指数函数比较大小与单调性

合集下载

利用指幂对函数单调性比较大小解答题

利用指幂对函数单调性比较大小解答题

1.已知幂函数()()223*kk f x x k N --∈=的图象关于y 轴对称,且在区间()0+∞,上是减函数, (1)求函数()f x 的解析式;(2)若>a k ,比较()0.7lna 与()0.6lna 的大小. 【解答】解(1)幂函数()()223*kk f x x k N --∈= 的图象关于y 轴对称,2*23013,12k k k k N k ∴--<∴-<<∈∴=,,,;且幂函数()()223*kk f x x k N --∈=在区间()0+∞,为减函数, ()41k f x x -∴=∴=, ;(2)由(1)知,1a >.①当1a e <<时,()()0.70.601lna lna lna <<∴<,;②当a e =时,()()0.70.61,lna lna lna =∴=; ③当a e >时,()()0.70.61,lna lna lna >∴>.2.设a>0,a≠1,t>0,比较12a log t 与12a t log +的大小,并证明你的结论. 【解答】解:当t>0时,由基本不等式可得12t +≥1t =时取“=”号 ∴1t =时,111222aa a t t log log log log t ++∴==, 1t ≠时,12t t +>, 当01a <<时,a y log x =是单调减函数,∴111222aa a t t log log log log t ++<<; 当1a >时,a y log x =是单调增函数,∴111222aa a t t log log log log t ++>∴>. 3.比较()231log x +与()3x -的大小.答案:解答:要使()231log x +与()3x -有意义,则310330x x x +>∴>->⎧⎨⎩,,()()()22331331log x log x x log x -∴+--=+-()2222313123(3)x log x log x log x +=+--=-(),当2)131(3x x +->,即()2313x x +>-时, 即18x <<时,())()()223130,313log x x log x x +-->∴+>-;当2)131(3x x +-<时,即()2313x x +<-时, 即1x <(舍去)或8x >, ∴当8x >时,()()()()223130,313log x x log x x +--<∴+<-.4.当34a >且1a ≠时,判断()1a log a +与(1)a log a +的大小,并给出证明. 答案:当1a >时,()(1)1a a log a log a ++>; 当314a <<时,()(1)1a a log a log a ++<. 解答:当1a >时,()(1)1a a log a log a ++>; 当314a <<时,()(1)1a a log a log a ++<. 证明如下:()()()()()()22111111a a lg a lg a lg a lgalog a log a lga lg a lgalg a +++-+--==++,(1)当1a >时,()()0101lga lg a lg a lga >+>+>,,.∴()()11101a a a a log a log a log a log a +++->∴+>()(),; (2)当314a <<时,()()()()221111a a lg a lg a log a log a lgalg a ++-+-=+()()()()()()()()()211111lg a lga lg a a lg a lga lg a lga lgalg a lgalg a +-++-++=++=,()()231010104a lga lg a lg a a lg <<∴<+>+>=,,,,()()()()2101lg a lga lg aa lgalg a +-+∴<+,()(1)1a a log a log a +∴+<.5.函数()y f x =定义在R 上,对于任意实数m n ,,恒有()()()f m n f m f n +=⋅ , 且当0x >时,()01f x <<. (1)求证:()01f =;(2)当0x <时,比较()f x 与1的大小. 答案: 解答:(1)∵任意实数m n ,,恒有()()()f m n f m f n +=⋅, 令()()()1,0,110m n f f f ==∴=,∵x>0时,()()()01,011,01f x f f <<∴<<∴=; (2)当0x <时,0x ->, 则()()()()()()()01,01,01()11,f x f f x f x f x f x f x <-<=-=∴∈∴>=-,; 6.求不等式()2120,1x x a a a a -+>≠>中x 的取值范围.答案:当1a >时,{}3|x x >; 当01a <<时,{}3|x x < 解答:()2120,1x x a a a a -+>≠>当1a >时,212,3x x x ->+∴>; 当01a <<时,212,3x x x -<+∴<, 故不等式()2120,1x x aa a a -+>≠>的解集:当1a >时,{}3|x x >,当01a <<时,{}3|x x <.7.若()210,13alog a a <>≠,求实数a 的取值范围. 答案:()0123⎛⎫+ ⎪⎝⎭∞,,解答:213aa log log a <= , 当1a >时,函数是一个增函数,不等式成立, 当01a <<时,函数是一个减函数,根据函数的单调性有23a <, 综上可知a 的取值是()0123⎛⎫+ ⎪⎝⎭∞,,. 8.若311,210x a lgx b lgx c lg x ⎛⎫∈=== ⎪⎝⎭,,,,试比较a b c ,,的大小. 答案:b a c << 解答:111010x a lgx ⎛⎫∈∴-<=< ⎪⎝⎭,,,()()320110,a b lgx lgx lgx c a lg x lgx lgx lgx lgx -=-=->-=-=-+>,32 lg x lg x lg x b a c ∴<<∴<<,.9.设()32f x x x=-. (1)指出函数的定义域,证明()f x 为奇函数;(2)判断函数()f x 在()0+∞,上的单调性并用定义证明; (3)试比较()f π与()27f log 的大小关系.答案:解答: (1)()32f x x x=-的定义域为()()00-∞+∞,,, ()()()()3322,f x x x f x f x x x ⎛⎫-=--=--=-∴ ⎪-⎝⎭为奇函数; (2)函数()f x 在()0+∞,上是增函数,证明如下, 任取()120x x ∈+∞,,,且12x x <,则()()()12121212123332(22)()f x f x x x x x x x x x -=---=-+, ()()()1212121230(20)x x x x f x f x x x <∴-+∴<<<,, , 故()f x 在()0+∞,上是增函数; (3)()()220737log f f log ππ<<<∴>;.10.设x y z R +∈,,,且346x y z ==. (1)求证:1112z x y-=; (2)比较34,6x y z ,的大小. 答案:(1)见证明; (2)346x y z << 解答:(1)证明:∵x y z R +∈,,,且1346x y z ==>,346lgk lgk lgk x y z lg lg lg ∴===,,, 1163214222lg lg lg lg lg z x lgk lgk lgk y lgk lgk∴-=-===,, 1112z x y=∴-;(2)34634346lgk lgk lgk x y z lg lg lg ====== ,1.0336921346k lgk x y z >∴=>=>>∴<<,,,.11.设()()12313a a y log x y log x =+=-,,其中0a >且1a ≠. (1)若12y y =,求x 的值; (2)若12y y >,求x 的取值范围.(1)16x =-; (2)当01a <<时,1136x -<-<; 当a>1时,106x -<<. 解答:(1)()()12,1313313,6a a y y log x log x x x x =+=-∴+=-∴∴=-,,经检验31030x x +>->, ,所以,16x =-是所求的值;(2)当01a <<时,∵12y y >,即()()313a a log x log x +>-,3102031311,36x x x x x⎧⎪+>->-<-+<∴∴<-⎨⎪⎩;当1a >时,∵()()12313a a y y log x log x ∴+>->,, 31012006313x x x x x +>->-<+>⎧⎪∴<⎨⎪⎩-,, 综上,当01a <<时,1136x -<-<;当a>1时,106x -<<. 12.设函数()()21x ax bx a b R ϕ=++∈,.(1)若()10ϕ-=,且对任意实数x 均有()0x ϕ≥成立,求实数a b ,的值;(2)在(1)的条件下,令()()4f x x x ϕ=-,若()g x 与()f x 在()1+∞,上有相同的单调性,()()12312412111x x x mx m x x m x mx <<=+-=-+,,且3411x x >>,,试比较:()()34||g x g x -与()()12||g x g x -的大小. 答案:(1)12a b ==,; (2)①()01m ∈,时,()()()()3412||g x g x g x g x -<-;②0m ≤时,()()()()3412||||g x g x g x g x -≥-; ③1m ≥时,()()()()3412||||g x g x g x g x -≥-(1)10101a b b a ϕ-=∴-+=∴=+(),,,又对任意实数x 均有()0x ϕ≥成立∴0a >且240b ac -≤恒成立,即()210a -≤恒成立,12a b ∴==,;(2)()()()241f x x x x ϕ=-=-在()1+∞, 上单调递增. ∴()g x 在()1+∞,上单调递增. ①()()()()312111322201111m x mx m x mx m x x x mx m x x ∈=+->+-=<+-=,,∴()312x x x ∈,同理可得()412x x x ∈,,由()g x 得单调性可知,()()()()()3412,g x g x g x g x ∈(,从而有 ()()()()3412||g x g x g x g x -<- ;②0m ≤时,()()3122211x mx m x mx m x =+-≥+-()()241211111x x m x mx m x mx x ==-+≤-+=,于是由3411x x >>,及()g x 得单调性可知()()()()()()()()41233412||||g x g x g x g x g x g x g x g x ≤<≤∴-≥-;③1m ≥时,同理可得3142x x x x ≤≥,, 进而可得()()()()3412||||g x g x g x g x -≥- .13.已知010x a <<>,且1a ≠,试比较()||1a log x +与()||1a log x -的大小,写出判断过程.答案:()()1|1|a a log x log x ->+ 解答:∵已知0111011x x x <<∴+><-<,,.当1a >时,()()()()()2111|11|a a a a a log x log x log x log x log x --+=---+=--,20111011x x x <-<<+∴<-<,,()()()()22101|0|11a a a a log x log x log x log x ∴-<∴-->∴->+,,.当01a <<时,由01x <<,则有()()1010a a log x log x ->+<,,()()()()()2111|110|a a a a a log x log x log x log x log x ∴--+=-++=->,∴()()1|1|a a log x log x ->+.综上可得,当0a >且1a ≠时,总有()()1|1|a a log x log x ->+.14.已知a b R ∈+,,函数()()11x x x xa b f x x R a b+++∈+=. (1)判断函数()f x 的单调性,并证明你的结论;(2)比较22a b a b++的大小.答案: 解答:(1)函数()()11x x x xa b f x x R a b+++∈+=递增函数,证明如下: 设x y <,则0x y -<,()()()()()()x y x y y y xxyya b a b a b f x f y abab----++=- ,①当a b =时,()f x 为常数函数,此时不单调. ②若a b >,则()()00x yx y x y x y a b ab a b f x f y ----<<->-∴<,,,,此时函数()()11x x x xa b f x x R a b+++∈+=递增函数. ③当a b <,则00x y x y x y x y a b a b a b -----<>->,,,所以()()f x f y <,此时函数()()11x x x x a b f x x R a b +++∈+=递增函数.(2)2222a b a b a b a b++-=++ 123322311322222212a b a b a b a b a b a b a b--+⎛⎫⎛⎫ ⎪⎪⎝⎭⎝=+⎭--=+,因为幂函数3122x x , 在()0+∞,上单调递增,具有相同的单调性. 所以当a b =时,22a b a b ++=当a b ≠时,22a b a b++> .15.已知()()()()()1101a a f x log x g x log x a a =+=->≠,,. (1)求函数()()f x g x -的定义域;(2)判断函数()()f x g x -的奇偶性,并予以证明; (3)求使()()0f x g x ->的x 的取值范围. 答案:(1)()11-,; (2)奇函数;(3)当 1a >时,01x <<; 当01a <<时,10x -<<. 解答:(1)由于()()()()()1101a a f x log x g x log x a a =+=->≠,,, 故()()()()1111a a axf xg x log x log x log x+-=+--=- , 1011,10x x x ⎧+>->∴⎨<-⎩<,故函数的定义域为()11-,. (2)令()()()h x f x g x =-,可得()()1111a a x xh x log log h x x x-+-==-=-+-, 故函数()()()h x f x g x =-为奇函数. (3)由()()0f x g x ->可得101a xlog x+>-, 当1a >时,有11 011xx x+∴><<-,; 当01a <<时,有 101101,101111x x x x x x x +⎧<⎪+⎪-<<∴∴-<<⎨+-⎪<⎪-⎩, , 综上可得,当 1a >时,01x <<; 当01a <<时,10x -<<. 16.已知1m a b >==,,a b 的大小关系,a _____b .答案:< 解答:10m >>><,,,1a m b a b +===∴<=.17.已知1m >,试比较()0.9lgm 与()0.8lgm 的大小.答案:即10m >时,()()0.90.8lgm lgm >;10m =时,()()0.90.8lgm lgm =;110m <<时,()()0.90.8lgm lgm <.解答:()()()0.90.10.8lgm lgm lgm =, 当1lgm >,即10m >时,()0.10.111lgm >> ,∴()()0.90.8lgm lgm >.当1lgm =,即10m =时,()()0.90.8lgm lgm =;当01lgm <<,即110m <<时,()()0.90.8lgm lgm <.18.已知函数()1211xf x log x +-=.若1a b >>,试比较()f a 与()f b 的大小. 答案:()()f a f b > 解答:函数()1211xf x log x +-=的定义域为()()11-∞-+∞,,, 再判断函数的单调性,()112212111x f x log log x x +=⎡⎤⎢⎥⎣=+--⎦因为函数21u x x =-() 在区间()()1,1-∞-+∞,,都是减函数, 所以()f x 在区间()1-∞-,和()1+∞,都是增函数,∵1a b >>,根据()f x 在()f x 上是增函数得, ∴()()f a f b >.19.已知函数()()22401a f x x x a g x log x a a =-+=>≠,(,).(1)若函数()f x 在[12]m -,上不具有单调性,求实数m 的取值范围; (2)若()()11f g =. (i)求实数a 的值; (ii)设()()123122x t f x t g x t ==,,=,当()01x ∈,时,试比较123t t t ,,的大小.答案:(1)1()2+∞,; (2)(i)2;(ii)213t t t <<. 解答:(1)∵抛物线224y x x a =-+开口向上,对称轴为1x =,∴函数()f x 在(]1-∞,单调递减,在[1)+∞,单调递增, ∵函数()f x 在[12]m -,上不单调, ∴21m >,得12m >,∴实数m 的取值范围1()2+∞,; (2)(i)()()11202f g a a =∴-+=∴=,,, (ii)()221223()121122x t f x x x x t g x log x t =-+=-===,(),=, ∴当()01x ∈,时,()()()12321301012t t t t t t ∈∈-∞∈∴<<,,,,,,. 20.已知函数()()101x f x aa a -=>≠,.(1)若函数()y f x =的图象经过()34P ,点,求a 的值; (2)比较1(0)10f lg 与()2.1f -大小,并写出比较过程. 答案:(1)2;(2)当1a >时,)1(( 2.1)100f lgf >-当01a <<时,)1(( 2.1)100f lg f <-. 解答:(1)∵函数()y f x =的图象经过()2344P a ∴=,,.又0a >,所以2a =. (2)当1a >时,)1(( 2.1)100f lg f >-;当01a <<时,)1(( 2.1)100f lg f <-; 证明:由于()3 3.11()2( 2.1)100f lgf a f a --=-=-=,, 当1a >时,xy a =在R 上为增函数, ∵3 3.13 3.1a a --->-∴>, ,即)1(( 2.1)100f lgf >- 当01a <<时,xy a =在R 上为减函数, ∵3 3.13 3.1a a --->-∴<,,故有)1(( 2.1)100f lg f <-. 21.已知函数()3f x x x x R =+∈,.(1)判断函数()f x 的单调性,并证明你的结论;(2)若a b R ∈,,且0a b +>,试比较()()f a f b +与0的大小. 答案:(1)增函数;(2)()()0f a f b +>.解答:(1)函数()3f x x x x R =+∈,是增函数,证明如下:任取12,x x R ∈,且12x x <,因为()()()()332212121212112210f x f x x x x x x x x x x x -=-+-=-+++<所以函数()3f x x x x R =+∈,是增函数.(2)由0a b +>,得a b >-,由(1)知()()f a f b >, 因为()f x 的定义域为R ,定义域关于坐标原点对称, 又()()()()()333f x x x x x x xf x -=-+-=--=-+=-,所以函数()f x 为奇函数. 于是有()()f b f b -=-,所以()()f a f b >-,从而()()0f a f b +> . 22.已知函数()()()10xxf x ln a ba b =->>>.(1)判断函数()f x 在其定义域内的单调性(2)若函数()f x 在区间()1+∞,内恒为正,试比较a b -与1的大小关系. 答案:(1)增函数; (2)1a b -≥ 解答:(1)要使函数有意义,则1)10(01x xa aa b x a b b b-∴>>>>>∴>,,,, ()0x f x ∴>∴,的定义域为()0+∞,.设21010x x a b >>>>>,,21122122110xxx xxxxxxxa ab b b b a b a b ∴>>∴->-∴->->,,,,22111x x a b ax bx ∴->-,∵函数y lgx =在定义域上是增函数,()()()()21210,f x f x f x f x ∴∴>-> , ∴()f x 在()0+∞,是增函数. (2)由(1)知,函数()f x 在()0+∞,是增函数, ∴()f x 在()1+∞,是增函数, 即有()()1f x f >,要使()0f x >恒成立,必须函数的最小值()10f ≥,即()011lg a b lg a b -≥=∴-≥,. 23.已知函数()21px f x x q +=+ 是奇函数,且()522f =.(1)求实数p q ,的值;(2)判断()f x 在[1)+∞,上的单调性,并证明你的结论; (3)若对任意的1t ≥,试比较()21f t t -+与()22f t t -的大小.答案: (1)1,0; (2)增函数;(3)()()2212f t t f t t -+≤-. 解答:(1)∵()f x 是奇函数,∴()()f x f x -=-,()2211,0p x px q x q x q-++-∴=-++∴=,()54152,1222p f p +=∴=∴=,;(2)∵()1f x x x=+,任取12[1)x x ∈+∞,,,且12x x <, ()()()()()121211212122121211111x x x x f x f x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭---=+-+-- 1212121210110,x x x x x x x x <<≤+∞∴-∴-><>,,()()()()121212121,x x x x fx f x x x --∴∴<∴()f x 在[1)+∞,上为增函数; (3)∵211y t t =-+的对称轴12t =, ∴211y t t =-+在[1)+∞,上单调递增,∴11111y ≥-+= , 又∵222y t t =-的对称轴为12t =, 222112248()y t t t =-=--在[1)+∞,上单调递增, 2211y ∴≥-= ,又()222212121101()(),y y t t t t t t y y ∴----+≥=-≥∴≥=, ,又()f x 在[1)+∞,上的单调递增, ()()()()222112f y f y f t t f t t ∴≥∴-+≤-,.24.已知函数()3f x x x =+.(1)指出()f x 在定义域R 上的奇偶性与单调性(只要求写出结论,无须证明);(2)已知实数a b c ,,满足000a b b c c a +>+>+>,,,试判断()()()f a f b f c ++与0的大小,并加以证明. 答案:(1)奇函数,增函数; (2)()()()0f a f b f c ++> 解答:(1)∵函数()3f x x x =+的定义域为R ,关于原点对称又∵()()()()()33f x x x x x f x -=-+-=-+=-,∴()f x 为奇函数,又∵3y x =在R 上单调递增,y x =在R 上单调递增,∴()3f x x x =+在定义域R 上也为增函数.(2)由0a b +>,得a b >-,故()()()f a f b f b >-=-, 于是()()0f a f b +>.同理,()()()()00f b f c f c f a +>+>,.故()()()()()()0f a f b f b f c f c f a +++++> , 即有()()()0f a f b f c ++>. 25.已知函数()()10f x x x x->=. (1)试判断函数()f x 的单调性,并用单调性的定义证明; (2)设m R ∈,试比较()223f m m -++与()5f m +的大小.答案:(1)增函数;(2)()()2235f m m f m -++<+.解答:(1)()f x 为单调增函数,证明:设120x x >>, 则()()()12121221211111f x f x x x x x x x x x --⎛-+=-+⎫= ⎪⎝⎭,()()1212121210,01> 0,0x x x x f x f x x x ∴->+∴->>>,, ∴()f x 为单调增函数; (2)解:222314455m m m m -++=--+≤+≥(),,()2235,m m m f x ∴-++<+为单调增函数;()()2235f m m f m ∴-++<+.34.已知指数函数()()01xf x a a a =>≠,图象过点831⎛⎫⎪⎝⎭,. (1)求()f x 的解析式;(2)利用第(1)的结论,比较0.1a -与0.2a -的大小. 答案:(1)()1()2xf x =;(2)0.10.2a a --<. 解答:(1)函数()()01xf x a a a =>≠,图象过点831⎛⎫ ⎪⎝⎭,,()311,821()2x a a f x ==∴∴=∴, ; (2)由(1)知()()1122x a f x =,=在R 上是减函数.0.10.20.10.2a a --->-∴<,. 26.指数函数()1xy a =-与)1(x y a =具有不同的单调性,比较13()1m a =-与3()1n a=的大小.答案: m n > 解答:因为指数函数()1xy a =-与)1(xy a=具有不同的单调性,所以11101a a ⎧-><<⎪⎨⎪⎩ 或10111a a <-<⎧>⎪⎨⎪⎩ , ()131333112,1()()1211()28a m a n a ∴>=->-==<<,,m n ∴>.27.已知函数()21xf x a -=(0a >且1a ≠).(1)若函数()f x 的图象经过点)4P ,求a 的值; (2) 判断并证明函数()f x 的奇偶性;(3)比较2()f -与()2.1f -的大小,并说明理由. 答案: (1)2;(2)偶函数;(3)当1a >时,()()2 2.1f f -<-; 当01a <<时,()()2 2.1.f f ->-解答:(1)∵函数()f x 的图象经过点)4P ,24, 2.f a a ∴==∴=(2)函数()f x 为偶函数.∵函数()f x 的定义域为R,且()()22()11x x f x a af x ----===,∴函数()f x 为偶函数.(3)∵21y x =-在(),0-∞上单调递减, ∴当1a >时,()f x 在(),0-∞上单调递减,()()2 2.1f f ∴-<-;当01a <<时,f(x)在(),0-∞上单调递增, ∴()()2 2.1.f f ->-28.函数()(,xf x k a k a =⋅为常数,0a >且1)a ≠的图象经过点()0,1A 和()3,8B ,()()()11f xg x f x -=+.(1)求函数()f x 的解析式; (2)试判断()g x 的奇偶性;(3)记()()()(()2ln 2,ln ln 2,ln ,ln 2a g b g c g d g ====,试比较,,,a b c d 的大小,并将,,,a b c d 按从大到小顺序排列. 答案:(1)()2xf x =;(2)奇函数;(3)a d c b >>>. 解答:(1)由题知0318k a k a ⎧⋅=⎨⋅=⎩,解得12k a ==,,所以()2xf x =. (2)由(1)知,()2121x x g x -=+,所以()()2121x x g x g x ----==-+,显然()g x 的定义域为R ,所以()g x 是定义在R 上的奇函数.(3)因为()21212121x x xg x -==-++,所以()g x 是定义在R 上的增函数,又1ln2ln 12e =<<=,所以210ln2ln 2ln22<<<,()ln ln 20<, 所以()21ln2ln 2ln2ln ln 22>>>,于是,故a d c b >>>.29.已知定义在R 上的奇函数()f x ,在()0,1x ∈时, ()2 41xxf x =+且()()11f f -=. (1)求()f x 上,1[]1x ∈-上的解析式; (2)当()0,1x ∈时,比较()f x 与12的大小. 答案:(1)()()(){}2,1,0412,0,1410,1,0,1xxxxx f x x x ⎧-∈-⎪+⎪⎪=∈⎨+⎪∈-⎪⎪⎩; (2)()12f x <.解答:(1)∵()f x 是R 上的奇函数且()0,1x ∈时,()2 41xxf x =+, ∴当,0()1x ∈-时,()22414(1)x xx xf x f x --=-==-++-. 又由于()f x 为奇函数,()()00(),00f f f ∴=-∴=-, 又()()()()(11,11(),110)f f f f f f =-=-∴=-=- .综上所述,当,1[]1x ∈-时,()()(){}2,1,0412,0,1410,1,0,1xxxx x f x x x ⎧-∈-⎪+⎪⎪=∈⎨+⎪∈-⎪⎪⎩; (2)当()0,1x ∈时,()2 41xxf x =+, ()()()()2211212241 2412241241xxxxx x xf x --⋅--=-==+++-, ()20,1(21)0,410x x x ∈∴->+>, ()()110,22f x f x ∴-<∴<. 30.比较下列各组数的大小: (1)0.2456-⎛⎫⎪⎝⎭与1456-⎛⎫⎪⎝⎭;(2)π1π-⎛⎫ ⎪⎝⎭与1; (3)(0.8)-2与1254-⎛⎫ ⎪⎝⎭. 答案: (1)10.2445566--⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭; (2)π11π-⎛⎫> ⎪⎝⎭(3)12250.84--⎛⎫> ⎪⎝⎭.解答:(1)考察函数56xy ⎛⎫= ⎪⎝⎭. ∵5016<<,∴函数56xy ⎛⎫= ⎪⎝⎭在()-∞∞,+上是减函数. 又10.244->-,∴10.2445566--⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭. (2)考察函数1πxy ⎛⎫= ⎪⎝⎭,∵101π<<,∴函数1πxy ⎛⎫ ⎪⎝⎭=在()-∞∞,+上是减函数.又-π<0,∴π111ππ-⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭=. (3)先考察函数0.8x y =.00.81<<,∴函数0.8xy =在()-∞∞,+上是减函数. 又20-<,∴200.80.81>=-.再考察函数54xy ⎛⎫= ⎪⎝⎭. ∵514>,∴函数54xy ⎛⎫= ⎪⎝⎭在()-∞∞,+上是增函数. 又102-<,∴1255144-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭=. 综上可知,12250.84--⎛⎫> ⎪⎝⎭.31.已知01,b 1,1a ab <<>>,试比较11log log b log b ba ab 、、的大小. 答案:11log b log log b ba ba <<解答:因为01,b 1a <<>,所以log b 0a <,1log 1b b =-,1log 0ba >; 又因为b 1a >,01a <<,所以1b 1a>>; 所以11log b log 1?log b a aa a <=-=; 所以11log b log log b ba b a <<.32.已知函数()2f x ax bx c =++(0a >且0bc ≠).(1)若()()()0111f f f ==-=,试求()f x 的解析式;(2)令()2g x ax b =+,若()10g =,又()f x 的图像在x 轴上截得的弦的长度为l ,且02l <≤,试比较b 、c 的大小.答案:(1)()21f x x x =+-或()21f x x x =--;(2)0c b >>. 解答:(1)由已知()()()0111f f f ==-=,有()()22a b c a b c a b c a b c ++=-+⇒++=-+,得()40b a c +=.∵0bc ≠,∴0b ≠,∴0a c +=,由0a >知,0c <; ∵1c =,∴1c =-,则1,1a b ==±; ∴()21f x x x =+-或()21f x x x =--.(2)()2g x ax b =+,由()10g =且0a >,知20,0a b b +=<且0a >, 设方程()0f x =的两根为12,x x ,则12122,b c x x x x a a+=-==,∴12x x -== 由已知1202x x <-≤,∴01ca≤<;又∵0,0a bc >≠,∴0c >; 又0b <,∴0c b >>.33.设()f x 是定义在R 上的奇函数,且对任意a 、b ∈R ,当0a b +≠时,都有()()0f a f b a b+>+.(1)若a b >,试比较()f a 与()f b 的大小关系; (2)若()()923290x xxf f k -⋅+⋅->对任意[)0,x ∞∈+恒成立,求实数k 的取值范围.答案:(1)()()f a f b >; (2).1k <. 解答:(1)因为a b >,所以0a b ->,由题意得:()()0f a f b a b+->-;所以()()0f a f b +->;又()f x 是定义在R 上的奇函数,()()f b f b ∴-=-,()()0f a f b ∴->; 即()()f a f b >.(2)由(1)知()f x 为R 上的单调递增函数,()()923290x x x f f k -⋅+⋅->对任意[)0,x ∞∈+恒成立, ()()92329x x x f f k ∴-⋅>-⋅-,即()()92329x x x f f k -⋅>-⋅, 923293923x x x x x k k ∴-⋅>-⋅∴<⋅-⋅,对任意[)0,x ∞∈+恒成立,即k 小于函数[)3923,0,xxu x ∞=⋅-⋅∈+的最小值.令3x t =,则[]1,t ∞∈+;即22113923323133xxu t t t ⎛⎫=⋅-⋅=-=--≥ ⎪⎝⎭; 1k ∴<.34.已知函数()211,0f x x a x a a ⎛⎫=-++> ⎪⎝⎭(1)当12a =时,解不等式()0f x ≤; (2)比较1a a与的大小;(3)解关于x 的不等式()0f x ≤. 答案:(1)1{|2}2x x ≤≤; (2)当01a <<时,有1a a >;当1a >时,有1a a <;当1a =时,1a a=; (3)当01a <<时,1{|}x a x a ≤≤;当1a >时,1{|}x x a a≤≤;当1a =时,{}1x ∈.解答: (1)当12a =时,有不等式()23102f x x x =-+≤, ∴()1202x x ⎛⎫--≤ ⎪⎝⎭, ∴不等式的解集为:1{|2}2x x ≤≤; (2)∵()()111a a a a a+--=且0a > ∴当01a <<时,有1a a> 当1a >时,有1a a < 当1a =时,1a a=;(3)∵不等式()()10f x x x a a ⎛⎫=--≤ ⎪⎝⎭当01a <<时,有1a a >,∴不等式的解集为1{|}x a x a ≤≤; 当1a >时,有1a a <,∴不等式的解集为1{|}x x a a≤≤;当1a =时,不等式的解集为{}1x ∈. 35.比较下列各题中两个幂的值的大小: (1)352.1,35π;(2)13(-,13( 1.4)--;(3)452()3-,453()4.答案: (1)33552.1π<;(2)1133(( 1.4)-->-;(3)4455((23))34-<.解答:(1) ∵35y x =为R 上的增函数,又33552.1, 2.1ππ∴<<.(2) ∵13y x-=在(),0-∞上为减函数,且 1.40<-<,∴1133(( 1.4)-->-.(3)∵45y x =为R 上的偶函数,∴4455((22))33-=,又函数45y x =在[)0,+∞上为增函数,且2334<,∴4455()3(23)4<,即4455((23))34-<.36.已知函数()2()f x x a x =+∈R .(1)对任意的12,x x ∈R ,比较()()1212f x f x +⎡⎤⎣⎦与12()2x x f +的大小; (2)若10,11a x -≤≤-≤≤,求证:()11f x -≤≤. 答案: (1)()()12121)22(x x f x f x f ⎡⎤+≥⎣⎦+; (2)见证明. 解答:(1)对任意的12,x x ∈R ,有()()1212122()x x f x f x f ⎡⎤+-⎣⎦+ 222121222(2)x x a x x a +++=--22121224x x x x +-=()212104x x =-≥,所以()()12121)22(x x f x f x f ⎡⎤+≥⎣⎦+. (2)由于()2,11,10f x x a x a =+-≤≤-≤≤, 则当0x =时,()1min f x a =≥-; 当1x =±时,()1 1.max f x a =+≤ 综上可知,()11f x -≤≤. 37.比较下列各组数的大小:(1)3log 2.5与3 log 3.7. (2)0.2 log 2与0.2 log 4.1. (3)3log 0.24与0.2 log 0.24. (4) log 3a 与 log 3.1a . 答案:(1)332.5 3.7log log <; (2)0.20.22 4.1log log > ; (3)30.20.240.24log log <; (4)当1a >时,3 3.1a a log log <; 当01a <<时,3 3.1a a log log > 解答:(1)因为()3f x log x =为增函数,且2.5 3.7<,所以332.5 3.7log log <. (2)因为()0.2f x log x =为减函数,且2 4.1<,所以0.20.22 4.1log log >(3)因为330.2410log log <=,0.20.20.2410log log >= ,所以30.20.240.24log log <. (4)当1a > 时,因为()a f x log x =为增函数,且3 3.1<,所以3 3.1a a log log <; 当01a <<时,同理可得,3 3.1a a log log > 38.比较()3.412b -与()3.5112()2b b -<且0b ≠)的大小,答案:当0b <时, 3.43.5()(121)2b b -<-;当102b <<时,102b <<.(1)当11b ->,即0b <时,()12xy b =- 递增. 所以 3.43.5()(121)2b b -<-.(2)当0121b <<-,即102b <<时,()12xy b =-递减, 所以 3.43.5()(121)2b b ->- .综上所述,当0b <时, 3.43.5()(121)2b b -<-;当102b <<时,102b <<. 39.已知()()1log 32log 2x x f x g x =+=,,试比较()f x 与()g x 的大小. 答案:当01x <<或43x >时,()() f x g x >; 当403x <<时,()() f x g x <; 当43x =时,()() f x g x =. 解答:()() log 3log 4x x f x x g x ==,,所以()()3 log 4x x f x g x -=; 当01x <<时,3log 04xx>,所以()()f xg x >; 当403x <<时,3log 04xx<,所以()() f x g x <; 当43x =时,3log 04xx=,所以()() f x g x =; 当43x >时,3log 04xx>,所以()() f x g x >; 综上所述:当01x <<或43x >时,()() f x g x >; 当403x <<时,()() f x g x <; 当43x =时,()() f x g x =. 40.已知()(0xf x a a =>,且)1,a ≠当12x x ≠时,比较(12()2x x f +与()()122f x f x +的大小. 答案:()()1212()22f x f x x x f ++<()12122,()2x x xx x f x a f a ++=∴=,()()121211()22x x f x f x a a ⎡⎤+⎣⎦+=. ∵0a >,且121,a x x ≠≠, ∴10x a >,20x a >,且12x x a a ≠,∴121221()2x x x x a a a ++>=,即()()1212()22f x f x x x f ++<. 41.设二次函数()2f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(1)求实数a 的取值范围; (2)试比较()()()010f f f -与116的大小,并说明理由. 答案:(1)(0,3-; (2)()()()101016f f f -<. 解答:(1)令()()()21g x f x x x a x a =-=+-+,则由题意可得()()0,101,210,00,a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,0,11,3a 3a a a ⎧>⎪∴-<<⎨⎪<->+⎩或,03a ∴<<- 故所求实数a的取值范围是(0,3-).(2)()()()()()2010012f f f g g a -==,令()22h a a =.∵当0a >时()h a 单调增加,∴当03a <<-时,()20323((217(h a h <<-=-=-116=<,即()()()101016f f f -<.42.()()21x xa f x a a a -=--,其中0a >,且1a ≠. (1)判断函数()f x 在(),-∞+∞上的单调性,并加以证明;(2)判断()22f -与()()11,33f f --与()22f -的大小关系,由此归纳出一个更一般的结论,并加以证明. 答案:(1)增函数;(2)()()()()2211,3322f f f f ->-->-. 解答:(1)当01a <<时,201aa <-,x x a a --为减函数,根据复合函数的性质可得()f x 在(),-∞+∞上是增函数; 当1a >时,201aa >-,x x a a --为增函数,根据复合函数的性质可得()f x 在(),-∞+∞上是增函数;综上,0a >,且1a ≠时,()f x 在(),-∞+∞上是增函数. (2)()()()()2211,3322f f f f ->-->- . 一般的结论:()()()*(11.)f n n f n n n N +-+>-∈证明如下:上述不等式等价于()()11f n f n +-> ,即21111n n na a a+++>+, 化简得1()(110)n n aa +-->,在0a >,且1a ≠的条件下,()1()110n n aa +-->显然成立,故()()()*1()1f n n f n n n N +-+>-∈成立.43. 已知()log (01),a f x x a a =>≠,若120,0,x x >>判断121[()()]2f x f x +与12()2x x f +的大小,并加以证明. 答案:①当1a >时,12121[()()]()22x x f x f x f ++≤; ②当01a <<时,12121[()()]()22x x f x f x f ++≥. 解答: 由题可得121212()()log log log ()a a a f x f x x x x x +=+=,因为120,0x x >>,所以21212()2x x x x +≤(当且仅当12x x =时取“=”号). ①当1a >时,21212log ()log ()2a a x x x x +≤, 12121211(log log )log ()log ()222a a a a x x x x x x +∴+=≤, 即12121[()()]()22x x f x f x f ++≤(当且仅当12x x =时取“=”号). ②当01a <<时,21212log ()log ()2a a x x x x +≥ , 12121211(log log )log ()log ()222a a a a x x x x x x +∴+=≥ 即12121[()()]()22x x f x f x f ++≥(当且仅当12x x =时取“=”号). 44.已知3201,log (1),log (1),a a a a x a y a >≠=+=+,试比较,x y 的大小.答案:.x y >解答:322(1)(1)(1)a a a a +-+=-,∴当1a >时,10a -> ,∴3211,log a a a y x +>+=在(0,)+∞上递增,∴.x y >当01a <<时,10a -<,∴3211,log (0,)a a a y x +<+=+∞因在上递减,∴.x y > 综上知:.x y >45.不等式223221x x k x x ++≥++ ,对任意实数x 都成立,满足条件自然数k 最大值为a ,若已知0mn m n >≠,,试比较()22134alog m mn n ++与()2126alog m mn +的大小.答案:()()222113426aalog m mn n log m mn ++<+解答:不等式223221x x k x x ++≥++ 对于任意的实数x 均成立,等价于()()23220k x k x k -+-+-≤ 对于任意的实数x 均成立. 当3k =时,101x x +≤∴≤-,,不满足题意;当3k ≠时,()()230243(20)k m k k ⎧⎨<-<----⎩, 解得3k <,∵满足条件自然数k 最大值为a ,30a mn m n ∴=>≠,,,()222222342620m mn n m mn m mn n m n ∴++--=-+=->, 2223426m mn n m mn ∴++>+,∵对数函数13y log x =为减函数,()()222113426aalog m mn n log m mn ∴++<+.46.定义在R 上的函数()f x 满足()()4f x f x +=,当26x ≤≤时,()||1()2x m f x n -=+,且()831f = . (1)求m n ,的值;(2)比较2()2f log m 与2()f log n 的大小. 答案: (1)4,30;(2)22()()2f log m f log n >. 解答:(1)∵()()4f x f x +=,故函数的一个周期为4. 当26x ≤≤时,()()())26(12x m nf x f f -+∴==,,26112642))2((m n m nm m m -+-+∴=∴-=-∴=,,,()()4418431302()f f n n -+∴====,;(2)由(1)的计算知,当26x ≤≤时,()4()1302x f x -+= 图象的对称轴为4x =, 且在4x =处()f x 取最大值.又()()()22234()()305f log m f f f log f =<<,,由函数解析式可知()()22352()()f f f log m f log n =∴>,.47.函数()(x f x k a k a =⋅,为常数,01a a ≠>,)的图象经过点1(0)A ,和8(3)B ,,()()()11f xg x f x -=+. (1)求函数()f x 的解析式;(2)试判断()g x 的奇偶性;(3)记()()()(()2222a g ln b g ln ln c g d g ln ====、、, ,试比较a b c d ,,, 的大小,并将a b c d ,,,从大到小顺序排列.答案:(1)()2x f x =;(2)奇函数;(3)a d c b >>>.解答:(1)代入1(0)A ,和8(3)B ,中得 031128k a k a k a ⎧⋅=∴==⎨⋅=⎩,,, 即有()2x f x = ;(2)∵()()()21212121x x x x g x g x g x ----=∴-==-++,, 又()210x x R g x +≠∈∴,,是定义在R 上的奇函数.(3)∵()21212121x x x g x -==-++, ∴g(x)是定义在R 上的增函数,21122122222ln e ln lne ln ln ln ln <<∴<<<<,,, ()()220222ln ln ln ln ln ln <∴>>>,,()()()()2(222g ln g ln g g ln ln ∴>>>, a d c b >>>.48.若()2f x x x b =-+,且()22()()21f log a b log f a a ⎡⎤⎣=⎦=≠,.。

指数函数及其性质

指数函数及其性质

指数函数及其性质要点一、指数函数的概念:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x(a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31x y =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存有.③如果1a =,则11xy ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x>1x>0时,0<a x<1⑤x<0时,0<a x<1x>0时,a x>1⑥ 既不是奇函数,也不是偶函数要点诠释:(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。

(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。

当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大)x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性实行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值.【变式1】指出下列函数哪些是指数函数?(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=.类型二、函数的定义域、值域例2.求下列函数的定义域、值域.(1)313x xy =+;(2)y=4x -2x+1;(3)21139x --;(4)211xx y a-+=(a 为大于1的常数)举一反三:【变式1】求下列函数的定义域:(1)2-12x y = (2)y =(3)y =0,1)y a a =>≠类型三、指数函数的单调性及其应用 例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【总结升华】由本例可知,研究()f x y a=型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a =的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323x x y -+-=的单调区间及值域.【变式2】求函数2-2()(01)x xf x a a a =>≠其中,且的单调区间.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数.【总结升华】指数函数是学习了函数的一般性质后,所学的第一个具体函数.所以,在学习中,尽量体会从一般到特殊的过程.例5.判断下列各数的大小关系:(1)1.8a与1.8a+1; (2)24-231(),3,()331(3)22.5,(2.5)0, 2.51()2(4)0,1)a a >≠举一反三:【变式1】比较大小:(1)22.1与22.3 (2)3.53与3.23 (3)0.9-0.3与1.1-0.1(4)0.90.3与0.70.4(5)110.233241.5,(),()33-.【变式2】利用函数的性质比较122,133,166【变式3】 比较1.5-0.2, 1.30.7, 132()3的大小.例6. (分类讨论指数函数的单调性)化简:4233-2a a a +举一反三: 【变式1】如果215x x a a +-≤(0a >,且1a ≠),求x 的取值范围.例7.判断下列函数的奇偶性:)()21121()(x x f x ϕ+-= (()x ϕ为奇函数)【变式1】判断函数的奇偶性:()221xx xf x =+-.类型五、指数函数的图象问题例8.如图的曲线C 1、C 2、C 3、C 4是指数函数xy a =的图象,而12,,3,22a π⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭,则图象C 1、C 2、C 3、C 4对应的函数的底数依次是________、________、________、________.举一反三:【变式1】 设()|31|xf x =-,c <b <a 且()()()f c f a f b >>,则下列关系式中一定成立的是( )A .33c b <B .33c b >C .332c a +>D .332c a+<【变式2】为了得到函数935xy =⨯+的图象,可以把函数3xy =的图象( )A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度1、已知集合},4221|{},1,1{1Z x x N M x ∈<<=-=+,则M N =( )A 、}1,1{-B 、}1{-C 、}0{D 、}0,1{- 2、设5.1348.029.01)21(,8,4-===y y y ,则( )A 、213y y y >>B 、312y y y >>C 、321y y y >>D 、231y y y >> 3、当11≤≤-x 时,函数22-=xy 的值域为( ) A 、]0,23[-B 、]23,0[C 、]0,1[-D 、]1,23[- 4、函数12212,+==x x a y a y ()1,0≠>a a ,若恒有12y y ≤,则底数a 的取值范围是( ) A 、1>a B 、10<<a C 、10<<a 或1>a D 、无法确定 5、下列函数值域为),0(+∞的是( )A 、xy -=215 B 、xy -=1)31( C 、1)21(-=x y D 、x y 21-= 6、当0≠a 时,函数b ax y +=和axb y =的图象只可能是图中的( )7、函数)1,0(≠>=a a a y x在]2,1[上最大值比最小值大2a,则a = 。

指数函数比较大小及复合函数的单调性测试题(含答案)

指数函数比较大小及复合函数的单调性测试题(含答案)

指数函数比较大小及复合函数的单调性一、单选题(共8道,每道12分)1.已知实数a,b满足,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:指数函数单调性的应用2.设,则这三个数的大小关系是( )A.a>b>cB.b>a>cC.c>a>bD.a>c>b答案:C解题思路:试题难度:三颗星知识点:指数函数的图象与性质3.已知,这三个数的大小关系是( )A.b<a<cB.c<a<bC.a<b<cD.c<b<a答案:C解题思路:试题难度:三颗星知识点:指数函数的图象与性质4.设,那么( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:指数函数单调性的应用5.函数的单调递减区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:指数型复合函数的性质及应用6.若函数,满足,则的单调递减区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:指数型复合函数的性质及应用7.函数,在上的最大值和最小值之和是5,则a=( )A. B.C.2D.4答案:C解题思路:试题难度:三颗星知识点:指数函数单调性的应用8.函数的单调递增区间与值域相同,则实数a的值是( )A.﹣2B.2C.﹣1D.1答案:B解题思路:试题难度:三颗星知识点:指数型复合函数的性质及应用。

指数、对数、幂函数总结归纳

指数、对数、幂函数总结归纳

指数与指数幂的运算【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数与对数函数互为反函数(a >0,a ≠1).【要点梳理】要点一、幂的概念及运算性质1.整数指数幂的概念及运算性质2.分数指数幂的概念及运算性质为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1n na a =()m n m m n na a a ==-1m nm naa=3.运算法则当a >0,b >0时有:(1)nm nma a a +=⋅;(2)()mn nma a =;(3)()0≠>=-a n m a aa nm n m ,;(4)()mm m b a ab =.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-.要点二、根式的概念和运算法则1.n 次方根的定义:若x n=y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y .n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为n y ±负数没有偶次方根;零的偶次方根为零,00n =. 2.两个等式(1)当1n >且*n N ∈时,nnaa =;(2)⎩⎨⎧=)(||)(,为偶数为奇数n a n a a nn要点诠释:①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.②指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式: a 2-b 2=(a -b )(a +b ),a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2), (a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,的运用,能够简化运算.指数函数及其性质【要点梳理】要点一、指数函数的概念:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x(a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在. ②如果1a =,则11xy ==是个常量,就没研究的必要了。

高中数学第四章指数函数与对数函数指数函数第2课时指数函数及其性质的应用学案新人教A版必修第一册

高中数学第四章指数函数与对数函数指数函数第2课时指数函数及其性质的应用学案新人教A版必修第一册

第2课时 指数函数及其性质的应用课程标准(1)掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.(2)能借助指数函数图象及单调性比较大小.(3)会解简单的指数方程、不等式.(4)会判断指数型函数的奇偶性.新知初探·课前预习——突出基础性教材要点要点一 比较大小❶1.对于同底数不同指数的两个幂的大小,利用指数函数的________来判断;2.对于底数不同指数相同的两个幂的大小,利用指数函数的______的变化规律来判断;3.对于底数不同指数也不同的两个幂的大小,则通过______来判断.要点二 解指数方程、不等式(1)形如a f(x)>a g(x)的不等式,可借助y=a x的________求解❷;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x的_ _______求解;(3)形如a x>b x的不等式,可借助两函数y=a x,y=b x的图象求解.要点三 指数型函数的单调性❸一般地,有形如y=a f(x)(a>0,且a≠1)函数的性质(1)函数y=a f(x)与函数y=f(x)有________的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有________的单调性;当0<a<1时,函数y=a f(x)与函数y=f(x)的单调性________.助学批注批注❶ 注意区别指数函数与幂函数的比较大小.批注❷ 如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论.批注❸ 与复合函数的单调性“同增异减”一致,即内外两个函数单调性相同,则复合函数为增函数;内外两个函数单调性相反,则复合函数为减函数.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)若0.3a>0.3b,则a>b.( )(2)函数y=3x2在[0,+∞)上为增函数.( )(3)函数y=21x在其定义域上为减函数.( )(4)若a m>1,则m>0.( )2.设a=1.20.2,b=0.91.2,c=0.3-0.2,则a,b,c大小关系为( ) A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.已知2m>2n>1,则下列不等式成立的是( )A.m>n>0B.n<m<0C.m<n<0D.n>m>04.函数f(x)=2|x|的递增区间是________.题型探究·课堂解透——强化创新性题型 1 利用指数函数的单调性比较大小例1 若a=(12)32,b=(34)14,c=(34)34,则a,b,c的大小关系是( ) A.a>b>c B.b>a>cC.b>c>a D.c>b>a方法归纳底数与指数都不同的两个数比较大小的策略巩固训练1 下列选项正确的是( )A.0.62.5>0.63B.1.7−13<1.7−12C.1.11.5<0.72.1D.212>313题型 2 解简单的指数不等式例2 (1)不等式3x -2>1的解集为________.(2)若a x +1>(1a )5−3x(a >0且a ≠1),求x 的取值范围.方法归纳利用指数函数单调性解不等式的步骤巩固训练2 已知集合M ={-1,1},N ={x |12<2x +1<4,x ∈Z },则M ∩▒N = ()A .{-1,1}B .{-1}C .{0}D .{-1,0}题型 3 指数型函数的单调性例3 求函数f (x )=(13)x 2-2x 的单调区间.方法归纳指数型函数单调区间的求解步骤巩固训练3 函数f (x )=2x2-1的单调减区间为________.题型 4 指数函数性质的综合问题例4 已知函数f (x )=e x -mex 是定义在R 上的奇函数.(1)求实数m 的值;(2)用单调性定义证明函数f (x )是R 上的增函数;(3)若函数f (x )满足f (t -3)+f (2t 2)<0,求实数t 的取值范围.方法归纳有关指数函数性质的综合问题的求解策略是奇函数.巩固训练4 已知函数f(x)=2x−a2x+a(1)求实数a的值;(2)求f(x)的值域.第2课时 指数函数及其性质的应用新知初探·课前预习[教材要点]要点一单调性 图象 中间值要点二单调性 单调性要点三相同 相同 相反[基础自测]1.答案:(1)× (2)√ (3)× (4)×2.解析:∵a=1.20.2>1.20=1,b=0.91.2<0.90=1,∴b<a,又y=x0.2在(0,+∞)上单调递增,∴1<a=1.20.2<0.3-0.2=(103)0.2,∴b<a<c.答案:C3.解析:因为2m>2n>1,所以2m>2n>20;又函数y=2x是R上的增函数,所以m>n>0.答案:A4.解析:因为f(x)=2|x|={2x,x>0(12)x,x≤0,故函数f(x)的单调递增区间为(0,+∞).答案:(0,+∞)题型探究·课堂解透例1 解析:因为b=(34)14,c=(34)34,函数y=(34)x在R上单调递减,所以(34)14>(34)34,即b>c;又a=(12)32=(14)34,c=(34)34,函数y=x34在(0,+∞)上单调递增,所以(14)34<(34)34,即a<c,所以b>c>a.答案:C巩固训练1 解析:对于A:y=0.6x在定义域R上单调递减,所以0.62.5>0.63,故A正确;对于B:y=1.7x在定义域R上单调递增,所以1.7−13>1.7−12,故B错误;对于C:因为1.11.5>1.10=1,0<0.72.1<0.70=1,所以1.11.5>0.72.1,故C错误;对于D:因为¿)6=23=8,¿)6=32=9,即(212)6<¿)6,所以212<313,故D错误.答案:A例2 解析:(1)3x-2>1⇒3x-2>30⇒x-2>0⇒x>2,所以解集为(2,+∞).(2)因为a x+1>(1a)5−3x,所以当a>1时,y=a x为增函数,可得x+1>3x-5,所以x<3.当0<a<1时,y=a x为减函数,可得x+1<3x-5,所以x>3.综上,当a>1时,x的取值范围为(-∞,3),当0<a<1时,x的取值范围为(3,+∞).答案:(1)(2,+∞) (2)见解析巩固训练2 解析:∵12<2x+1<4,∴2-1<2x+1<22,∴-1<x+1<2,∴-2<x<1.又∵x∈Z,∴x=0或x=-1,即N={0,-1},∴M∩N={-1}.答案:B例3 解析:令u=x2-2x,则原函数变为y=(1 3 )u.∵u=x2-2x=(x-1)2-1在(-∞,1)上单调递减,在[1,+∞)上单调递增,又∵y=( 13)u在(-∞,+∞)上单调递减,∴y=(13)x2-2x单调递增区间是(-∞,1),单调递减区间是[1,+∞).巩固训练3 解析:令t=x2,则y=2t-1为增函数,当x∈(-∞,0)时,t=x2为减函数,所以f(x)=2x2-1在x∈(-∞,0)上是减函数.答案:(-∞,0)例4 解析:(1)∵f(x)是定义在R上的奇函数,∴f(0)=0,得m=1;(2)设x1,x2∈R,且x1<x2,则f(x1)-f(x2)=e x1−1e x1−e x2+1e x2=(e x1−e x2)¿)∵x1<x2,∴0<e x1<e x2,因此f(x1)<f(x2),即f(x)是R上的增函数;(3)∵f(x)是奇函数,∴f(2t2)<-f(t-3)=f(3-t),又f(x)在R上为增函数,∴2t2<3-t,解得-32<t<1.巩固训练4 解析:(1)因为f(x)=2x−a2x+a,f(-x)=2−x−a2−x+a =1−a·2x 1+a·2x由f(-x)=-f(x),可得1−a·2x1+a·2x =-2x−a2x+a,(1-a·2x)(2x+a)=(1+a·2x)(a-2x),2x-a·2x·2x+a-a2·2x=a+a2·2x-2x-a·2x·2x,整理得2x(a2-1)=0,于是a2-1=0,a=±1.当a=1时,f(x)定义域为R,f(x)是奇函数.当a=-1时,f(x)定义域为{x|x≠0},f(x)是奇函数.因此a=±1.(2)当a=1时,f(x)=1-22x+1,定义域为R,所以2x>0,于是2x+1>1,0<22x+1<2,因此-1<1-22x+1<1,故f(x)的值域为(-1,1).当a=-1时,f(x)=1+22x−1,定义域为{x|x≠0},所以2x>0,且2x≠1,于是2x-1>-1,且2x-1≠0,所以22x−1<-2,或22x−1>0.因此1+22x−1<-1或1+22x−1>1,故f(x)的值域为(-∞,-1)∪(1,+∞).。

知识讲解_指数函数及其性质_基础

知识讲解_指数函数及其性质_基础

指数函数及其性质要点一、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11xy ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x >1 x>0时,0<a x <1⑤x<0时,0<a x <1 x>0时,a x >1⑥ 既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。

(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。

当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值. 【答案】2【解析】由2(33)xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x⎛⎫ ⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.(1)313xxy =+;(2)y=4x -2x +1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43);(3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x ≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x >1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43). (3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x x x x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =(4)0,1)y a a =>≠【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x -1≥0,即2x ≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a=的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u ;[2]利用复合函数单调性判断方法求单调区间; [3]求值域. 设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增, u=-x 2+3x-2在3[,)2x ∈+∞上单减, 则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)xxf x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x xf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数; 当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。

指数函数的单调性及应用

指数函数的单调性及应用

ʏ刘长柏指数函数是高考的必考知识点,高考侧重考查其单调性在解题中的灵活运用㊂下面通过归类举例分析,着重说明指数函数的单调性的解题应用,目的在于帮助同学们加深对指数函数的单调性的理解与认识㊂一㊁判断指数函数的单调性例1 已知f x=a -b2x +1是R 上的奇函数,且f 1 =13㊂(1)求f (x )的解析式㊂(2)判断函数f (x )的单调性,并根据定义证明㊂(1)已知f x=a -b2x +1是R 上的奇函数,且f 1 =13,所以f0 =a -b 2=0,f1 =a -b 3=13,解得a =1,b =2,所以函数fx =1-22x +1㊂(2)根据指数函数的单调性可判断fx =1-22x +1是R 上的增函数㊂下面用定义证明单调性㊂设x 1,x 2是R 上任意给定的两个实数,且x 1<x 2,则f x 1 -f x 2=1-22x 1+1-1-22x 2+1=2(2x 1-2x2)2x 1+1 ㊃2x 2+1㊂因为x 1<x 2,所以2x 2>2x 1,2x 1+1>0,2x2+1>0,所以f (x 1)-f (x 2)<0,即f x 1 <fx 2 ,所以函数y =f x 在R 上是单调递增函数㊂指数函数的单调性与底数a 的大小有关,当0<a <1时,指数函数单调递减;当a >1时,指数函数单调递增㊂指数函数单调性的证明,可借助函数单调性的定义进行证明㊂练习1:设函数f x =12x-2x,则fx ( )㊂A .是偶函数,且在0,+ɕ 上单调递增B .是偶函数,且在0,+ɕ 上单调递减C .是奇函数,且在0,+ɕ 上单调递增D .是奇函数,且在0,+ɕ 上单调递减提示:函数f x=12x-2x=2-x-2x的定义域为R ㊂由f -x=2x -2-x =-(2-x -2x)=-f (x ),可知函数f x 为奇函数㊂因为y =12x为减函数,y =-2x为减函数,又函数f x=12x-2x=12x+(-2x),所以f x是定义在R 上的减函数㊂故f x 是奇函数,且是R 上的减函数㊂应选D ㊂二㊁判断指数型复合函数的单调性例2 函数f (x )=122x 2-3x +1的单调递减区间为( )㊂A.(1,+ɕ) B .-ɕ,34C .-ɕ,1D .34,+ɕ因为函数u =2x 2-3x +1的对称轴为x =34,在区间-ɕ,34 上单调递减,在区间34,+ɕ 上单调递增,函数y =12 u在定义域内是单调递减函数,所以根据复合函数单调性的 同增异减 法则得函数f (x )=122x 2-3x +1的单调递减区间为34,+ɕ㊂应选D㊂指数型复合函数单调性的判断,可利用基本初等函数91知识结构与拓展高一数学 2022年11月Copyright ©博看网. All Rights Reserved.的单调性,结合 同增异减 法则进行判断㊂练习2:函数y =12-x2+2x的单调递增区间是( )㊂A.[-1,+ɕ)B .(-ɕ,-1]C .[1,+ɕ)D .(-ɕ,1]提示:令t =-x 2+2x ,则y =12t㊂因为t =-x 2+2x 在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,又y =12t在定义域内为减函数,所以由复合函数的单调性得y =12-x 2+2x 在(-ɕ,1]上单调递减,在[1,+ɕ)上单调递增㊂应选C ㊂三㊁利用指数函数的单调性求参数的取值范围例3 已知函数f (x )=12x 2-2x +5在a ,+ɕ 上单调递减,则实数a 的取值范围是( )㊂A.[1,+ɕ)B .(-ɕ,1]C .(1,+ɕ)D .(-ɕ,1)令g x=x 2-2x +5,可知其图像的开口向上,且对称轴为x =1,所以函数g x 在(-ɕ,1]上单调递减,在[1,+ɕ)上单调递增㊂指数函数y =12g (x )在定义域上单调递减,结合复合函数的单调性法则得函数f x 在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减㊂又函数f (x )在a ,+ɕ 上单调递减,所以a ȡ1,即实数a 的取值范围是[1,+ɕ)㊂应选A㊂由指数型函数的单调性求参数的取值范围,仍然是利用基本初等函数的单调性,结合 同增异减 法则进行求解㊂练习3:已知函数f x=a x,x ȡ1,1-3a x +53,x <1在R 上单调递减,则实数a 的取值范围是( )㊂A .13,23B .1,2C .13,12D .0,23提示:因为f x在R 上单调递减,所以0<a <1,1-3a <0,1-3a +53ȡa ,解得13<a ɤ23,即实数a 的取值范围是13,23 ㊂应选A ㊂四㊁根据指数函数的单调性解不等式例4 设f x是定义在R 上的偶函数,且当x ɤ0时,f x=2-x,若对任意的x ɪm ,m +1 ,不等式f x ȡf 2x -m 恒成立,则正数m 的取值范围为( )㊂A .m ȡ1B .m >1C .0<m <1D .0<m ɤ1因为函数f x是定义在R 上的偶函数,且当x ɤ0时,fx =2-x,所以当x ȡ0时,-x ɤ0,f x =f-x =2x㊂所以对任意的x ɪR ,fx =2x㊂对任意的x ɪm ,m +1 ,不等式f x ȡf 2x -m 恒成立,即2xȡ22x -m,也即x ȡ2x -m 对任意的x ɪm ,m +1 恒成立,且m 为正数㊂由此可得,x ȡ2x -m ,所以x ɤ2m ,所以m +1ɤ2m ,可得m ȡ1㊂应选A㊂根据指数函数的单调性解不等式,先要掌握指数函数的相关性质,再利用单调性转化为具体的不等式进行求解㊂练习4:设函数f x=2x -2-x +x 3,则使得不等式f 2x -1 +f 3 <0成立的实数x 的取值范围是㊂提示:函数f x的定义域为R ,满足f-x =2-x -2x -x 3=-f x ,可知函数fx 是奇函数㊂由解析式知函数f x 是增函数,原不等式可化为f 2x -1 <f -3 ,所以2x -1<-3,解得x <-1,即实数x 的取值范围是-ɕ,-1㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)2 知识结构与拓展 高一数学 2022年11月Copyright ©博看网. All Rights Reserved.。

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。

指数函数图像及性质(一)

指数函数图像及性质(一)

应用一
(1) 求使不等式 4 32 成立的 x 的集合;
x
(2) 已知 a a
4 5
2
,求数 a 的取值范围.
解: (1) 4 32, 即 2
x
x
2x
25 .
5 因为 y=2 是 R 上的增函数,所以 2x>5,即 x 2 5 x 满足 4 32 的 x 的集合是 ( , ) ; 化为同底 2 的指数幂 4 x (2)由于 2 ,则 y a 是减函数, 5
0.3
0.9
3.1
解:根据指数函数的性质,得:
1.70.3 1.70 1 且 0.93.1 0.90 1
从而有
3.2
3.2
1.7
0.3
0.9
3.1
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
fx = 1.7x
1.8
fx = 0.9x
1.6
1.6
1.4
1.4
0.8
0.1
0.8
0.2
1.8
fx = 0.8x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-1.5
-1
-0.5
0.5
1
应用一
比较下列各题中两个值的大小: (1) 30.8与30.7 方法总结: 对同底数幂大小的比较用的是指数函数的 单调性,必须要明确所给的两个值是哪个指数 函数的两个函数值;对不同底数幂的大小的比 较可以与中间值进行比较. (2) 0.75-0.1与0.750.1

指数函数与对数函数的增减性与极限性质

指数函数与对数函数的增减性与极限性质

指数函数与对数函数的增减性与极限性质指数函数与对数函数是数学中常见的两种函数类型,它们在数学以及实际问题中具有重要的应用价值。

本文将重点讨论指数函数与对数函数的增减性与极限性质,并给出相应的证明和解释。

一、指数函数的增减性与极限性质指数函数是以某个正数a(a>0且a≠1)为底的函数 f(x) = a^x。

首先讨论指数函数的增减性。

1. 指数函数的增减性考虑指数函数 f(x) = a^x,其中a>0且a≠1。

根据指数函数的定义,我们知道当x1 < x2时,a^x1 < a^x2,即指数函数在其定义域上是递增的。

2. 指数函数的极限性质对于指数函数f(x) = a^x,其中a>0且a≠1,我们来讨论其极限性质。

当x趋向于负无穷时(记为x→-∞),指数函数 f(x) = a^x 的极限为0(记为lim(x→-∞) a^x = 0);当x趋向于正无穷时(记为x→+∞),指数函数 f(x) = a^x 的极限为正无穷(记为lim(x→+∞) a^x = +∞)。

证明:对于第一种情况,即当x趋向于负无穷时,我们需要证明lim(x→-∞) a^x = 0。

假设对于任意的正数ε(ε>0),存在一个实数M,使得当x < M时,有|a^x| < ε。

根据指数函数的性质,我们可以得到a^x < 1,即1/a^x > 1。

我们可以将指数函数 f(x) = a^x 转化为1/f(x),即1/a^x,求其极限。

由于lim(x→-∞) 1/a^x = +∞,即当x趋向于负无穷时,1/a^x的值会无限增大。

根据极限的定义,对于任意的正数M,当x < M时,有|1/a^x| > N,其中N为一个正数。

此时,我们可以将1/a^x写为|a^x|/a^x,即|a^x|/(a^x)^2。

我们可以取N = 1/(Ma),那么当x < M时,就有|a^x|/(a^x)^2 > N。

比较函数式大小的三种思路

比较函数式大小的三种思路

一一一一一一一一一一一一一一一一一一λ+μ=k (定值),此时直线AB 及平行于AB 的直线为等和线,即可根据等和线的性质求得最值.五、利用极化恒等式极化恒等式:a ⋅b =14[(a +b )2-(a -b )2]是解答向量问题的重要工具.当遇到共起点的两向量的数量积最值问题时,可以考虑根据三角形法则和平行四边形法则,将两个向量的数量积的最值问题转化为两个向量的和、差的最值问题,利用极化恒等式求解.例6.如图6,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且 AD =λ BC ,AD ∙ AB =-32,则实数λ的值为,若M ,N 是线段BC 上的动点,且MN =1,则DM ∙DN 的最小值为.图6解:由 AD ∙ AB =-32,得(λ BC )∙ AB =λ| BC || AB |cos ∠B=λ×6×3æèöø-12=-32,解得λ=16.分别过D ,A 作BC 的垂线,垂足分别为E ,F ,由极化恒等式得,DM ∙ DN =||DQ 2-||QM 2=|| DQ 2-æèöø122≥|| DE 2-æèöø122=|| AF 2-æèöø122=132.一般地,若在三角形ABC 中,M 为BD 的中点,由极化恒等式可得: AB ∙ AD =| AM |2-| BM |2;在平行四边形ABCD 中, AB ∙ AD =14(| AC |2-| BD |2),这样就将向量的数量积问题转化为两条线段长度的平方差问题.解答本题,需先找到定点,再根据动点的变化情况求最值可见,求解平面向量最值问题的措施很多.解题的关键是要根据解题的需求,建立合适的平面直角坐标系和关系式,灵活运用函数的性质、等和线的性质、向量的几何意义、极化恒等式进行求解.(作者单位:云南省曲靖市会泽县茚旺高级中学)探索探索与与研研究究比较函数式的大小问题通常会综合考查一次函数、二次函数、指数函数、对数函数、幂函数的性质和图象.解答这类问题的常用方法有:特殊值法、放缩法、中间值法、基本不等式法等.在解题时,若能选用恰当的方法,就能达到事半功倍的效果.本文主要谈一谈下列三种比较函数式大小的思路.一、利用重要不等式在比较函数式的大小时,可根据已有的经验和不等式结论来进行比较,这样能有效地提升解题的效率.常用的重要不等式有:(1)基本不等式及其变形式:若ab >0,a 、b >0,则a +b ≥2ab 、21a +1b≤ab ≤a +b 2≤,当且仅当a =b 时等号成立;(2)切线不等式:e x +1、ln x ≤x -1;(3)柯西不等式:a ,b ,x ,y ∈R ,()a2+b 2()x 2+y 2≥(ax +by )2,(ax -by )2≥()a 2-b 2()x 2-y 2;等等.例1.设a =0.1e 0.1,b =19,c =-ln 0.9,请比较a ,b ,c的大小.解:由于b =19=109-1,c =-ln 0.9=ln 109,令x =-0.1,由切线不等式:e x ≥x +1,当且仅当x =0时等号成立,可得e -0.1>-0.1+1=0.9,则e 0.1<109,所以0.1e 0.1<0.1×109=19,即a <b ,令x =109,由切线不等式:e x≥x +1,得:ln 109<109-1=19,即c <b ,而e 0.1>0.1+1=1.1,则0.1e 0.1>0.1×1.1=0.11,由重要不等式:当x >1时,恒有ln x <12(x -1x )成立,可知-ln 0.9=ln 109<12(109-910)=19180<0.11,50探索探索与与研研究究即a >c ,综上所述,c <a <b .解答本题,要先将三个函数式进行化简,得b =19=109-1,c =-ln 0.9=ln 109;然后利用重要不等式:e x ≥x +1、ln x ≤x -1、ln x <12(x -1x )()x >1分别判断出a 、b 、c 三者的大小关系.函数与不等式之间联系紧密,在比较较为复杂的函数式的大小时,往往要灵活运用函数的性质以及与函数相关的重要不等式结论来辅助解题.二、借助中间值中间值法是比较函数式大小的一种常用方法.有时我们很难直接判断出要比较的函数式的大小,此时可采用中间值法来解题.首先将函数式分别进行化简,以确定其大概的取值范围,并判断其正负;然后选取合适的中间值,如0、1、-1等特殊值,分别比较出函数式与中间值的大小;再根据不等式的传递性来判断出几个函数式之间的大小关系.例2.已知a =0.70.7,b =0.71.5,c =1.50.7,试比较a ,b ,c 的大小.解:由于0<b =0.71.5<0.70.7=a <0.70=1,c =1.50.7>1.50=1,所以b <a <c .先利用指数函数y =0.7x的单调性比较出a 、b 之间的大小,并确定其取值范围为(0,1);然后根据指数函数y =1.5x的单调性比较出c 与1的大小,这样便以1为中间值,根据不等式的传递性来判断出a 、b 、c 的大小关系.例3.设a =log 50.5,b =log 20.3,c =log 0.32,则a ,b ,c 的大小关系是().A.b <a <cB.b <c <aC.c <b <aD.a >b >c解:a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg 2lg 0.3,log 50.5=lg 0.5lg 5=lg 2-lg 5=lg 2lg 0.2.∵-1<lg 0.2<lg 0.3<0,∴lg 2lg 0.3<lg 2lg 0.2,即c <a ,∴b <c <a ,本题选B.观察a 、b 、c 三个函数式,可发现三个函数式均为对数式,且底数和真数均不相同,因此需采用中间值法求解.首先根据对数函数的运算性质、公式对三个函数式进行化简;然后取中间值1、-1,根据对数函数y =log 0.3x 和y =lg x 的单调性分别判断出a 、b 、c 、1、-1之间的大小关系,进而比较出a 、b 、c 的大小.三、放缩函数式放缩法是比较函数式大小的重要方法之一.利用放缩法比较函数式的大小,需先对函数式进行恒等变形;再借助不等式的基本性质、函数的单调性对函数式进行合理放缩,进而比较出函数式的大小.例4.已知9m =10,a =10m -11,b =8m -9,请判断a ,b 的大小关系.解:∵9m =10,∴m =log 910>log 99=1,而a =10m-11=9m×æèöø109m-11=10×æèöø109m-11>10×109-11=19>0,b =8m-9=9m×æèöø89m-9=10×æèöø89m-9<10×89-9=-19<0,∴a >0>b .先根据指数幂的运算性质将指数式、对数式进行互化;再利用指数函数的单调性确定参数m 的取值范围;然后利用指数函数的单调性进行放缩,即可比较出a 、b 的大小.例5.已知7m =10,a =11m -13,b =6m -7,试判断a ,b 的大小关系.解:∵7m =10,∴m =log 710>log 77=1,而a =11m-13=7m×æèöø117m-13=10×æèöø117m-13>10×117-13>0,b =6m-7=7m×æèöø67m-7=10×æèöø67m-7<10×67-7<0,∴a >0>b .三个函数式中均含有参数m 和指数式,于是先根据指数的运算性质对函数式进行化简;再根据参数m 的取值范围,利用指数函数的单调性进行放缩,最终确定两个函数式的正负,从而比较出a ,b 的大小.解答比较函数式的大小问题,需要仔细研究要比较的函数式,找出二者之间的区别和联系,灵活运用重要不等式、中间值、函数的性质和图象,来确定函数的大小和取值范围.(作者单位:安徽省砀山第二中学)51。

教学设计6:2.1.2 指数函数及其性质

教学设计6:2.1.2 指数函数及其性质

§2.1.2 指数函数及其性质【入门向导】指数函数图象诗歌鉴赏多个图象像束花,(0,1)这点把它扎. 撇增捺减无例外,底互倒时纵轴夹. x =1为判底线,交点y 标看小大. 重视数形结合法,横轴上面图象察.此诗每行字数相等,且押韵,读起来倍感顺口,内容简洁明了,使读者在无形之中把指数函数图象的特点牢记于心.如图所示的就是上面举的指数函数的图象.不难看出,它们就像一束花.每个指数函数的图象都经过(0,1)这点,所以说“(0,1)这点把它扎”就顺理成章了.对于指数函数的图象来说,“撇增捺减”就绝对是事实.当a >1时,从左往右看指数函数y =a x 的图象是上升的,类似于汉字中的撇,这时,指数函数y =a x 是增函数;当0<a <1时,从左往右看指数函数y =a x 的图象是下降的,类似于汉字的捺,这时,指数函数y =a x 是减函数.由y =2x 和y =(12)x 的图象,可以看出它们是关于y 轴对称的.而底数2与12是倒数,所以自然而然地得到“底互倒时纵轴夹”,这也可以从y =3x 和y =(13)x 的图象中得到充分的体现.解读指数函数图象的应用 一、要点扫描学习指数函数要记住图象,理解图象,由图象能说出它的性质.关键在于弄清楚底数a 对于函数值变化的影响,对于a >1与0<a <1时函数值变化的情况不同,不能混淆,为此必须利用图象,数形结合.二、指数函数的图象及性质 a >10<a <1图象图 象图象分布在一、二象限,与y 轴相交,落在x 轴的上方都过点(0,1)特 征第一象限的点的纵坐标都大于1; 第二象限的点的纵坐标都大于0且小于1第一象限的点的纵坐标都大于0且小于1; 第二象限的点的纵坐标都大于1从左向右图象逐渐上升从左向右图象逐渐下降性 质定义域为R值域为(0,+∞)图象过定点(0,1),即x =0时,y =1x >0⇔y >1; x <0⇔0<y <1 x >0⇔0<y <1; x <0⇔y >1 在R 上是增函数在R 上是减函数三、图象应用 1.比较大小例1 若a <0,则2a ,(12)a,0.2a 的大小顺序是________.解析 分别作出函数y =2x ,y =(12)x 和y =0.2x 的图象,如图所示,从图象可以看出,当a <0时,有0.2a >(12)a >2a .答案 0.2a >(12)a >2a点评 本题涉及三个指数函数图象,因此在作图时,一定要抓住图象的特征点(0,1)或特征线y =1及指数函数图象的走向正确作图:当a >1时,底数a 越大图象越陡;当0<a <1时,底数a 越小图象越陡.2.求解方程根的问题例2 确定方程2x =-x 2+2的根的个数.解 根据方程的两端分别设函数f (x )=2x ,g (x )=-x 2+2.在同一坐标系中画出函数f (x )=2x 与g (x )=-x 2+2的图象,如图所示. 由图可以发现,二者仅有两个交点,所以方程2x =-x 2+2的根的个数为2.点评 利用指数函数的图象确定方程的根的关键是要正确作出方程两端对应的函数的图象,遇到含有参数的方程时,还要注意分类讨论.3.求解参数问题例3 若直线y =2a 与函数y =|a x -1|+1(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.解析 当a >1时,通过平移变换和翻折变换可得如图1所示的图象,则由图可知1<2a <2, 即12<a <1与a >1矛盾.当0<a <1时,同样通过平移变换和翻折变换可得如图2所示的图象, 则由图可知1<2a <2, 即12<a <1,即为所求. 答案 12<a <1点评 (1)解答此题时要注意底数的不确定性,因此作图时要注意讨论;(2)根据条件确定直线y =2a 与函数的图象位置关系,然后由位置关系建立不等式,进而求得结果,其处理的过程体现了数形结合的思想.指数函数定义学习中的两个注意点定义:函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R . 注意点1:为什么要规定a >0且a ≠1呢? (1)若a =0,则当x >0时,a x =0; 当x ≤0时,a x 无意义.(2)若a <0,则对于x 的某些数值,可使a x 无意义.如(-2)x ,这时对于x =14,x =12,…在实数范围内函数值不存在.(3)若a =1,则对于任意x ∈R ,a x =1是一个常量,没有研究的必要性.为了避免上述各种情况,所以规定a >0且a ≠1.在规定以后,对于任意x ∈R ,a x 都有意义,且a x >0.因此指数函数的定义域是R ,值域是(0,+∞).注意点2:函数y =3·(12)x 是指数函数吗?根据定义,指数函数的解析式y =a x 中,a x 的系数是1.有些函数貌似指数函数,实际上却不是,如y =a x +k (a >0且a ≠1,k ∈Z );有些函数看起来不像指数函数,实际上却是,如y =a -x (a >0且a ≠1),因为它可以化为y =(1a )x ,其中1a >0,且1a≠1.习根式和分数指数幂的运算三注意有关根式和分数指数幂的运算,和我们学过的加、减、乘、除运算一样,是十分重要的,它也是我们继续学习指数函数和对数函数的基础.由于这一部分内容的概念较多,初学时很容易出错,首先要注意以下三点.(1)根式的运算中,有开方和乘方两种情况并存的情况,此时要注意两种运算的顺序是否可换.如当a ≥0时,n a m =(na )m ,而当a <0时,则不一定可换,应视m ,n 的情况而定.(2)分数指数幂不能对指数随意约分.(3)对分数指数幂的运算结果不能同时含有根号和分数指数,不能同时含有分母和负指数.错例分析一、有关方根的概念不清与忽视方根的性质致错分析 例4 设f (x )=x 2-4,且0<a ≤1,求f (a +1a )的值.错解 f (a +1a)=(a +1a)2-4=(a -1a )2=a -1a.剖析 在开方运算中忽视根式的两个重要性质: (1)当n 为奇数时,na n =a ; (2)当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.性质(2)在解题中是很容易被忽视的,因为此时的n 为偶数,所以不论a 取怎样的值,na n总有意义.因此在上面的解答中应有:由0<a ≤1,得1a ≥1,所以1a -a ≥0,从而(a +1a)2-4= (a -1a )2=|a -1a |=1a-a .教材中,规定了正分数指数幂的意义a m n =n a m (a >0,m ,n ∈N *,且mn 为既约分数),从而指数的概念扩充到了有理数指数,继而又扩充到了实数指数.这时底数、指数的范围发生了变化,这在解题中是很容易被忽视的,由于在后面有关指数函数求定义域的问题中经常用到,这里就不再赘述.三、指数函数图象出错例5 根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?错解由方程|2x-1|=m可得2x=1±m,结合指数函数的图象(如图)可知:当2x=1±m≤0,即m≤-1或m≥1时,方程|2x-1|=m无解;当2x=1±m>0,即-1<m<1时,方程|2x-1|=m有一解;不存在实数m使方程|2x-1|=m有两解.剖析不能充分理解函数图象的交点与方程解的关系.没有充分结合指数函数的图象的变换加以解答.可以把这个问题加以转换,将求方程|2x-1|=m的解的个数转化为求两个函数y=|2x-1|与y=m的图象交点个数去理解,而不能结合运算加以分析,这样容易导致错误.正解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.点评由于方程解的个数与它们对应的函数图象交点的个数是相等的,所以对于含字母方程解的个数讨论,往往用数形结合方法加以分析,准确作出相应函数的图象是正确解题的前提和关键.指数运算中的几种变形技巧常见的指数运算问题有:化简、求值、证明等,而分数指数幂的引入为这类问题的解决增加了难度,为帮助大家更好的学习,本文就这类问题的求解方法试作分析.一、逆用公式例1 已知a =5,b =311,c =6123,试比较a ,b ,c 的大小. 解 因为a =5=653=6125, b =311=6112=6121,c =6123, 而121<123<125,所以a >c >b . 即5>6123>311.例2 计算(3-2)2 008·(3+2)2 009.分析 注意到两个底数3+2与3-2互为有理化因式,且它们的指数相差不大,所以互化为同指数计算.解 原式=(3-2)2 008·(3+2)2 008·(3+2) =[(3-2)·(3+2)]2 008·(3+2) =12 008·(3+2)=3+ 2. 五、化负为正例3 化简4x4x +2+41-x 41-x +2.解 方法一 原式=4x4x +2+41-x ·4x 41-x ·4x +2·4x=4x 4x +2+44+2×4x =4x 4x +2+22+4x =4x +24x +2=1. 方法二 原式=4x4x +2+4·4-x 4·4-x +2·4x ·4-x=4x 4x +2+44+2·4x=1. 点评 对于式子41-x41-x +2,方法一是利用分子分母同时乘4x 化简,而方法二是把2写成2·4x ·4-x ,通过约分化简,两种方法都是巧用4x ·4-x =1实现化简的.数函数常见题型解法探究 一、指数函数的定义例4 已知指数函数f (x )的图象经过点(2,4),试求f (-12)的值.解 设指数函数f (x )=a x (a >0,a ≠1),由已知得f (2)=4,即a 2=4(a >0,a ≠1),所以a =2.故f (-12)=2-12=22.二、考查指数的运算性质例5 若f (x )=e x -e -x 2,g (x )=e x +e -x2,则f (2x )等于( )A .2f (x )B .2g (x )C .2[f (x )+g (x )]D .2f (x )·g (x )解析 f (2x )=e 2x -e-2x 2=(e x +e -x )(e x -e -x )2=2·(e x +e -x )(e x -e -x )4=2f (x )·g (x ).故选D. 答案 D三、指数函数的单调性例6 设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2解析 y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5.由于指数函数f (x )=2x 是R 上的增函数,且1.8>1.5>1.44,所以y 1>y 3>y 2,选D.答案 D四、定义域和值域例7 已知函数y =f (x )的定义域为(1,2),则函数y =f (2x )的定义域为________. 解析 由函数的定义,得1<2x <2⇒0<x <1. 所以应填(0,1). 答案 (0,1)五、图象过定点问题例8 已知不论a 为何正实数,y =a x +1-2的图象恒过定点,则这个定点的坐标是________.解析 因为指数函数y =a x (a >0,a ≠1)的图象恒过定点(0,1),而函数y =a x +1-2的图象可由y =a x (a >0,a ≠1)的图象向左平移1个单位后,再向下平移2个单位而得到,于是,定点(0,1)→(-1,1)→(-1,-1).所以函数y =a x +1-2的图象恒过定点(-1,-1).答案 (-1,-1) 六、图象依据:(1)指数函数y =a x (a >0,a ≠1)的图象;(2)函数y =f (x )的图象与y =f (x +a )、y =f (x )+b 、y =f (-x )、y =-f (x )、y =-f (-x )、y =|f (x )|、y =f (|x |)的图象之间的关系.例9 利用函数f (x )=2x 的图象,作出下列各函数的图象: (1)y =f (x -1);(2)y =f (|x |);(3)y =f (x )-1; (4)y =-f (x );(5)y =|f (x )-1|.解 利用指数函数y =2x 的图象及变换作图法可作所要作的函数图象.其图象如图所示:点评 函数y =2|x |,y =2-|x |,y =|2x -1|的值域和单调性如何?七、考查参数的取值范围例10 已知函数y =a a 2-2(a x -a -x )(a >0,a ≠1)在(-∞,+∞)上递增,求a 的取值范围.解 设任意x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)<0, 即aa 2-2(ax 1-a -x 1)-aa 2-2(ax 2-a -x 2) =a a 2-2(ax 1-ax 2)(1+1ax 1+x 2)<0, 所以(a 2-2)(ax 1-ax 2)<0⇒⎩⎪⎨⎪⎧a 2-2>0ax 1-ax 2<0.或⎩⎪⎨⎪⎧a 2-2<0,ax 1-ax 2>0.解得a >2或0<a <1. 异底指数比大小五法 一、化同底例11 比较20.6,(12)-0.7,80.3的大小.解 化同底得20.6,(12)-0.7=20.7,80.3=20.9.因为函数y =2x 在R 上是增函数,且0.6<0.7<0.9, 所以20.6<20.7<20.9,即20.6<(12)-0.7<80.3.点评 因为化同底后即可运用指数函数的单调性比较大小,所以能够化同底的尽可能化同底.二、商比法例12比较下列两个数的大小:1.1-0.2与1.3-0.1.解 因为1.1-0.21.3-0.1=(1.211.3)-0.1=(1.31.21)0.1>(1.31.21)0=1,所以1.1-0.2>1.3-0.1.点评 不同底但可以化为同指数的两数比较大小,用商比法即可迎刃而解,这时要特别注意分母的正负.三、取中间值例13下列大小关系正确的是( ) A .0.43<30.4<π0 B .0.43<π0<30.4 C .30.4<0.43<π0D .π0<30.4<0.43解析 因为π0=1,0.43<0.40=1,30.4>30=1, 所以0.43<π0<30.4,故选B. 答案 B点评 不同底也不同指数时比较大小,宜先与中间值0或1比较大小,再间接地得出所求解.四、估算法例14 若3a =0.618,a ∈[k ,k +1],则k =________. 解析 因为k ≤a ≤k +1,所以3k ≤3a ≤3k +1. 把3a =0.618代入得3k ≤0.618≤3k +1.估算得13≤0.618≤1,即3-1≤0.618≤30.解得k =-1.答案 -1点评 估算法既可快速达到比较大小的目的,又可培养同学们的估算能力,它是同学们必备的一种技能,在考试中解答填空、选择题时可用.五、图解法例15 已知实数a ,b 满足等式(12)a =(13)b ,下列五个关系式:①0<b <a ; ②a <b <0; ③0<a <b ; ④b <a <0; ⑤a =b . 其中不可能成立的关系式有( ) A .1个B .2个C .3个D .4个解析 在同一坐标系中,分别画出函数y =(12)a ,y =(13)b 的图象.由图观察可知,当b <a <0时,等式(12)a =(13)b 不可能成立;又当0<a <b 时,等式(12)a =(13)b 也不可能成立,故选B.答案 B点评 把所要比较的指数化为指数函数,在同一坐标系中画出它们的图象,可以直观地看出其中的大小关系.指数函数考什么?1.(福建高考)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析 由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解; ②当a ≤0时,f (a )=a +1, ∴a +1+2=0,∴a =-3. 答案 A2.(全国Ⅰ高考)已知函数f (x )=a -12x +1.若f (x )为奇函数,则a =________.解析 ∵定义域为R ,且函数为奇函数, ∴f (0)=0,即a -12=0,∴a =12.答案 123.(全国高考)函数y =-e x 的图象( ) A .与y =e x 的图象关于y 轴对称 B .与y =e x 的图象关于坐标原点对称 C .与y =e -x 的图象关于y 轴对称 D .与y =e -x 的图象关于坐标原点对称解析 函数y =-e x 与y =e -x 的自变量x 取相反数时,函数值y 也为相反数,所以其图象关于原点对称.答案 D4.(湖北高考)若函数y =a x +b -1 (a >0且a ≠1)的图象经过第二、三、四象限,则必有( )A .a >0,b <1B .0<a <1,b <0C .0<a <1,b >0D .a >1,b <0解析 数形结合是解题中常用的方法之一,熟练掌握基本初等函数的图象及性质是利用数形结合法解题的前提.由指数函数y =a x 向下平移1-b 个单位,使1-b >1即可得知.答案 B5.(湖北高考)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -xB.12(e x +e -x )C.12(e -x -e x )D.12(e x -e -x ) 解析 ∵f (x )为偶函数,g (x )为奇函数,∴f (-x )=f (x ),g (-x )=-g (x ).∴f (-x )+g (-x )=f (x )-g (x )=e -x .又∵f (x )+g (x )=e x ,∴g (x )=e x -e -x 2. 答案 D。

比较指数式大小的常用方法

比较指数式大小的常用方法

比较指数式大小的常用方法作者:丁春梅李明照来源:《新高考·高一语数外》2008年第10期指数函数是高中阶段在学习函数及其性质的基础上重点研究的函数之一.学习了指数函数后,常常会遇到比较指数式大小的一类问题.这类问题在各种考试中出现频率高、灵活性强,是考查指数函数性质的重要题型,且大多为选择题和填空题.掌握好比较指数式大小的方法,在比较对数大小时也会有很大帮助.一、单调性法比较两个指数式的大小,常可以归结为比较两个函数值的大小,所以需要我们能恰当地构造函数,使两个指数式为同一函数的两个函数值,然后根据函数的单调性来比较大小.例1 设y1=40.9,y2=80.48,y3=12-1.5,则()A. y3>y1>y 2B. y2>y1>y 3C. y1>y2>y 3D. y1>y3>y 2解析把y1,y2,y3分别化为同底的指数幂:y1=2 1.8,y2=2 1.44,y3=2 1.5.因为y=2x在(-∞,+∞)是单调递增函数,所以y1>y3>y 2.故选D.说明解决本题时,要善于观察三个指数的底数之间的关系和转化方向,利用指数函数的单调性来比较指数式的大小.二、中间量法中间量法即选取适当的数作为中间量,使其分别与要比较的两个指数式比大小,利用中间量这一“桥梁”间接地得出两个指数式的大小.最常用的中间量是0,1和-1,有时根据具体情况要插入指数式进行放缩.例2 比较1.70.3与0.9 3.1的大小.解析因为1.70.3>1.70=1,而0.9 3.1<0.90=1,所以1.70.3>0.9 3.1.说明当比较的两个指数式不容易化为相同底数的指数幂,即无法利用单调性法时,可插入0或1等中间量进行比较使问题获解.例3 比较0.90.5与0.70.6的大小.解析幂函数y=x0.5在[0,+∞)上是增函数,故0.90.5>0.70.5.指数函数y=0.7x在(-∞,+∞)上是减函数,故0.70.5>0.70.6.所以0.90.5>0.70.6.说明本例中的两个数均大于0小于1,无法再用0或1来比较,通过构造指数式来寻找中间量.上述三例的解题思路归结起来就是:1. 先判断能否看作同一指数函数的两个函数值,利用函数的单调性比较大小;2. 不能看作同一个指数函数的两个值时,用中间量进行过渡.三、作差或作商比较法作差比较的原理为:A>B A-B>0;A=B A-B=0;A<B A-B<0.作商比较的原理为:当满足条件A>0,B>0时,AB>1A>B;AB=1A=B;AB<1A<B.例4 若c>0,0<b<a<1,试比较a bc与b ac的大小.解析因为0<b<a<1,所以a bc>0,b ac>0,所以a b>a a,b a>0,所以a bb a>a ab a=ab a>1.又c>0,所以a bb a c>1.而a bc b ac=a bb a c,所以a bcb ac>1,所以a bc>b ac.说明作差比较法和作商比较法是比较两个数大小的通法.若指数式恒大于0,多采用作商法.四、数形结合法把要比较的两个指数式看作是两个指数函数的值,然后在同一坐标系中分别作出这两个指数函数的图象,再在相应的图象上描出函数值所对应的点,由图象上点的位置来确定两个指数式的大小.数形结合的好处是直观简便,且无需运算.对上面的例2,我们还可以用数形结合法来解.如右图,分别画出y=1.7x与y=0.9x 的图象,然后在y=1.7x的图象上找到x=0.3时对应的点,在y=0.9x的图象上找到x=3.1时对应的点,由两个点的高低即可判断出 1.70.3与0.9 3.1的大小,显然1.70.3>0.9 3.1.说明函数的图象是函数性质最直观的体现,解决与函数有关的问题时,一定不能忘了它的图象.五、特殊值法特殊值法(或叫试数法)是一种解题中广泛使用的好方法,当然,一般只能用于解选择题和填空题.遇到比较含有字母的两个指数式的大小时,将特殊值代入,通过简单计算、推理能快速得到正确的答案.例5 若c>0,0<b<a<1,则a c与b c的大小关系是()A. a c>b cB. a c<b cC. a c=b cD. a c≤b c解析令c=2,a=12,b=13,则122=14>132=19,由此可判断选A.说明寻找特殊值,首先要确定这个特殊值的范围,这是关键的一步.特殊值选取恰当,可以减少代入特殊值后计算的次数,简化运算.同学们学习幂函数后,利用幂函数的单调性也可以迅速判断本题中两个指数式的大小.六、分类讨论法当比较的两个指数式的底数相同但含有字母,底数无法确定是大于1,还是大于零小于1时,就需要对底数进行分类讨论,以确定相应指数函数的单调性,然后才能运用指数函数的单调性进行比较.例6 比较a2x2+1与a x2+2(a>0,且a≠1)的大小.解析本题既要讨论幂指数2x2+1与x2+2的大小关系,又要讨论底数a与1的大小关系.①令2x2+1>x2+2,得x>1或x<-1.当a>1时,由2x2+1>x2+2,从而有a2x2+1>a x2+2;当0<a<1时,a2x2+1<a x2+2.②令2x2+1=x2+2,得x=1或-1,此时a2x2+1=a x2+2.③令2x2+1<x2+2,得-1<x<1.当a>1时,由2x2+1<x2+2,从而有a2x2+1<a x2+2;当0<a<1时,则有a2x2+1>a x2+2.说明含有字母参数的问题要注意分类讨论思想的运用.分类讨论时首先应确定分类标准,涉及到指数函数时,通常将底数与1的大小关系作为分类标准.巩固练习1. 比较a 1.2与1a-0.3(a>1)的大小.2. 比较1.40.1与0.93.1的大小.3. 比较4313,-233,3412的大小.4. 设y1=2323,y2=2313,y3=2523,则()A. y3>y1>y 2B. y2>y1>y 3C. y1>y2>y 3D. y1>y3>y 25. 比较a4x-5与a3x+1(a>0且a≠1)的大小.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

指数函数对数函数比较大小攻略

指数函数对数函数比较大小攻略

指数函数、对数函数比较大小
指数函数对数函数的比较大小问题,在教材上有大量的直接考察习题,而且考点层次要求高,因而高考中已经多次直接进行考察,这一点内容可以不合其他知识点发生关联的情况下直接进行命题,足以可见其重要性。

一般来说,指数、对数比较大小我们采取的思路是:
首先,尽量将不同底数的指数、对数或幂函数,通过公式化成同一底数的,底数相同的指数函数或者对数函数,然后根据底数相同情况下的单调性,进行比较大小;
其次,对于确实不能化成同一底数的,我们尽量将真数或指数化成相同的,然后我们做出图像,也就是说同取一个x值,看不同指数式或者对数式所对应的函数值的大小,主要依据是:
根据指数函数在第一象限内底数越大图像越高;
对数函数在第一象限内绕(1,0)点顺时针排序底数增大(水平向右底数增大);
最后,如果全都不能化成相同的,我们一般先做出图像,观察图像,判断大小,如果图像仍然不能解决问题,那么我们就应该考虑找中间值进行比较,中间值一般取0,-1,1,比如能否确定所要进行比较的数的正负、与1或-1的大小关系。

通过上述方式一般能解决所有比较大小问题。

指数函数单调区间 - 分析指数函数的单调性区间

指数函数单调区间 - 分析指数函数的单调性区间

指数函数单调区间 - 分析指数函数的单调性区间指数函数是高中数学中的重要概念之一,也是数学中常见的函数类型之一。

在本文中,我们将重点探讨指数函数的单调性区间。

通过分析指数函数的指数部分以及底数的正负性质,我们可以确定函数的单调性。

为了更好地理解指数函数的单调性区间,让我们先从指数函数的基本概念开始。

指数函数通常由形如f(x) = a^x的表达式表示,其中a表示底数,x 表示指数。

在分析单调性时,我们主要关注底数a的正负以及指数x 的取值范围。

对于底数a大于1的指数函数,例如f(x) = 2^x,由于底数大于1,指数函数会随着x增大而不断增大。

这类指数函数在整个实数域上均为增函数,即单调递增。

指数函数的单调性区间为整个实数集合(-∞, +∞)。

若底数a介于0和1之间,则指数函数的单调性与前一情况相反。

以f(x) = 0.5^x为例,由于底数小于1,指数函数会随着x增大而不断减小。

这类指数函数在整个实数域上均为减函数,即单调递减。

当底数a等于1时,指数函数变为f(x) = 1^x,无论指数取何值,函数值始终为1。

底数等于1时,指数函数既不递增也不递减,单调性区间为空集。

在分析指数函数的单调性时,我们还需要考虑指数x的取值范围。

对于实数集合中的指数函数,其定义域为所有实数。

然而,在实际问题中,指数函数的定义域可能会受到限制。

当指数函数出现在等式或不等式中时,常常需要限定指数的取值范围。

在这种情况下,我们需要找出使得指数函数有意义的指数范围。

指数函数的单调性区间取决于底数a的正负性以及指数x的取值范围。

当底数大于1时,指数函数在整个实数域上为单调递增;当底数介于0和1之间时,指数函数在整个实数域上为单调递减;当底数等于1时,指数函数既不递增也不递减。

通过对指数函数的单调性区间的分析,我们可以更好地理解指数函数的特性,并在解决实际问题时能提供更准确的结果与推断。

总结回顾:- 指数函数是数学中常见的函数类型之一。

指数函数与对数函数图像与交点问题

指数函数与对数函数图像与交点问题

关于指数函数与对数函数的问题一、指数函数底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当 a>l 时,底数越大,函数图象在第一象限越靠近 y 轴;同样地,当 0<a<l 时,底数越小,函数图象在第一象限越靠近 x 轴.②底数对函数值的影响如图.③当 a>0 ,且 a≠l 时,函数与函数y=的图象关于y 轴对称。

利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值二、对数函数底数对函数值大小的影响:1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当 a>l 时,底数越大,图象越靠近x 轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线个区域里对数函数的底数都是由右向左逐渐减小,比如x=l把第一象限分成两个区域,分别对应函数每,则必有对数函数的图象与性质:三、对数函数与指数函数的对比:(1) 对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x 对称.(2)它们都是单调函数,都不具有奇偶性.当a>l 时,它们是增函数;当O<a<l 时,它们是减函数.(3)指数函数与对数函数的联系与区别:四、关于同底指数函数与对数函数的交点问题一、a 1时方程 a x log a x 的解先求如图 3 所示曲线ya x与ylogax相切时a的值。

设曲线ya x与y log a x 相切于点 M (x, x0),由于曲线y a x在点 M 处的切线斜率为1,a x 0x 0 ,a x0x 0 ,(a x )' |x x0即所以1a x0ln a 1a x 0x 0 , 111则 a ln aln a所以 ln ax 011e,所以 ae e ,此时 x 0 eln a即。

指数函数

指数函数

在函数y=a^x中可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a 不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凸的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过指数函数程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)(8)显然指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。

底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

即“上加下减,左加右减”底数与指数函数图像:指数函数(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。

(如右图)》。

幂的大小比较:比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A 与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B 之间的大小。

进一步理解指数函数的增减性与反函数

进一步理解指数函数的增减性与反函数

进一步理解指数函数的增减性与反函数指数函数是高中数学中的一种重要函数,它具有独特的增减性质和反函数。

进一步理解指数函数的增减性与反函数,可以帮助我们更深入地理解和应用指数函数。

首先,我们来讨论指数函数的增减性质。

在指数函数中,以e为底的指数函数y = f(x) = e^x是最常见的一种形式。

指数函数的重要特点之一就是它的增长速度非常快,比如当x的值趋近于正无穷大时,指数函数f(x)也会趋近于无穷大。

具体来说,指数函数的增长性质可以总结为以下几点:1. 正指数函数:当底数大于1时,指数函数呈现出递增的特点。

换句话说,指数函数的图象从左向右逐渐上升。

例如,对于y = 2^x这个指数函数来说,当x逐渐增大时,y的值也会快速增加。

2. 负指数函数:当底数大于0,但小于1时,指数函数呈现出递减的特点。

也就是说,指数函数的图象从左向右逐渐下降。

举个例子,当y = (1/2)^x时,x逐渐增大时,y的值会逐渐减小。

3. 零指数函数:当指数为零时,指数函数的值始终是1。

不论底数是多少,指数为零时,函数的值都为1。

了解了指数函数的增减性质后,我们再来讨论指数函数的反函数。

反函数是指如果一个函数f对于每一个y值都有唯一的x值与之对应,那么它的反函数g就对于每一个x值都有唯一的y值与之对应。

指数函数和对数函数就是互为反函数的关系。

以e为底的指数函数y = f(x) = e^x与以e为底的对数函数y = g(x) = ln(x)就是互为反函数的典型例子。

它们之间的关系可以用以下方程表示:f(g(x)) = x, g(f(x))= x。

对数函数是指数函数的反函数,它的定义域是正实数集合,值域是实数集合。

对数函数的增减性与指数函数正好相反。

具体来说,对数函数的增长性质可以总结为以下几点:1. 自然对数函数:自然对数函数y = ln(x)对于x的值在0和1之间是递减的,在1以上的实数区间内是递增的。

2. 通用对数函数:通用对数函数y = log(x)对于x的值在0和1之间是递增的,在1以上的实数区间内是递减的。

巧用函数的单调性比较大小

巧用函数的单调性比较大小

数理化解题研究2021年第01期总第494期巧用函数的单调性比较大小张岭芝(江苏省无锡市青山高级中学214036)摘 要:函数的单调性是函数的核心性质,利用单调性比较函数值大小是每一位高一新生必须掌握的基本功,这也为今后进一步学习函数的性质打下扎实的基础.本文通过举例分析了如何运用函数的单调性比较三类函数值的大小,总结出函数值比较大小的口诀,提高学生利用函数性质研究函数值大小的能力.关键词:基本初等函数;函数的单调性;比较大小中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)01 -0062 -02利用幂函数、指数函数、对数函数等基本初等函数比 较两个或多个函数值的大小是高一代数的一个热点,也是一个重点,有没有象乘法口诀“三五十五”那样朗朗上 口且通俗易懂的方法来比较函数值的大小呢?有!笔者经过多年的教学,总结出“大大大,大小小,小大小,小小 大”这四句口诀.一、同底数幕的大小比较同底数幂的大小比较是利用指数函数y _ a %(a >0且 a Hl),当a >1时,在R 上单调递增,当0< a < 1时,在R上单调递减这个性质来进行比较的.例1比较下列两组数的大小:⑴33与3; (2) [ 3 }与(打解析分别考查指数函数y _3%与y _ ( 1 )%,根据各自在 R 上的单调性, 得, 1 1 丄 丄(1)因为 3〉1,〒 > —,所以 3 3 > 3 n .3n⑵因为0<1 <】,3 >;,所以(3) <(10-上述(1)的解题过程中的三个不等号可以概括为“大 大大”,即底数3>1,指数1 > 1,由于y _3%在R 上单调3 n递增,所以31 >3n .同理“大小小”也成立,比如,23 <21 \上述(2)的解题过程中的三个不等号可以概括为“小 大小”,即底数1 <1,指数1 > n ,由于y _ (10在R 上单调递减,所以(3 j <] 3 T •同理“小小大”也成立,比使用熟练以后,可以不考虑顺序.比如,已知a 3 > a n(a >0),根据“大大大”的“运算”口诀,a 3 > a ",£〉丄,3 n知a >1;再如,已知(20210" > (20210,根据“小大小”口 、十 2020 1 (2020 丫 (2020 j :血诀,2021 <1,(2021j >(2021丿,知 m < :.二、同底数对数的大小比较同底数对数的大小比较是利用对数函数y _ log a % ( a>0,a Hl)当a >1时,在R *上单调递增,当0< a < 1时,在R *上单调递减这个性质来进行比较的.由于对数函数是相应指数函数的反函数,因而两个对数的大小比较和利用指数函数单调性比较完全一样,口诀的意义和使用方法也一样.例2比较下列各组数的大小:(1 ) lo g :020 +与lo g :020占 (2) lo g 3 +与lo g 3 丄3 n 3 e (3) lo g i /2+与 lo g i /2~~ (4)lo g i /2 +与 lo g i /2 丄3 n3 e解析(1)根据“大(底数2020 > 1)大(2 > 1 )大”3 n“运算 ” 口诀,得lo g :020 + > lo g :020 丄;3 n(2) 根据“大(底数3 >1)小(1 < 1 )小”“运算”口3e诀,得 l og 3 y < lo g 3 + ;(3) 根据“小(底数:<i)大(3〉;)小”“运算”口收稿日期:2020 -10 -05作者简介:张岭芝(1964. 5 -),江苏省阜宁人,本科,中学高级教师,从事中学数学教学研究.—62—2021年第01期总第494期数理化解题研究诀,得lo g[/2+<lo g1/2丄;3n(4)根据“小(底数2<1)小([<1)大”“运算”口23e诀,得lo g[/2+>lo g1使用熟练以后,同样可以不考虑顺序.比如,已知 log^73>log%J5(%>0),根据“小大小”,3<J5,log%J3 >log%J5(%>0)运算口诀,知0<%<1;再如,已知log-™m>log-™n(m,^>0),根据“小大小”口诀,0<202;<1,唤雳m>呃2n,知0<m<n三、同指数幕的大小比较同指数幕的比较的是通过幕函数y-%a当a>0时,在R*上单调递增,当a<0时,在R*上单调递减这个性质来进行比较的•例3比较下列两组数的大小.(1)n3与33(2)n—3与3—2解析分别考查指数函数y-%3与y-%—3,根据其在R*上单调性,可得,1丄丄(1)因为3>0,n>3,所以n3>3n•“减大小(减函数+自变量大n函数值小)”当然是成立的.如果这样一改,三句口诀就变成九句了,为了简约又朗朗上口,还是“大大大,大小小,小大小,小小大”这四句口诀比较好,实践证明用这四句口诀比较两个函数值的大小特别顺,效果特别好.四、应用举例练习1若0<%<1,%>y>1,试比较%%,%y,%%,y%大小.解析由“大大大”知,%">y%>1%-1(此处用幂函数单调性比较),由“小大小”知,%%<%y<%0-1(此处用指数幂函数单调性比较)•所以%%>y%>%y>%%•练习2若%2>b>%>1,试用“>”连接log%b,log b%, log%%,log b%•解析由%2>b>%>1,得0<-%<1,b>%>>1.b%由“大大大”知,log%b>log%%-1,1-log b b>log b%> lo g b%>lo g b1-0•由“大小小”知,log%%<log%1-0.(2)因为-3<0,n>3,所以n—3<3—3.上述(1)的解题过程中的三个不等号可以概括为“大大大”,即指数3>0,底数n>3,由于y-%3在R*上单调递增,所以n3>3n.同理可得“大小小”也成立,比如,23 <33.上述(2)的解题过程中的三个不等号可以概括为“小大小”,即指数-3<0,底数n>3,由于y-%-;在R*上所以lo g%b>lo g b%>lo g b万>lo g%千.事实上,这种情况可以推广到更一般初等函数.例4比较下列两组数的大小:⑴:5与ln20202020(2)2ln2与3ln3解析(1)考查函数y-",由于yA-(ln%)-%%2一竺,当%>e时,ln%>1,所以yA<0,所以函数y二皿%2%单调递减,所以n—3<3—3.同理“小小大”也成立,比如,]3}>(1j•使用熟练以后,也可以不考虑顺序,此处不再赘述.注意:四句口诀中“大”的个数不是3就是1,相应的“小”的个数不是0就是2!事实上,口诀“大大大”本应该是下面的三句:增大大(增函数+自变量大二函数值大),大增大(自变量大+增函数n函数值大),大大增(自变量大+函数值大=增函数,注:此处仅研究单调函数),就是说,“大大大”中的一个“大”应该是“增”,只不过用“增”字,口诀就变成三句了.同理对于另外三句:“大小小,小大小,小小大”,把其中的一个“大”改为“增”,或者一个“小”改为“减”,比如在(e,+¥)上单调递减根据“小小大”口诀,得5>2020•(2)考查函数y-%ln%,由于yA-1+ln%,当%>丄时,e ln%>-1,所以yA>0,所以函数y-%ln%在]十,+上单调递增,根据“大小小”口诀,得2ln2<3ln3•口诀“大大大,大小小,小大小,小小大”没有多少科技含量,也没有什么噱头,就是一个实用工具而已,学生如果能记住并用好就是作者最大的心愿•参考文献:[1]单墫等.普通高中课程标准实验教科书・数学(必修1)[M].南京:江苏教育出版社,2010.[责任编辑:李璟]—63—。

指数函数比较大小

指数函数比较大小

指数函数比较大小
指数函数比较大小:比差(商)法;函数单调性法;中间值法。

指数函数是重要的基本初等函数之一。

你可以根据图像判断:当底都大于1时,底较大的那个图像陡一些,此时,在第一象限即x>0时,底大的函数值大;在第三象限即x<0时,底小的函数值大;x=0时,函数值都为1.底大于1时函数是增函数。

当底都小于1时,底较小的那个图像陡些,此时,在第二象限即x<0时,底小的函数值大;在第四象限即x>0时,底较大的函数值大;x=0时,函数值都为1.底小于1时函数是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数比较大小与单调性
设,函数在区间上的最大值是最小值的倍,则(
A.2 B.3 C.D.4 6,7,的大小顺序是(
A.0.7<< 6B.0.7<6<
C.<0.7<6D.<6<0.7
设,,,则(
A.B.C.D.
已知三个实数:、、,它们之间的大小关系是
A.B.C.D.
若,则(
A.B.C.D.
函数在上的最大值与最小值的和为,则函数在的最大值是(
A.B.C.
D.
三个数之间的大小关系是(
A.B.C.D.
设,则
A.c>a>b B.b>a>c C.a>b>c D.a>c>b 下图是指数函数的图象,则与的大小关
A.a<b<1<c<d B.
C.1<a<b<c<d D.a<b<1<d<c
当且时,函数的图象一定经过点(
A.B.C.D.设,则的大小关系是(
A.B.C.D.已知,,,则
A.B.C.D.
13. 的大小关系是(
A.B.C.D.三个数的大小关系为(
A.
B.
C.
D.
函数的图象必经过点(
A.(0,1)B.(1,1)C.(2, 0)D.(2,2)0< <1,则函数的图象必定不经过(
A.第一象限B.第二象限C.第三象限D.第四象限函数的图象必经过定点
设,,,则从小到大的顺序是
函数的图像恒过定点
若函数恒过定点,则_____________.
已知,那么、、的大小关系为(用号表示)。

如果指数函数在上的最大值与最小值的差为,则实数
满足的的取值集合是
已知函数在区间上的函数值总小于求的。

相关文档
最新文档