黑龙江省大兴安岭地区高考数学四模试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省大兴安岭地区高考数学四模试卷
姓名:________
班级:________
成绩:________
一、 选择题 (共 12 题;共 24 分)
1. (2 分) (2017·湖南模拟) 设集合 A={x|x2﹣2x≤0},B={y|y=x2﹣2x,x∈A},则 A∪B=( )
A . [﹣1,2]
B . [0,2]
C . (﹣∞,2]
D . [0,+∞)
2. (2 分) (2020 高二下·宿迁期末) 若复数 A.1 B.0
( 为虚数单位)为纯虚数,则实数 的值为( )
C.
D . -1
3. (2 分) (2017 高二上·廊坊期末) 某学校有老师 100 人,男学生 600 人,女学生 500 人,现用分层抽样 的方法从全体师生中抽取一个容量为 n 的样本,已知女学生一共抽取了 40 人,则 n 的值是( )
A . 96
B . 192
C . 95
D . 190
4. (2 分) 已知 f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R),则“f(x)在 x=1 处取最大值”是“f(x+1) 为偶函数”的( )
A . 充分不必要条件
第 1 页 共 14 页

B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 5. (2 分) 已知平行四边形 ABCD 的对角线分别为 AC,BD,且
,且
,则( )
A. B. C. D. 6. (2 分) 一个几何体的三视图如图所示(单位: ),则该几何体的体积为( )
A. B. C. D. 7. (2 分) (2017·武邑模拟) 执行如图所示的程序框图,输出的 S 值为( )
第 2 页 共 14 页

A.6 B . 14 C.8 D . 12 8. (2 分) 若将(x+y+z)10 展开为多项式,经过合并同类项后它的项数为( ) A . 11 B . 33 C . 66 D . 91
9. (2 分) (2019 高二下·珠海期中) 已知
分别是函数


,则
的取值范围为( )
A.
的两个极值点,
B.
C.
第 3 页 共 14 页

D.
10. (2 分) 数列 等于( )
是公差不为零的等差数列,并且
是等比数列 的相邻三项,若
,则
A.
B.
C.
D.
11. (2 分) (2018 高二上·巴彦期中) 已知椭圆 的对称轴与两条坐标轴重合,且长轴长的短轴长的 倍,
抛物线
的焦点与椭圆 的一个顶点重合,则椭圆 的标准方程为( ).
A.
B.
C.

D.

12. (2 分) (2019 高三上·鹤岗月考) 定义在 上函数
满足
实数

成立,若关于 x 的不等式
上恒成立,则实数 m 的取值范围是( )
A. B.
第 4 页 共 14 页
,且对任意的不相等的 在

C.
D.
二、 填空题 (共 4 题;共 4 分)
13. (1 分) 命题“∃ x∈R,x2﹣x>0”的否定是________.
14. (1 分) (2018 高二上·巴彦期中) 以
为渐近线且经过点
的双曲线方程为________.
15. (1 分) 若函数 f(x)=
+
为偶函数且非奇函数,则实数 a 的取值范围为________
16. (1 分) 已知数列{an}的前 n 项和为 Sn , 且对任意的正整数 n 都有 2Sn=6﹣an , 数列{bn}满足 b1=2,
且对任意的正整数 n 都有 的小值为________.
,且数列
的前 n 项和 Tn<m 对一切 n∈N*恒成立,则实数 m
三、 解答题 (共 7 题;共 65 分)
17. (5 分) (2019·嘉兴期末) 在
中,角
的对应的边分别为
,且
.
(Ⅰ)若
,求
的值;
(Ⅱ)若
,试判断
的形状.
18. (10 分) (2019 高二下·温州月考) 如图所示,已知四棱锥
平面

分别是
的中点.
中,底面
为菱形,
(1) 证明:
平面

第 5 页 共 14 页

(2) 若 为
上的动点,
与平面
所成最大角的正切值为 ,求二面角

正切值.
19. (15 分) (2018·河北模拟) 春节过后,某市教育局从全市高中生中抽去了 100 人,调查了他们的压岁钱
收入情况,按照金额(单位:百元)分成了以下几组:





.统计结果如下表所示:
该市高中生压岁钱收入 可以认为服从正态分布 作为 的估计值.
(1) 求样本平均数 ;
,用样本平均数 (每组数据取区间的中点值)
(2) 求

(3) 某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动, 赠送方式为:压岁钱低于 的获赠两次读书卡,压岁钱不低于 的获赠一次读书卡.已知每次赠送的读书卡张数 及对应的概率如下表所示:
现从该市高中生中随机抽取一人,记 数学期望.
(单位:张)为该名高中生获赠的读书卡的张数,求
的分布列及
参考数据:若
,则

.
20. (10 分) (2018 高二下·双流期末) 已知中心在原点 ,焦点在 轴上的椭圆 过点
,离
心率为 .
(1) 求椭圆 的方程;
(2) 设过定点
的直线 与椭圆 交于不同的两点
第 6 页 共 14 页
,且
,求直线 的斜率

相关文档
最新文档