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。

解析:我们可以通过数学归纳法证明这个不等式。

首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。

假设当n=k时不等式成立,即(1+1/k)^k < 3。

我们需要证明当n=k+1时,不等式也成立。

通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。

而e约等于2.71828,小于3。

因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。

根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。

3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。

历年中国参加IMO选手(ZZ)

历年中国参加IMO选手(ZZ)

第26届IMO(1985年,芬兰赫尔辛基)吴思皓(男)上海向明中学确规定铜牌上海交通大学王锋(男)北京大学(根据yongcheng先生提供的信息修订)目前作企业软件第27届IMO(1986年,波兰华沙)李平立(男)天津南开中学金牌北京大学方为民(男)河南实验中学金牌北京大学张浩(男)上海大同中学金牌复旦大学荆秦(女)陕西西安八十五中银牌北京大学,现在美国哈佛大学任教林强(男)湖北黄冈中学铜牌中国科技大学第28届IMO(1987年,古巴哈瓦那)刘雄(男)湖南湘阴中学金牌南开大学滕峻(女)北京大学附中金牌北京大学林强(男)湖北黄冈中学银牌中国科技大学潘于刚(男)上海向明中学银牌北京大学何建勋(男)广东华南师范大学附中铜牌中国科技大学高峡(男)北京大学附中铜牌北京大学,现在北大任教第29届IMO(1988年,澳大利亚堪培拉)团体总分第二陈晞(男)上海复旦大学附中金牌复旦大学,美国密苏里大学,美国哈佛大学,现在加拿大Alberta大学数学系任教授韦国恒(男)湖北武汉武钢三中银牌北京大学查宇涵(男)南京十中银牌北京大学,在中科院数学所任副研究员邹钢(男)江苏镇江中学银牌北京大学王健梅(女)天津南开中学银牌北京大学彭建波(男)湖南师范大学附中金牌北京大学何宏宇(男)以满分成绩获第29届国际数学奥林匹金牌,1993年破格列入美国数学家协会会员,1994年获博士学位,现任亚特兰大乔治大学教授、博士生导师,从事现代数学研究前沿的《李群》《微分几何》等方向的研究,在《李群》的研究上已有重大突破。

第30届IMO(1989年,原德意志联邦共和国布伦瑞克)团体总分第一罗华章(男)重庆水川中学金牌北京大学俞扬(男)吉林东北师范大学附中金牌吉林大学霍晓明(男)江西景德镇景光中学金牌中国科技大学唐若曦(男)四川成都九中银牌中国科技大学颜华菲(女)北京中国人民大学附中银牌北京大学本科,1997年获美国麻省理工博士,现任Texax A&M Uneversity 数学系教授,美国数学会常务理事会成员,Mathematical Reviews评论员。

1975~2002匈牙利奥林匹克数学竞赛(英文版)

1975~2002匈牙利奥林匹克数学竞赛(英文版)

匈牙利数学奥林匹克试题(1975-2002)75th Kürschák Competition 1975Problem1.Transform the equation ab2(1/(a + c)2 + 1/(a - c)2) = (a - b) into a simpler form, given that a > c ≥ 0, b > 0.Problem2.Prove or disprove: given any quadrilateral inscribed in a convex polygon, we can find a rhombus inscribed in the polygon with side not less than the shortest side of the quadrilateral Problem3.Let x0 = 5, x n+1 = x n + 1/x n. Prove that 45 < x1000 < 45.1.76th Kürschák Competition 1976Problem1 ABCD is a parallelogram. P is a point outside the parallelogram such that angles PAB and PCB have the same value but opposite orientation. Show that angle APB = angle DPC. Problem2 A lottery ticket is a choice of 5 distinct numbers from 1, 2, 3, ... , 90. Suppose that 55 distinct lottery tickets are such that any two of them have a common number. Prove that one can find four numbers such that every ticket contains at least one of the fourProblem3 Prove that if the quadratic x2 + ax + b is always positive (for all real x) then it can be written as the quotient of two polynomials whose coefficients are all positive.77th Kürschák Competition 1977Problem1 Show that there are no integers n such that n4 + 4n is a prime greater than 5.Problem2ABC is a triangle with orthocenter H.The median from A meets the circumcircle again at A1,and A2 is the reflection of A1 in the midpoint of BC. Thepoints B2 and C2 are defined similarly. Show that H, A2,B2 and C2 lie on a circle.Problem3 Three schools each have n students. Eachstudent knows a total of n+1 students at the other twoschools. Show that there must be three students, onefrom each school, who know each other.78th Kürschák Competition 1978Problem1 a and b are rationals. Show that if ax2 + by2 =1 has a rational solution (in x and y), then it must have infinitely many.Problem2 The vertices of a convex n-gon are colored so that adjacent vertices have different colors. Prove that if n is odd, then the polygon can be divided into triangles with non-intersecting diagonals such that no diagonal has its endpoints the same color.Problem3 A triangle has inradius r and circumradius R. Its longest altitude has length H. Show that if the triangle does not have an obtuse angle, then H ≥ r + R. When does equality hold?79th Kürschák Competition 1979Problem1 The base of a convex pyramid has an odd number of edges. The lateral edges of the pyramid are all equal, and the angles between neighbouring faces are all equal. Show that the base must be a regular polygon.Problem 2f is a real-valued function defined on the reals such that f(x) ≤ x and f(x+y) ≤ f(x) + f(y) for all x, y. Prove that f(x) = x for all x.Solution Suppose f(0) < 0. Then f(y) ≤ f(0) + f(y) < f(y). Contradiction. So f(0) ≥ 0 and hence f(0) = 0. Now suppose f(x) < x. Then f(0) ≤ f(x) + f(-x) < x + f(-x) ≤ x - x = 0. Contradiction. Hencef(x) = x.Problem3 An n x n array of letters is such that no two rows are the same. Show that it must be possible to omit a column, so that the remaining table has no two rows the same.80th Kürschák Competition 1980Problem1 Every point in space is colored with one of 5 colors. Prove that there are four coplanar points with different colors.Problem2 n > 1 is an odd integer. Show that there are positive integers a and b such that 4/n = 1/a + 1/b iff n has a prime divisor of the form 4k-1.Problem3 There are two groups of tennis players, one of 1000 players and the other of 1001 players. The players can ranked according to their ability. A higher ranking player always beats a lower ranking player (and the ranking never changes). We know the ranking within each group. Show how it is possible in 11 games to find the player who is 1001st out of 2001.81st Kürschák Competition 1981Problem1 Given any 5 points A, B, P, Q, R (in the plane) show that AB + PQ + QR + RP <= AP + AQ + AR + BP + BQ + BRProblem2 n > 2 is even. The squares of an n x n chessboard are painted with n2/2 colors so that there are exactly two squares of each color. Prove that one can always place n rooks on squares of different colors so that no two are in the same row or column.Problem3 Divide the positive integer n by the numbers 1, 2, 3, ... , n and denote the sum of the remainders by r(n). Prove that for infinitely many n we have r(n) = r(n+1).82nd Kürschák Competition 1982Problem1 A cube has all 4 vertices of one face at lattice points and integral side-length. Prove that the other vertices are also lattice points.Problem2 Show that for any integer k > 2, there are infinitely many positive integers n such that the lowest common multiple of n, n+1, ... , n+k-1 is greater than the lowest common multiple of n+1, n+2, ... , n+k.Problem3 The integers are colored with 100 colors, so that all the colors are used and given any integers a < b and A < B such that b - a = B - A, with a and A the same color and b and B the same color, we have that the whole intervals [a, b] and [A, B] are identically colored. Prove that -1982 and 1982 are different colors.83rd Kürschák Competition 1983Problem1 Show that the only rational solution to x3 + 3y3 + 9z3 - 9xyz = 0 is x = y = z = 0. Problem2 The polynomial x n + a1x n-1 + ... + a n-1x + 1 has non-negative coefficients and n real roots. Show that its value at 2 is at least 3n.Problem3 The n+1 points P1, P2, ... , P n, Q lie in the plane and no 3 are collinear. Given any two distinct points P i and P j, there is a third point P k such that Q lies inside the triangle P i P j P k. Prove that n must be odd.84th Kürschák Competition 1984Problem1 If we write out the first four rows of the Pascal triangle and add up the columns we get: 11 11 2 11 3 3 11 1 4 3 4 1 1If we write out the first 1024 rows of the triangle and add up the columns, how many of theresulting 2047 totals will be odd?Problem2 A1B1A2, B1A2B2, A2B2A3, B2A3B3, ... , A13B13A14, B13A14B14, A14B14A1, B14A1B1 are thin triangular plates with all their edges equal length, joined along their common edges. Can the network of plates be folded (along the edges A i B i) so that all 28 plates lie in the same plane? (They are allowed to overlap).Problem3 A and B are positive integers. We are given a collection of n integers, not all of which are different. We wish to derive a collection of n distinct integers. The allowed move is to take any two integers in the collection which are the same (m and m) and to replace them by m + A and m - B. Show that we can always derive a collection of n distinct integers by a finite sequence of moves.85th Kürschák Competition 1985Problem1 The convex polygon P0P1 ... P n is divided into triangles by drawing non-intersecting diagonals. Show that the triangles can be labeled with the numbers 1, 2, ... , n-1 so that the triangle labeled i contains the vertex P i (for each i).Problem2 For each prime dividing a positive integer n, take the largest power of the prime not exceeding n and form the sum of these prime powers. For example, if n = 100, the sum is 26 + 52 = 89. Show that there are infinitely many n for which the sum exceeds n.Problem3 Vertex A of the triangle ABC is reflected in theopposite side to give A'. The points B' and C' are definedsimilarly. Show that the area of A'B'C' is less than 5 times thearea of ABC.86th Kürschák Competition 1986Problem1 Prove that three half-lines from a given pointcontain three face diagonalsof a cuboid iff the half-linesmake with each other threeacute angles whose sum is180o.Problem2 Given n > 2, find the largest h and the smallest H such that h < x1/(x1 + x2) + x2/(x2 + x3) + ... + x n/(x n + x1) < H for all positive real x1, x2, ... , x n.Problem3 k numbers are chosen at random from the set {1, 2, ... , 100}. For what values of k is the probability ½ that the sum of the chosen numbers is even?87th Kürschák Competition 1987Problem1 Find all quadruples (a, b, c, d) of distinct positive integers satisfying a + b = cd and c + d = ab.Problem2 Does there exist an infinite set of points in space such that at least one, but only finitely many, points of the set belong to each plane?Problem3 A club has 3n+1 members. Every two members play just one of tennis, chess and table-tennis with each other. Each member has n tennis partners, n chess partners and n table-tennis partners. Show that there must be three members of the club, A, B and C such that A and B play chess together, B and C play tennis together and C and A play table-tennis together.88th Kürschák Competition 1988Problem1 P is a point inside a convex quadrilateral ABCD such that the areas of the triangles PAB, PBC, PCD and PDA are all equal. Show that one of its diagonals must bisect the area of thequadrilateral.Problem2 What is the largest possible number of triples a < b < c that can be chosen from 1, 2, 3, ... , n such that for any two triples a < b < c and a' < b' < c' at most one of the equations a = a', b = b', c = c' holds?Problem3 PQRS is a convex quadrilateral whose vertices are lattice points. The diagonals of the quadrilateral intersect at E. Prove that if the sum of the angles at P and Q is less than 180o then the triangle PQE contains a lattice point apart from P and Q either on its boundary or in its interior.89th Kürschák Competition 1989Problem1 Given two non-parallel lines e and f anda circle C which does not meet either line. Constructthe line parallel to f such that the length of its segmentinside C divided by the length of its segment from Cto e (and outside C) is as large as possible.Problem2 Let S(n) denote the sum of the decimaldigits of the positive integer n. Find the set of allpositive integers m such that s(km) = s(m) for k = 1,2, ... , m.Problem3 Walking in the plane, we are allowed to move from (x, y) to one of the four points (x, y ± 2x), (x ± 2y, y). Prove that if we start at (1, √2), then we cannot return there after finitely many moves.90th Kürschák Competition 1990Problem1 Show that for p an odd prime and n a positive integer, there is at most one divisor d of n2p such that d + n2 is a square.Problem2 I is the incenter of the triangle ABC and A' is the center of the excircle opposite A. The bisector of angle BIC meets the side BC at A". The points B', C', B", C" are defined similarly. Show that the lines A'A", B'B", C'C" are concurrent.Problem3 A coin has probability p of heads and probability 1-p of tails. The outcome of each toss is independent of the others. Show that it is possibleto choose p and k, so that if we toss the coin k times we can assign the 2k possible outcomes amongst 100 children, so that each has the same 1/100 chance of winning. [A child wins if one of its outcomes occurs.]91st Kürschák Competition 1991Problem1 a >= 1, b >= 1 and c > 0 are reals and n is a positive integer. Show that ( (ab + c)n - c) <= a n ( (b + c)n - c).Problem2 ABC is a face of a convex irregular triangularprism(the triangular faces are not necessarily congruent orparallel). The diagonals of the quadrilateral face opposite Ameet at A'. The points B' and C' are defined similarly. Showthat the lines AA', BB' and CC' are concurrent.Problem3 There are 998 red points in the plane, no threecollinear. What is the smallest k for which we can alwayschoose k blue points such that each triangle with red vertices has a blue point inside?92nd Kürschák Competition 1992Problem1 Given n positive integers a i, define S k = Σ a i k, A = S2/S1, and C = ( S3/n)1/3. For each of n = 2, 3 which of the following is true: (1) A >= C; (2) A <= C; or (3) A may be > C or < C,depending on the choice of a i?Problem2 Let f1(k) be the sum of the (base 10) digits of k. Define f n(k) = f1(f n-1(k) ). Find f1992(21991).Problem3 A finite number of points are given in the plane, no three collinear. Show that it is possible to color the points with two colors so that it is impossible to draw a line in the plane with exactly three points of the same color on one side of the line.93rd Kürschák Competition 1993Problem1 a and b are positive integers. Show that there are at most a finite number of integers n such that an2 + b and a(n + 1)2 + b are both squares.Problem2 The triangle ABC is not isosceles. The incircle touches BC, CA, AB at K, L, M respectively. N is the midpoint of LM. The line through B parallel to LM meets the line KL at D, and the line through C parallel to LM meets the line MK at E. Show that D, E and N are collinear. Problem3 Find the minimum value of x2n + 2 x2n-1 + 3 x2n-2 + ... + 2n x + (2n+1) for real x.94th Kürschák Competition 1994Problem1 Let r > 1 denote the ratio of two adjacent sides of a parallelogram. Determine how the largest possible value of the acute angle included by the diagonals depends on r.Problem2 Prove that after removing any n-3 diagonals of a convex n-gon, it is always possible to choose n-3 non-intersecting diagonals amongst those remaining, but that n-2 diagonals can be removed so that it is not possible to find n-3 non-intersecting diagonals amongst those remaining. Problem3 For k = 1, 2, ... , n, H k is a disjoint union of k intervals of the real line. Show that one can find [(n + 1)/2] disjoint intervals which belong to different H k.95th Kürschák Competition 1995Problem1 A rectangle has its vertices at lattice points and its sides parallel to the axes. Its smaller side has length k. It is divided into triangles whose vertices are all lattice points, such that each triangle has area ½. Prove that the number of the triangles which are right-angled is at least 2k. Problem2 A polynomial in n variables has the property that if each variable is given one of the values 1 and -1, then the result is positive whenever the number of variables set to -1 is even and negative when it is odd. Prove that the degree of the polynomial is at least n.Problem3 A, B, C, D are points in the plane, no three collinear. The lines AB and CD meet at E, and the lines BC and DA meet at F. Prove that the three circles with diameters AC, BD and EF either have a common point or are pairwise disjoint.96th Kürschák Competition 1996Problem1 The diagonals of a trapezium are perpendicular. Prove that the product of the two lateral sides is not less than the product of the two parallel sides.Problem2 Two delegations A and B, with the same number of delegates, arrived at a conference. Some of the delegates knew each other already. Prove that there is a non-empty subset A' of A such that either each member in B knew an odd number of members from A', or each member of B knew an even number of members from A'.Problem3 2kn+1 diagonals are drawn in a convex n-gon. Prove that among them there is a broken line having 2k+1 segments which does not go through any point more than once. Moreover, this is not necessarily true if kn diagonals are drawn.97th Kürschák Competition 1997Problem1 Let S be the set of points with coordinates (m, n), where 0 <= m, n < p. Show that we can find p points in S with no three collinearProblem2 A triangle ABC has incenter I and circumcenter O. The orthocenter of the three points at which the incircle touches its sides is X. Show that I, O and X are collinear.Problem3 Show that the edges of a planar graph can be colored with three colors so that there is no monochromatic circuit.98th Kürschák Competition 1998Problem1 Can you find an infinite set of positive integers such that each pair has a common divisor (greater than 1), no integer (greater than 1) divides all members of the set, and no member of the set divides any other member?Problem2 Show that there is a polynomial with integer coefficients whose values at 1, 2, ... , n are different powers of 2.Problem3 For which n > 2 can we find n points in the plane, no three collinear, so that for each triangle of the points which are in the convex hull, exactly one of the points belongs to its interior. 99th Kürschák Competition 1999Problem1 Let e(k) be the number of positive even divisors of k, and let o(k) be the number of positive odd divisors of k. Show that the difference between e(1) + e(2) + ... + e(n) and o(1) + o(2) + ... + o(n) does not exceed n.Problem2 ABC is an arbitrary triangle. Construct an interior point P such that if A' is the foot of the perpendicular from P to BC, and similarly for B' and C', then the centroid of A'B'C' is P. Problem3 Prove that every set of integers with more than 2k members has a subset B with k+2 members such that any two non-empty subsets of B with the same number of members have different sums.100th Kürschák Competition 2000Problem1 The square 0 ≤ x ≤ n, 0 ≤ y ≤ n has (n+1)2 lattice points. How many ways can each of these points be colored red or blue, so that each unit square has exactly two red vertices? Problem2 ABC is any non-equilateral triangle. P is any point in the plane different from the vertices. Let the line PA meet the circumcircle again at A'. Define B' and C' similarly. Show that there are exactly two points P for which the triangle A'B'C' is equilateral and that the line joining them passes through the circumcenter.Problem3 k is a non-negative integer and the integers a1, a2, ... , a n give at least 2k different remainders on division by n+k. Prove that among the a i there are some whose sum is divisible by n+k.101st Kürschák Competition 2001Problem 1Given any 3n-1 points in the plane, no three collinear, show that it is possible to find 2n whose convex hull is not a triangle.Solution The difficulty is that extra points can reduce thenumber of points in the convex hull. Consider for example theconfiguration above. If we take at least one point from each arc,then the convex hull is a triangle. So we can pick at most 2npoints to get a convex hull which is not a triangle.On the other hand, if we have N > 4 points with convex hull nota triangle, then it is easy to remove a point and still have theconvex hull not a triangle. If there is an interior point then wecan remove that. If there are no interior points, then the convex hull has N points and we can remove any point to get a convex hull of N-1 > 3 points.So if the result is false, then if we take any N ≥ 2n of thepoints the convex hull must be a triangle. Suppose the convexhull of the 3n-1 points is A1, B1, C1. If we remove A1, then theconvex hull is a triangle. Now B1 must be one of the verticesof this triangle, for if it belonged to a triangle XYZ of otherpoints, then it could not be part of the convex hull of thewhole set. Similarly for C1. So the convex hull after removingA1 must be A2B1C1 for some A2. We can now remove A2 and the convex hull must be A3B1C1 for some A3, and so on. Finally, we remove A n-1 to get A n B1C1 as the convex hull of the remaining 2n points.Similarly, we can define B2, B3, ... , B n, so that the convex hull after removing B1, B2, ... B i is A1B i+1C1, and we can define C2, C3, ... , C n, so that the convex hull after removing C1, C2, ... , C i is A1B1C i+1.But now we have 3n points A i, B j, C k chosen from 3n-1, so two must be the same. The A i are all distinct, and similarly the B j and the C k. So wlog we have A i = B j for some i,j. Now if we remove all the As, all the Bs and C1 from the original set we are left with at least n-1 points (because we are removing at most 2n distinct points) and these must belong to the interior of the blue triangle A i B1C1 and the yellow triangle A1B j C1 = A1A i C1. But the interiors are disjoint, so we have a contradiction.Problem 2k > 2 is an integer and n > kC3 (where aCb is the usual binomial coefficient a!/(b! (a-b)!) ). Show that given 3n distinct real numbers a i, b i, c i (where i = 1, 2, ... , n), there must be at least k+1 distinct numbers in the set {a i + b i, b i + c i, c i + a i | i = 1, 2, ... , n}. Show that the statement is not always true for n = kC3.Solution Suppose there are at most k distinct numbers. Then there are at most kC3 and hence <n distinct sets of 3 numbers chosen from them. So for some i ≠ j we must have {a i + b i, b i + c i, c i + a i} = {a j + b j, b j + c j, c j + a j}. But the set {a i, b i, c i} is uniquely determined by {a i + b i, b i + c i, c i + a i}, so {a i, b i, c i} = {a j, b j, c j}. Contradiction.Suppose we take S to be the set {30, 31, 32, ... , 3k-1}. Take all n = kC3 subsets of 3 elements and for each such subset A i take {a i, b i, c i} so that {a i + b i, b i + c i, c i + a i} = A i. Obviously a i, b i, c i are distinct, so we have to show that if (3a + 3b - 3c)/2 = (3r + 3s - 3t)/2, where a, b, c are distinct and r, s, t are distinct, then {a,b,c} = {r,s,t}. We have 3a + 3b + 3t = 3r + 3s + 3c. There are two cases. If a = t, then since the representation base 3 is unique, we must have one of r, s, c equal to b and the other two equal to a. Since c ≠ a, and c ≠ b that is impossible. So a, b, t must all be distinct and hence {a, b, t} = {r, s, c}. Since c ≠ a or b, we must have c = t and hence {a, b} = {r, s} and so {a, b, c} = {r, s, t} as required.For example, if k = 4, then n = 4 and we can take: a1, b1, c1 = -5/2, 7/2, 11/2 ;a2, b2, c2 = -23/2, 25/2, 29/2 ;a3, b3, c3 = -17/2, 19/2, 35/2 ;a4, b4, c4 = -15/2, 21/2, 33/2 .Problem 3The vertices of the triangle ABC are lattice points and there is no smaller triangle similar to ABC with its vertices at lattice points. Show that the circumcenter of ABC is not a lattice point.Solution Let the points A, B, C have coordinates A (0,0), B(a,b), C(c,d). Suppose the circumcenter D (x,y) is a lattice point. Then AD2 = AB2, so x2 + y2 = (x-a)2 + (y-b)2. Hence a2 + b2 is even. Hence a + b and a - b are even. Similarly, c + d and c - d are even. So the points X = ((a+b)/2, (a-b)/2) and Y = ((c+d)/2, (c-d)/2) are lattice points.But AX2 = (a+b)2/4 + (a-b)2/4 = (a2+b2)/2 = AB2/2. Similarly AY2 = AC2/2. XY2 = (a+b-c-d)2/4 + (a-b+c-d)2/4 = ((b-c)2 + (a-d)2)/2 = BC2/2. So AXY is similar to ABC and smaller. Contradiction. 102th Kürschák Competition 2002Problem1 ABC is an acute-angled non-isosceles triangle. H is the orthocenter, I is the incenter and O is the circumcenter. Show that if one of the vertices lies on the circle through H, I and O, then at least two vertices lie on it.Problem2 The Fibonacci numbers are defined by F1 = F2 = 1, F n = F n-1 + F n-2. Suppose that a rational a/b belongs to the open interval (F n/F n-1, F n+1/F n). Prove that b ≥ F n+1.Problem3 S is a convex 3n gon. Show that we can choose a set of triangles, such that the edges of each triangle are sides or diagonals of S, and every side or diagonal of S belongs to just one triangle.。

匈牙利数学—小国的数学辉煌

匈牙利数学—小国的数学辉煌

匈牙利数学—小国的数学辉煌如果一个国家的数学家可以四获沃尔夫数学奖,两次摘得阿贝尔奖,那么这个国家的数学实力肯定很不错了,而且它还有许多原因未能获奖的数学家,例如数学巨匠冯·诺依曼,另外匈牙利数学早期还有现代调和分析先驱费耶、泛函分析奠基人里斯等杰出代表。

没错,今天要谈的这个国家就是匈牙利。

如今的匈牙利人口不过千万,面积不足10万平方公里,在欧洲也算不上太发达,但正是这样一个“小国”,也曾有过自己的数学辉煌,并且延续至今,这在数学史上是极为罕见的。

尽管后期有不少匈牙利数学家由于各种原因移民美国,但他们仍是匈牙利数学强有力的代表。

匈牙利长期受奥地利帝国的统治,到了1867年成为了奥匈帝国的一部分,一战后独立,后来先后经历了匈牙利苏维埃共和国,匈牙利人民共和国,最终在1989年形成了如今的匈牙利共和国。

一直以来的政治动荡使得20世纪的匈牙利经济并不怎么发达。

但匈牙利数学却未随经济的衰退而衰弱,反而在两次世界大战之间逆势而上。

值得注意的是在这期间,匈牙利著名的数学家有许多是犹太人,而匈牙利的犹太人获得解放,允许进入政府和社会工作,这还是不久前的事。

但排犹主义在一战后的盛行迫使他们必须为生存而竞争。

冯·诺依曼对此的解释是:“这是各种因素的一种综合,加上中欧各国整个社会的外部压力,个人的极度不安全感,要么做出非凡成绩,要么就面临灭亡”。

尽管外部压力很大,但来自数学本身的因素却是关键所在。

匈牙利著名的分析学家和数学教育家波利亚对此曾说:“匈牙利一直很穷,从未达到富裕的程度,而数学是最便宜的科学,不需要昂贵的设备,使得匈牙利的智力较集中地投入到了数学领域里”。

为此他还精辟地总结出了三个匈牙利数学繁荣发展的原因:1、数学竞赛,2、中学数学杂志,3、匈牙利现代数学奠基人—费耶。

匈牙利是中学数学竞赛的发源地之一,通过数学竞赛选拔了许多有数学才华的年轻人。

而这要归功于沃特福斯(Etovos,1848~1919),沃特福斯本是一名物理学家,后任匈牙利教育部长。

奥赛的起源

奥赛的起源

奥赛的起源少年时代进行数学竞赛在世界有着悠久的历史,一般认为始于1894年由匈牙利数学界为纪念数理学家厄特沃什-罗兰而组织的数学竞赛。

而把数学竞赛与体育竞赛相提并论,与科学的发源地--古希腊联系在一起的是前苏联,她把数学竞赛称为数学奥林匹克。

20世纪上半叶,不同国家相继组织了各级各类的数学竞赛,先在学校,继之在地区,后来在全国进行,逐步形成了金字塔式的竞赛系统。

从各国的竞赛进一步发展,自然为形成最高一层的国际竞赛创造了必要的条件。

1975年匈牙利布达佩斯大学数学委员会提倡创立,并于1978年8月在匈牙利举行了第一次世界奥林匹克数学竞赛(Would Mathematical Olympiad 简称WMO)。

随着影响力的扩大参加的国家和地区逐渐增多,1998年在日本文部省的支持下,由日本少年智力开发基金及20家大企业的多方协力下,协会总部迁驻日本东京,现任主席世界著名数学教育家皮特弗朗克教授。

目前参加这项赛事的代表队有60余支。

经过30多年的发展,世界数学奥林匹克竞赛的运转逐步制度化、规范化,有了一整套约定俗成的常规,并为历届东道主所遵循。

2005年经协会成员国的讨论研究,决定2008年在日本东京举办首届世界少年奥林匹克数学竞赛(International Mathematical Olympiad)简称“IMO”。

2006年接到中国地区组委会的申请,2007年8月批准加入本协会。

世界各国学生学习奥数大多是从小学一年级开始培养,如:匈牙利、捷克、美国、日本、俄国、德国等。

1、目的激发世界少年的数学才能;引起少年对数学的兴趣;发现科技人才的后备军;促进世界各国数学教育的交流与发展。

2、时间每年举办一届,时间定于8月.详细时间由各成员国所定的东道主安排3、主办由参赛国轮流主办,在各成员国国内总决赛时,协会将委派观察员监视比赛过程。

4、对象参赛选手为小学三年至中学生,每个国家每年级一支代表队有学生3人,另派2名国家代表数学家为领队。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

匈牙利数学奥林匹克试题(1975-2002)75th Kürschák Competition 1975Problem1.Transform the equation ab2(1/(a + c)2 + 1/(a - c)2) = (a - b) into a simpler form, given that a > c ≥ 0, b > 0.Problem2.Prove or disprove: given any quadrilateral inscribed in a convex polygon, we can find a rhombus inscribed in the polygon with side not less than the shortest side of the quadrilateral Problem3.Let x0 = 5, x n+1 = x n + 1/x n. Prove that 45 < x1000 < 45.1.76th Kürschák Competition 1976Problem1 ABCD is a parallelogram. P is a point outside the parallelogram such that angles PAB and PCB have the same value but opposite orientation. Show that angle APB = angle DPC. Problem2 A lottery ticket is a choice of 5 distinct numbers from 1, 2, 3, ... , 90. Suppose that 55 distinct lottery tickets are such that any two of them have a common number. Prove that one can find four numbers such that every ticket contains at least one of the fourProblem3 Prove that if the quadratic x2 + ax + b is always positive (for all real x) then it can be written as the quotient of two polynomials whose coefficients are all positive.77th Kürschák Competition 1977Problem1 Show that there are no integers n such that n4 + 4n is a prime greater than 5.Problem2ABC is a triangle with orthocenter H.The median from A meets the circumcircle again at A1,and A2 is the reflection of A1 in the midpoint of BC. Thepoints B2 and C2 are defined similarly. Show that H, A2,B2 and C2 lie on a circle.Problem3 Three schools each have n students. Eachstudent knows a total of n+1 students at the other twoschools. Show that there must be three students, onefrom each school, who know each other.78th Kürschák Competition 1978Problem1 a and b are rationals. Show that if ax2 + by2 =1 has a rational solution (in x and y), then it must have infinitely many.Problem2 The vertices of a convex n-gon are colored so that adjacent vertices have different colors. Prove that if n is odd, then the polygon can be divided into triangles with non-intersecting diagonals such that no diagonal has its endpoints the same color.Problem3 A triangle has inradius r and circumradius R. Its longest altitude has length H. Show that if the triangle does not have an obtuse angle, then H ≥ r + R. When does equality hold?79th Kürschák Competition 1979Problem1 The base of a convex pyramid has an odd number of edges. The lateral edges of the pyramid are all equal, and the angles between neighbouring faces are all equal. Show that the base must be a regular polygon.Problem 2f is a real-valued function defined on the reals such that f(x) ≤ x and f(x+y) ≤ f(x) + f(y) for all x, y. Prove that f(x) = x for all x.Solution Suppose f(0) < 0. Then f(y) ≤ f(0) + f(y) < f(y). Contradiction. So f(0) ≥ 0 and hence f(0) = 0. Now suppose f(x) < x. Then f(0) ≤ f(x) + f(-x) < x + f(-x) ≤ x - x = 0. Contradiction. Hencef(x) = x.Problem3 An n x n array of letters is such that no two rows are the same. Show that it must be possible to omit a column, so that the remaining table has no two rows the same.80th Kürschák Competition 1980Problem1 Every point in space is colored with one of 5 colors. Prove that there are four coplanar points with different colors.Problem2 n > 1 is an odd integer. Show that there are positive integers a and b such that 4/n = 1/a + 1/b iff n has a prime divisor of the form 4k-1.Problem3 There are two groups of tennis players, one of 1000 players and the other of 1001 players. The players can ranked according to their ability. A higher ranking player always beats a lower ranking player (and the ranking never changes). We know the ranking within each group. Show how it is possible in 11 games to find the player who is 1001st out of 2001.81st Kürschák Competition 1981Problem1 Given any 5 points A, B, P, Q, R (in the plane) show that AB + PQ + QR + RP <= AP + AQ + AR + BP + BQ + BRProblem2 n > 2 is even. The squares of an n x n chessboard are painted with n2/2 colors so that there are exactly two squares of each color. Prove that one can always place n rooks on squares of different colors so that no two are in the same row or column.Problem3 Divide the positive integer n by the numbers 1, 2, 3, ... , n and denote the sum of the remainders by r(n). Prove that for infinitely many n we have r(n) = r(n+1).82nd Kürschák Competition 1982Problem1 A cube has all 4 vertices of one face at lattice points and integral side-length. Prove that the other vertices are also lattice points.Problem2 Show that for any integer k > 2, there are infinitely many positive integers n such that the lowest common multiple of n, n+1, ... , n+k-1 is greater than the lowest common multiple of n+1, n+2, ... , n+k.Problem3 The integers are colored with 100 colors, so that all the colors are used and given any integers a < b and A < B such that b - a = B - A, with a and A the same color and b and B the same color, we have that the whole intervals [a, b] and [A, B] are identically colored. Prove that -1982 and 1982 are different colors.83rd Kürschák Competition 1983Problem1 Show that the only rational solution to x3 + 3y3 + 9z3 - 9xyz = 0 is x = y = z = 0. Problem2 The polynomial x n + a1x n-1 + ... + a n-1x + 1 has non-negative coefficients and n real roots. Show that its value at 2 is at least 3n.Problem3 The n+1 points P1, P2, ... , P n, Q lie in the plane and no 3 are collinear. Given any two distinct points P i and P j, there is a third point P k such that Q lies inside the triangle P i P j P k. Prove that n must be odd.84th Kürschák Competition 1984Problem1 If we write out the first four rows of the Pascal triangle and add up the columns we get: 11 11 2 11 3 3 11 1 4 3 4 1 1If we write out the first 1024 rows of the triangle and add up the columns, how many of theresulting 2047 totals will be odd?Problem2 A1B1A2, B1A2B2, A2B2A3, B2A3B3, ... , A13B13A14, B13A14B14, A14B14A1, B14A1B1 are thin triangular plates with all their edges equal length, joined along their common edges. Can the network of plates be folded (along the edges A i B i) so that all 28 plates lie in the same plane? (They are allowed to overlap).Problem3 A and B are positive integers. We are given a collection of n integers, not all of which are different. We wish to derive a collection of n distinct integers. The allowed move is to take any two integers in the collection which are the same (m and m) and to replace them by m + A and m - B. Show that we can always derive a collection of n distinct integers by a finite sequence of moves.85th Kürschák Competition 1985Problem1 The convex polygon P0P1 ... P n is divided into triangles by drawing non-intersecting diagonals. Show that the triangles can be labeled with the numbers 1, 2, ... , n-1 so that the triangle labeled i contains the vertex P i (for each i).Problem2 For each prime dividing a positive integer n, take the largest power of the prime not exceeding n and form the sum of these prime powers. For example, if n = 100, the sum is 26 + 52 = 89. Show that there are infinitely many n for which the sum exceeds n.Problem3 Vertex A of the triangle ABC is reflected in theopposite side to give A'. The points B' and C' are definedsimilarly. Show that the area of A'B'C' is less than 5 times thearea of ABC.86th Kürschák Competition 1986Problem1 Prove that three half-lines from a given pointcontain three face diagonalsof a cuboid iff the half-linesmake with each other threeacute angles whose sum is180o.Problem2 Given n > 2, find the largest h and the smallest H such that h < x1/(x1 + x2) + x2/(x2 + x3) + ... + x n/(x n + x1) < H for all positive real x1, x2, ... , x n.Problem3 k numbers are chosen at random from the set {1, 2, ... , 100}. For what values of k is the probability ½ that the sum of the chosen numbers is even?87th Kürschák Competition 1987Problem1 Find all quadruples (a, b, c, d) of distinct positive integers satisfying a + b = cd and c + d = ab.Problem2 Does there exist an infinite set of points in space such that at least one, but only finitely many, points of the set belong to each plane?Problem3 A club has 3n+1 members. Every two members play just one of tennis, chess and table-tennis with each other. Each member has n tennis partners, n chess partners and n table-tennis partners. Show that there must be three members of the club, A, B and C such that A and B play chess together, B and C play tennis together and C and A play table-tennis together.88th Kürschák Competition 1988Problem1 P is a point inside a convex quadrilateral ABCD such that the areas of the triangles PAB, PBC, PCD and PDA are all equal. Show that one of its diagonals must bisect the area of thequadrilateral.Problem2 What is the largest possible number of triples a < b < c that can be chosen from 1, 2, 3, ... , n such that for any two triples a < b < c and a' < b' < c' at most one of the equations a = a', b = b', c = c' holds?Problem3 PQRS is a convex quadrilateral whose vertices are lattice points. The diagonals of the quadrilateral intersect at E. Prove that if the sum of the angles at P and Q is less than 180o then the triangle PQE contains a lattice point apart from P and Q either on its boundary or in its interior.89th Kürschák Competition 1989Problem1 Given two non-parallel lines e and f anda circle C which does not meet either line. Constructthe line parallel to f such that the length of its segmentinside C divided by the length of its segment from Cto e (and outside C) is as large as possible.Problem2 Let S(n) denote the sum of the decimaldigits of the positive integer n. Find the set of allpositive integers m such that s(km) = s(m) for k = 1,2, ... , m.Problem3 Walking in the plane, we are allowed to move from (x, y) to one of the four points (x, y ± 2x), (x ± 2y, y). Prove that if we start at (1, √2), then we cannot return there after finitely many moves.90th Kürschák Competition 1990Problem1 Show that for p an odd prime and n a positive integer, there is at most one divisor d of n2p such that d + n2 is a square.Problem2 I is the incenter of the triangle ABC and A' is the center of the excircle opposite A. The bisector of angle BIC meets the side BC at A". The points B', C', B", C" are defined similarly. Show that the lines A'A", B'B", C'C" are concurrent.Problem3 A coin has probability p of heads and probability 1-p of tails. The outcome of each toss is independent of the others. Show that it is possibleto choose p and k, so that if we toss the coin k times we can assign the 2k possible outcomes amongst 100 children, so that each has the same 1/100 chance of winning. [A child wins if one of its outcomes occurs.]91st Kürschák Competition 1991Problem1 a >= 1, b >= 1 and c > 0 are reals and n is a positive integer. Show that ( (ab + c)n - c) <= a n ( (b + c)n - c).Problem2 ABC is a face of a convex irregular triangularprism(the triangular faces are not necessarily congruent orparallel). The diagonals of the quadrilateral face opposite Ameet at A'. The points B' and C' are defined similarly. Showthat the lines AA', BB' and CC' are concurrent.Problem3 There are 998 red points in the plane, no threecollinear. What is the smallest k for which we can alwayschoose k blue points such that each triangle with red vertices has a blue point inside?92nd Kürschák Competition 1992Problem1 Given n positive integers a i, define S k = Σ a i k, A = S2/S1, and C = ( S3/n)1/3. For each of n = 2, 3 which of the following is true: (1) A >= C; (2) A <= C; or (3) A may be > C or < C,depending on the choice of a i?Problem2 Let f1(k) be the sum of the (base 10) digits of k. Define f n(k) = f1(f n-1(k) ). Find f1992(21991).Problem3 A finite number of points are given in the plane, no three collinear. Show that it is possible to color the points with two colors so that it is impossible to draw a line in the plane with exactly three points of the same color on one side of the line.93rd Kürschák Competition 1993Problem1 a and b are positive integers. Show that there are at most a finite number of integers n such that an2 + b and a(n + 1)2 + b are both squares.Problem2 The triangle ABC is not isosceles. The incircle touches BC, CA, AB at K, L, M respectively. N is the midpoint of LM. The line through B parallel to LM meets the line KL at D, and the line through C parallel to LM meets the line MK at E. Show that D, E and N are collinear. Problem3 Find the minimum value of x2n + 2 x2n-1 + 3 x2n-2 + ... + 2n x + (2n+1) for real x.94th Kürschák Competition 1994Problem1 Let r > 1 denote the ratio of two adjacent sides of a parallelogram. Determine how the largest possible value of the acute angle included by the diagonals depends on r.Problem2 Prove that after removing any n-3 diagonals of a convex n-gon, it is always possible to choose n-3 non-intersecting diagonals amongst those remaining, but that n-2 diagonals can be removed so that it is not possible to find n-3 non-intersecting diagonals amongst those remaining. Problem3 For k = 1, 2, ... , n, H k is a disjoint union of k intervals of the real line. Show that one can find [(n + 1)/2] disjoint intervals which belong to different H k.95th Kürschák Competition 1995Problem1 A rectangle has its vertices at lattice points and its sides parallel to the axes. Its smaller side has length k. It is divided into triangles whose vertices are all lattice points, such that each triangle has area ½. Prove that the number of the triangles which are right-angled is at least 2k. Problem2 A polynomial in n variables has the property that if each variable is given one of the values 1 and -1, then the result is positive whenever the number of variables set to -1 is even and negative when it is odd. Prove that the degree of the polynomial is at least n.Problem3 A, B, C, D are points in the plane, no three collinear. The lines AB and CD meet at E, and the lines BC and DA meet at F. Prove that the three circles with diameters AC, BD and EF either have a common point or are pairwise disjoint.96th Kürschák Competition 1996Problem1 The diagonals of a trapezium are perpendicular. Prove that the product of the two lateral sides is not less than the product of the two parallel sides.Problem2 Two delegations A and B, with the same number of delegates, arrived at a conference. Some of the delegates knew each other already. Prove that there is a non-empty subset A' of A such that either each member in B knew an odd number of members from A', or each member of B knew an even number of members from A'.Problem3 2kn+1 diagonals are drawn in a convex n-gon. Prove that among them there is a broken line having 2k+1 segments which does not go through any point more than once. Moreover, this is not necessarily true if kn diagonals are drawn.97th Kürschák Competition 1997Problem1 Let S be the set of points with coordinates (m, n), where 0 <= m, n < p. Show that we can find p points in S with no three collinearProblem2 A triangle ABC has incenter I and circumcenter O. The orthocenter of the three points at which the incircle touches its sides is X. Show that I, O and X are collinear.Problem3 Show that the edges of a planar graph can be colored with three colors so that there is no monochromatic circuit.98th Kürschák Competition 1998Problem1 Can you find an infinite set of positive integers such that each pair has a common divisor (greater than 1), no integer (greater than 1) divides all members of the set, and no member of the set divides any other member?Problem2 Show that there is a polynomial with integer coefficients whose values at 1, 2, ... , n are different powers of 2.Problem3 For which n > 2 can we find n points in the plane, no three collinear, so that for each triangle of the points which are in the convex hull, exactly one of the points belongs to its interior. 99th Kürschák Competition 1999Problem1 Let e(k) be the number of positive even divisors of k, and let o(k) be the number of positive odd divisors of k. Show that the difference between e(1) + e(2) + ... + e(n) and o(1) + o(2) + ... + o(n) does not exceed n.Problem2 ABC is an arbitrary triangle. Construct an interior point P such that if A' is the foot of the perpendicular from P to BC, and similarly for B' and C', then the centroid of A'B'C' is P. Problem3 Prove that every set of integers with more than 2k members has a subset B with k+2 members such that any two non-empty subsets of B with the same number of members have different sums.100th Kürschák Competition 2000Problem1 The square 0 ≤ x ≤ n, 0 ≤ y ≤ n has (n+1)2 lattice points. How many ways can each of these points be colored red or blue, so that each unit square has exactly two red vertices? Problem2 ABC is any non-equilateral triangle. P is any point in the plane different from the vertices. Let the line PA meet the circumcircle again at A'. Define B' and C' similarly. Show that there are exactly two points P for which the triangle A'B'C' is equilateral and that the line joining them passes through the circumcenter.Problem3 k is a non-negative integer and the integers a1, a2, ... , a n give at least 2k different remainders on division by n+k. Prove that among the a i there are some whose sum is divisible by n+k.101st Kürschák Competition 2001Problem 1Given any 3n-1 points in the plane, no three collinear, show that it is possible to find 2n whose convex hull is not a triangle.Solution The difficulty is that extra points can reduce thenumber of points in the convex hull. Consider for example theconfiguration above. If we take at least one point from each arc,then the convex hull is a triangle. So we can pick at most 2npoints to get a convex hull which is not a triangle.On the other hand, if we have N > 4 points with convex hull nota triangle, then it is easy to remove a point and still have theconvex hull not a triangle. If there is an interior point then wecan remove that. If there are no interior points, then the convex hull has N points and we can remove any point to get a convex hull of N-1 > 3 points.So if the result is false, then if we take any N ≥ 2n of thepoints the convex hull must be a triangle. Suppose the convexhull of the 3n-1 points is A1, B1, C1. If we remove A1, then theconvex hull is a triangle. Now B1 must be one of the verticesof this triangle, for if it belonged to a triangle XYZ of otherpoints, then it could not be part of the convex hull of thewhole set. Similarly for C1. So the convex hull after removingA1 must be A2B1C1 for some A2. We can now remove A2 and the convex hull must be A3B1C1 for some A3, and so on. Finally, we remove A n-1 to get A n B1C1 as the convex hull of the remaining 2n points.Similarly, we can define B2, B3, ... , B n, so that the convex hull after removing B1, B2, ... B i is A1B i+1C1, and we can define C2, C3, ... , C n, so that the convex hull after removing C1, C2, ... , C i is A1B1C i+1.But now we have 3n points A i, B j, C k chosen from 3n-1, so two must be the same. The A i are all distinct, and similarly the B j and the C k. So wlog we have A i = B j for some i,j. Now if we remove all the As, all the Bs and C1 from the original set we are left with at least n-1 points (because we are removing at most 2n distinct points) and these must belong to the interior of the blue triangle A i B1C1 and the yellow triangle A1B j C1 = A1A i C1. But the interiors are disjoint, so we have a contradiction.Problem 2k > 2 is an integer and n > kC3 (where aCb is the usual binomial coefficient a!/(b! (a-b)!) ). Show that given 3n distinct real numbers a i, b i, c i (where i = 1, 2, ... , n), there must be at least k+1 distinct numbers in the set {a i + b i, b i + c i, c i + a i | i = 1, 2, ... , n}. Show that the statement is not always true for n = kC3.Solution Suppose there are at most k distinct numbers. Then there are at most kC3 and hence <n distinct sets of 3 numbers chosen from them. So for some i ≠ j we must have {a i + b i, b i + c i, c i + a i} = {a j + b j, b j + c j, c j + a j}. But the set {a i, b i, c i} is uniquely determined by {a i + b i, b i + c i, c i + a i}, so {a i, b i, c i} = {a j, b j, c j}. Contradiction.Suppose we take S to be the set {30, 31, 32, ... , 3k-1}. Take all n = kC3 subsets of 3 elements and for each such subset A i take {a i, b i, c i} so that {a i + b i, b i + c i, c i + a i} = A i. Obviously a i, b i, c i are distinct, so we have to show that if (3a + 3b - 3c)/2 = (3r + 3s - 3t)/2, where a, b, c are distinct and r, s, t are distinct, then {a,b,c} = {r,s,t}. We have 3a + 3b + 3t = 3r + 3s + 3c. There are two cases. If a = t, then since the representation base 3 is unique, we must have one of r, s, c equal to b and the other two equal to a. Since c ≠ a, and c ≠ b that is impossible. So a, b, t must all be distinct and hence {a, b, t} = {r, s, c}. Since c ≠ a or b, we must have c = t and hence {a, b} = {r, s} and so {a, b, c} = {r, s, t} as required.For example, if k = 4, then n = 4 and we can take: a1, b1, c1 = -5/2, 7/2, 11/2 ;a2, b2, c2 = -23/2, 25/2, 29/2 ;a3, b3, c3 = -17/2, 19/2, 35/2 ;a4, b4, c4 = -15/2, 21/2, 33/2 .Problem 3The vertices of the triangle ABC are lattice points and there is no smaller triangle similar to ABC with its vertices at lattice points. Show that the circumcenter of ABC is not a lattice point.Solution Let the points A, B, C have coordinates A (0,0), B(a,b), C(c,d). Suppose the circumcenter D (x,y) is a lattice point. Then AD2 = AB2, so x2 + y2 = (x-a)2 + (y-b)2. Hence a2 + b2 is even. Hence a + b and a - b are even. Similarly, c + d and c - d are even. So the points X = ((a+b)/2, (a-b)/2) and Y = ((c+d)/2, (c-d)/2) are lattice points.But AX2 = (a+b)2/4 + (a-b)2/4 = (a2+b2)/2 = AB2/2. Similarly AY2 = AC2/2. XY2 = (a+b-c-d)2/4 + (a-b+c-d)2/4 = ((b-c)2 + (a-d)2)/2 = BC2/2. So AXY is similar to ABC and smaller. Contradiction. 102th Kürschák Competition 2002Problem1 ABC is an acute-angled non-isosceles triangle. H is the orthocenter, I is the incenter and O is the circumcenter. Show that if one of the vertices lies on the circle through H, I and O, then at least two vertices lie on it.Problem2 The Fibonacci numbers are defined by F1 = F2 = 1, F n = F n-1 + F n-2. Suppose that a rational a/b belongs to the open interval (F n/F n-1, F n+1/F n). Prove that b ≥ F n+1.Problem3 S is a convex 3n gon. Show that we can choose a set of triangles, such that the edges of each triangle are sides or diagonals of S, and every side or diagonal of S belongs to just one triangle.。

相关文档
最新文档