《有理数》综合测试题与答案解析(新人版)

合集下载

《有理数》测试题(含答案)

《有理数》测试题(含答案)

《有理数》测试题一、填空题(每小题4分,共20分):1.下列各式-12,323,0,(-4)2,-|-5|,-(+3.2),422,0.815的计算结果,是整数的有________________,是分数的有_________________,是正数的有_________________,是负数的有___________________;2. a 的相反数仍是a ,则a =______;3. a 的绝对值仍是-a ,则a 为______;4.绝对值不大于2的整数有_______;5.700000用科学记数法表示是_ __,近似数9.105×104精确到_ _位,有___有效数字.二、判断正误(每小题3分,共21分):1.0是非负整数………………………………………………………………………( )2.若a >b ,则|a |>|b |……………………………………………………………( )3.23=32………………………………………………………………………………( )4.-73=(-7)×(-7)×(-7)……………………………………………( )5.若a 是有理数,则a 2>0…………………………………………………………( )6. 若a 是整数时,必有a n ≥0(n 是非0自然数) …………………………………………( )7. 大于-1且小于0的有理数的立方一定大于原数…………………………( )三、选择题(每小题4分,共24分):1.平方得4的数的是…………………………………………………………………( )(A )2 (B )-2 (C )2或-2 (D )不存在2.下列说法错误的是…………………………………………………………………( )(A )数轴的三要素是原点,正方向、单位长度(B )数轴上的每一个点都表示一个有理数(C )数轴上右边的点总比左边的点所表示的数大(D )表示负数的点位于原点左侧3.下列运算结果属于负数的是………………………………………………………( )(A )-(1-98×7) (B )(1-9)8-17(C )-(1-98)×7 (D )1-(9×7)(-8)4.一个数的奇次幂是负数,那么这个数是…………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数5.若ab =|ab |,必有………………………………………………………………( )(A )ab 不小于0 (B )a ,b 符号不同 (C )ab >0 (D )a <0 ,b <0 6.-133,-0.2,-0.22三个数之间的大小关系是……………………………( ) (A )-133>-0.2>-0.22 (B )-133<-0.2<-0.22 (C )-133>-0.22>-0.2 (D )-0.2>-0.22>-133 四、计算(每小题7分,共28分)1.(-85)×(-4)2-0.25×(-5)×(-4)3; 2.-24÷(-232)×2+521×(-61)-0.25;3.4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-; 4.(1876597-+-)×(-18)+1.95×6-1.45×0.4.五、(本题7分)应用题(每题8分,共16分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?一、答案:1、-12,0,(-4)2,-|-5|,422; 323,-(+3.2),0.815; 323(-4)2,422,0.815; -12,-|-5|,-(+3.2).2、答案:0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为a =03、答案:负数或0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为负数.4、答案:0,±1,±2.解析:不大于2的整数包括2,不小于-2的整数包括-2,所以不应丢掉±2.5、答案:7×105;十;4个.解析:700000=7×100000=7×105;9.105×104=9.105×1000=91050,所以是精确到十位;最后的0前的数字5直到左面第一个不是0的数字9,共有4个数字,所以有4个有效数字.二、1、答案:√解析:0既是非负数,也是整数.2、答案:×解析:不仅考虑正数,也要考虑负数和0 .当a =0,b <0 时,或a <0且b <0时,|a |>|b |都不成立.3、答案:×解析:23=2×2×2=8,32=3×3=9,所以23≠324、答案:×解析:-73不能理解为-7×3.5、答案:×解析:不能忘记0.当a =0时,a 2 ≯0.6、答案:×解析:注意,当a <0时,a 的奇次方是负数,如(-3)3 =-27<0.7、答案:√ 解析:大于-1且小于0的有理数的绝对值都是小于1的正数,它们的乘积的绝对值变小;又,大于-1且小于0的有理数的立方一定是负数,所以大于-1且小于0的有理数的立方一定大于原数.三、1、答案:C .解析:平方得4的数不仅是2,也不仅是-2,所以答2或-2才完整.2、答案:B .解析:虽然每一个有理数都可以用数轴上唯一的一个点来表示,但是数轴上的每一个点不都表示一个有理数.3、答案:B.解析: 负数的相反数是正数,所以(A )和(C )是正数;“减去负数等于加上它的相反数(正数)”所以(D )也是正数;只有(B ):(1-9)8-17 =-8×8-17 =-64-17 =-81.可知只有(B )正确.4、答案:B .解析:正数的奇次幂是正数,0的奇次幂是0,所以(A )、(C )(D )都不正确.5、答案:A .解析:(B )显然不正确;(C )和(D )虽然都能使ab =|ab |成立,但ab =|ab |成立时,(C )和(D )未必成立,所以(C )和(D )都不成立.6、答案:D .解析:比较各绝对值的大小.由于133-≈0.23,所以有133->22.0->2.0-,则有-0.2>-0.22>-133. 四、1、答案:-90. 解析:注意运算顺序,且0.25 =41. (-85)×(-4)2-0.25×(-5)×(-4)3=(-85)×16-0.25×(-5)×(-64) =(-5)×2-(-16)×(-5)=-10-80=-90.应注意,计算-10-80 时应看作-10 与-80 的和.2、答案:1065. 解析:注意-24=-2×2×2×2 =-16,再统一为分数计算:-24÷(-232)×2+521×(-61)-0.25 =-16÷(-38)×2+211×(-61)-41 =-16×(-83)×2+(-1211)-123 = 12+(-1214) = 12-67 =665. 3、答案:50.解析:注意统一为真分数再按括号规定的顺序计算:4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-= 52)491(25)51(12⨯⎥⎦⎤⎢⎣⎡+--÷-= 52452525⨯⎥⎦⎤⎢⎣⎡-÷= ⎥⎦⎤⎢⎣⎡-÷21125= 2125÷= 25×2= 50.注意分配律的运用.4、答案:17.12.解析:注意分配律的运用,可以避免通分. (1876597-+-)×(-18)+1.95×6-1.45×0.4= 14-15+7+11.7-0.58= 6+11.12= 17.12. 17.(1)最高分是:80+12=92(分)最低分是:80-10=70(分)(2)510 ×100%=50% (3)[80×10+(8-3+12-7-10-3-8+1+0+10)]÷10=80(分)。

部编数学七年级上册1.2有理数测试(解析版)(人教版)含答案

部编数学七年级上册1.2有理数测试(解析版)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题1.2 有理数一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2019·广西壮族自治区初一期中)以下是四位同学画的数轴,其中正确的是( )A .B .C .D .【答案】B 【解析】解:A.图中缺少原点和正方向,故错误;B.图中数轴正确;C.图中-1和-2的位置标反并且缺少正方向,故错误;D.图中-1和-2的位置标反,故错误.故选B .2.(2020·四川省初三其他)73-的相反数是( )A .73-B .73C .37D .37-【答案】B 【解析】73-的相反数是73,故选:B.3.(2020·河南省初三期中)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .1【答案】A【解析】解:根据两个负数,绝对值大的反而小可知-3<-2.故选:A .4.(2020·湖北省初三其他)如果a 的相反数是2,那么a 等于( )A .-2B .2C .12D .12-【答案】A【解析】解:因为互为相反数的两个数和为0,则a+2=0,得出a=-2.故选A.5.(2020·湖北省初三二模)计算-3的结果是( )A.3B.13C.﹣3D.3±【答案】A【解析】解:33-=.故选:A.6.(2020·广东省广东实验中学初三一模)0这个数( )A.是正数B.是负数C.是整数D.不是有理数【答案】C【解析】由有理数的分类可知,0既不是正数,也不是负数,但0是有理数,也是整数.故选C.7.(2020·辽宁省初三二模)如果a表示有理数,那么下列说法中正确的是( )A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】A.()a a--=,两个数相等,故错误.B.当0a=时,a+与a-相等,故错误.C.a-可以是正数,也可以是负数,还可以是0.故错误.D.正确.故选D.8.(2020·广东省初三学业考试)实数在数轴上对应点的位置如图所示,这四个数中绝对值最大的是()A.a B.b C.c D.d【答案】A【解析】由数轴可得:|a|>3,2<|b|<1,0<|c|<1,2<|d|<2,故这四个数中,绝对值最大的是:a.故选:A.9.(2020·河北省初三其他)若()2--表示一个数的相反数,则这个数是()A.12B.12-C.2D.2-【答案】D【解析】解:()2--表示-2的相反数.故选:D10.(2020·江门市蓬江区荷塘中学初三二模)在数轴上到原点距离等于2的点所表示的数是()A.-2B.2C.±2D.不能确定【答案】C【解析】从原点向左数,2个单位长度得-2,向右数2个单位长度得2,也就是绝对值为2的数是±2,故选C 11.(2020·河北省初三二模)下列各数中,比1-小的数为()A.0B.0.5C.2-D.1【答案】C【解析】-1是负数,A选项0大于负数;B,D选项均是正数,大于负数;C选项-2的绝对值大于-1绝对值,∴-2<-1故选:C12.(2020·广东省初三月考)如图,数轴上有O,A,B三点,点O表示原点,点A表示的数为-1,若OB =3OA,则点B表示的数为( )A.1B.2C.3D.4【答案】C【解析】∵点A对应的数为-1,OB=3OA,∴OA=1,OB=3,∴B点对应的数是3.故选:C.13.(2020·安徽省初三二模)0,-1,4,-2这四个数中最小的是()A.0B.-1C.4D.-2【答案】D【解析】∵-2<-1<0<4,∴最小的数是-2,故选:D.14.(2020·河北省初三二模)如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是( )A.A或B B.B或C C.C或D D.D或A【答案】B【解析】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·广东省初三一模)比较大小:2______-3(填写“>”,“<”,“=”).【答案】>【解析】-,解:由题意,得2>3故答案为:>;16.(2019·山东省初一期中)在数轴上与-3的距离等于5的点表示的数是.【答案】-8或2【解析】解:设在数轴上与-3的距离等于5的点为A ,表示的有理数为x ,因为点A 与点-3的距离为5,即|x-(-3)|=5,所以x=-8或x=2.故答案为:-8或2.17.(2020·山东省初三二模)33x x -=-,则x 的取值范围是______.【答案】3x £【解析】根据绝对值的意义得,30x -³,3x \£;故答案为:3x £;18.(2020·河北省初三一模) 将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是_____;(2)2022应排在A ,B ,C ,D ,E 中_____的位置上.【答案】24 A【解析】解:(1)观察发现:峰n 中,A 位置的绝对值可以表示为:5n ﹣3;B 位置的绝对值可以表示为:5n ﹣2;C 位置(峰顶)的绝对值可以表示为:5n ﹣1;D 位置的绝对值可以表示为:5n ;E 位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×402﹣3,∴2022应排在A 的位置.故答案为:(1)24;(2)A .三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·新疆维吾尔自治区初一月考)将下列各数填入适当的集合中: 2,-5, -12, π,5.6 , 0 , 60%,-3.14 , 1.3g,- 0.101001…有理数集合:{ ……}分数集合:{ ……} 正整数集合:{ ……}非负数集合:{ ……}【答案】见解析【解析】2,-5, -12, π,5.6 , 0 , 60%,-3.14 , 1.3g,- 0.101001…有理数集合:{2,-5,-12, 5.6, 0, 60%,-3.14, 1.3g, ……}分数集合:{-12, 5.6,60%,-3.14, 1.3g,……}正整数集合:{2,……}非负数集合:{2,5.6, 0, 60%,1.3g,……}.20.(2020·辽宁省太和区第二初中初一月考)在数轴上表示下列各数,并按从小到大的顺序排列出来.2-, 0,133, 1.5-,5, 3.5-【答案】13.52 1.50353-<-<-<<<,图见解析.【解析】解:如图:,13.52 1.50353-<-<-<<<.21.(2020·江门市第二中学初一月考)已知A 、B 在数轴上分别表示a ,b . (1)对照数轴填写下表:a 6-6-6-62-1.5b44-4-10-1.5A 、B 两点的距离(2)若A 、B 两点间的距离记为d ,试问:d 和a ,b 有何数量关系?(3)在数轴上找出所有符合条件的整数点P ,使它到5和-5的距离之和为10,并求所有这些整数的和;(4)若点C 表示的数为x ,当点C 在什么位置时,12x x ++-取得的值最小? 最小值是多少?【答案】(1)2,6,10,2,12,0;(2)d a b =-;(3)0;(4)点C 在-1和2之间时,取得最小值为3【解析】(1)由题意,得A 、B 两点间的距离依次为:2,6,10,2,12,0;(2)由题意,得d a b=-(3)到两定点距离之和等于两定点之间的距离的点的集合是两定点之间的连线故p 点一定在5和-5之间这样的整数点有1,2,3,4,5,-5,-4,-3,-2,-1,0故它们的和为0;(4)由题意,得1x +表示x 到-1的距离,同理2x -表示x 到2的距离,∴点C 在-1和2之间时,取得最小值,最小值为3.22.(2019·南宁市天桃实验学校初一期中)在数轴上表示下列各数,并把下列各数用“<”号连接起来.()231,1,2,2,,04-----【答案】见解析;()23101224-<-<<-<--<【解析】解:∵|−1|=1,−(−2)=2,22=4,∴数轴表示如图所示:()23101224\-<-<<-<--<23.(2020·辽宁省太和区第二初中初一月考)已知230a b ++-=,求ab -的值。

《有理数》综合测试题与答案解析(新人版)

《有理数》综合测试题与答案解析(新人版)

第一章《有理数》综合测试卷(100分钟120分)一、填空题:(每题2分,共20分)1、绝对值等于4的数有 个,它们是 .2、绝对值等于-3的数有 个.3、绝对值等于本身的数有 个,它们是4、已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 。

5、若 a 、b 互为相反数,c 、d 互为倒数,则(a +b )20 -(c d )20 = 。

6、若 | a|<2 ,且a 是整数,那么a = 。

7、已知|x |=3,()412=+y , 且xy <0 ,则x -y 的值是 . 8、比-8大3的数是 ,比a 大-5的数是9、 相反数等于它本身的数是 ,绝对值等于它本身的数是 ,倒数等于它本身的数是10、如果2-=-x ,则x =______二、思考题:(1、2题每小题2分,3、4题各5分,共20分)1、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2 ,1+3+5+7+9=25=5 2 ,……猜想:(1) 1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n-1)= _____________ .(结果用含n 的式子表示,其中n =1,2,3,……)。

2、如图21所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示-4,点G表示8(1)点B表示的有理数是表示原点的是点(2)图21中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是。

(3)若将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数。

3、甲、乙、丙、丁四个有理数讨论大小问题.甲说:我是正整数中最小的.•乙说:我是绝对值最小的.丙说:我与甲的一半相反.丁说:我是丙的倒数.你能写出它们分别是多少吗?然后按从小到大的顺序排列.4、已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2,•那么所有满足条件的点B对应的数有哪些?三、选择题:(每题2分,共44分)1、在算式1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是().A、+B、-C、×D、÷2、两个有理数a ,b 在数轴上的位置如图,下列四个式子中运算结果为正数的式子是( ).A 、a+bB 、a -bC 、abD 、b a 3、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ).A 、-1B 、1C 、-5D 、104、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动,开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙、丙之间,则x 值可能是下列数中 的( ).A 、11B 、14C 、17D 、205、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的 一个算式: .6、已知m 、n 为有理数时,关于2m +n 值的判断正确的是( )A 、2m +n ≥0B 、2m +n ≤0C 、2m +n >0D 、2m +n >17、已知m 为有理数时,1122++m m =( )A 、1B 、-1C 、1±D 、不能确定8、已知有理数a 、b 满足(),0212=-+-b a 另有两个不等于零的有理数n m ,使得1-=++-=-mn mnn nm mn m n m 且,试比较bn am 与的大小。

《有理数》练习题(含答案和解析)

《有理数》练习题(含答案和解析)

《有理数》练习题一、选择题(本大题共n 小题,共33.0分)1 .绝对值大于2且不大于5的整数的个数是().A.3个B.4个C.6个D.8个2 .下而的说法中,正确的个数是()①0是整数;②—2:是负分数:③3.2不是正数;④自然数一定是非负数:⑤负 数一定是负有理数. A.1个B.2个C.3个D.4个 3 .纽约、伦敦、巴黎、北京、首尔5个城市的国际标准时间(单位:时)在数轴上表示 如图所示,那么北京时间8月8日20时应是()纽约伦敦巴黎北京首尔I 1 」 II. -50 18 9A.伦敦时间8月8日11时B.巴黎时间8月8日13时C.纽约时间8月8日5时D.首尔时间8月8日19时4 .如图所示,若点A 是数“在数轴上对应的点,则关于〃,-a, 1的大小关系表示正 确的是()A. a < 1 < _aB. a < —a < 1C. 1 < —a < a D ・—a < a < 15 .下列语句:①数轴上的点不能表示整数:②数轴是一条直线:③数轴上的一个点 只能表示一个数:④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上 的点所表示的数都是有理数.正确的说法有() A.1个B.2个6 .下而两个数互为相反数的是()A. 一(+2 015)与+(—2 015) C. —1.25 和]3 7 .下列说法中正确的是()A.有最大的负数,没有最小的正数 8 .有最小的负数,没有最大的正数 C.没有最大的有理数和最小的有理数 D.有最小的负整数和最大的正整数8 .在有理数一12, 71, -2.8, 士 0, 7 j 34%, 0.67, -p 一(中,非负数有()A. 5个B. 6个C. 7个D. 8个 9 .绝对值等于本身的数是() A.正数B.负数C.非负数D.非正数10 .下列说法正确的是().A.在有理数中,零的意义仅表示没有;B.正有理数和负有理数组成全体有理数;C.3个D.4个B. -0.8和一(+0.8) D. +(-0.02)与-C. 0.6既不是整数,也不是分数,因此它不是有理数:D.零既不是正数,也不是负数.11.下列说法中:①。

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)时间:90分钟,满分:120分一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7B.1C.7D.-12.(本题3分)一个两位小数精确到十分位是5.0,这个数最小是()A.4.99B.5.1C.4.94D.4.953.(本题3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是04.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1035.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1036.(本题3分)下列各对数中,互为相反数的是()A.﹣(+4)与+(﹣4)B.﹣(﹣4)与|﹣4|C.﹣22与(﹣2)2D.﹣23与(﹣2)37.(本题3分)如图,在数轴上有A、B、C、D四个点,分别表示不同的四个数,使得其余三点表示的数中有两个负数和一个正数,则这个点是()A.点A B.点B C.点C D.点D8.(本题3分)实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是()a bA .1-B .0C .1D .29.(本题3分)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a b >B .a b -<C .a b >-D .a b >10.(本题3分)在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作____m 12.(本题3分)已知|a |=6,|b |=4,且ab <0,则a +b 的值为 ___.13.(本题3分)数轴上到表示数-413点距离为312的点所表示的数为_________ 14.(本题3分)绝对值小于2021的所有的整数的和是___.15.(本题3分)计算:()()291223⎛⎫-⨯-+-÷= ⎪⎝⎭__________. 16.(本题3分)如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是___.17.(本题3分)母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.18.(本题3分)如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M的值为________.19.(本题3分)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______km.20.(本题3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是_______;当输入数据是n时,输出的数据是_____三、解答题(本大题共8小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题12分)计算:(1)185(0.25)4⎛⎫+----⎪⎝⎭(2)554(10)845⎛⎫⎛⎫-⨯-+-⨯⎪ ⎪⎝⎭⎝⎭(3)2313369412⎛⎫-⨯-+⎪⎝⎭(4)1|3 4.5|9342-+-+--22.(本题4分)在数轴上点A表示的数为﹣1,点B和点A的距离为3,点B、C表示的两数和为0,求点C在数轴上表示的数.23.(本题8分)如图,(1)写出各点表示的数:A________,B________,C________,D________,E________;(2)用“<”将A.B、C、D、E表示的数连接起来.24.(本题10分)把下列各数填在相应的括号内:-16,26,-12,-0.92,35,0,314,0.100 8,-4.9正数集合:{ ⋯};负数集合:{ ⋯};整数集合:{ ⋯};正分数集合:{ ⋯};负分数集合:{ ⋯};25.(本题9分)国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.26.(本题9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(本题8分)阅读下列材料:计算:1111 243412⎛⎫÷-+⎪⎝⎭解法一:原式= 111111111113412 243244241224242424÷-÷+÷=⨯-⨯+⨯=解法二:原式= 111112116 2434122412244⎛⎫÷-+=÷=⨯=⎪⎝⎭解法三:原式的倒数=1111111111242424244 34122434123412⎛⎫⎛⎫-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭所以,原式= 14.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:113224261437⎛⎫⎛⎫-÷--+⎪ ⎪⎝⎭⎝⎭参考答案1.A【解析】解:根据题意得:-3-4=-7,此时终点所表示的数是-7,故选:A .2.D【解析】解:一个两位小数精确到十分位是5.0,这个数最小是4.95.故选:D .3.B【解析】解:A 、0既不是正数,也不是负数,正确,不符合题意;B 、1是绝对值最小的正数,错误,符合题意;C 、一个有理数不是整数就是分数,正确,不符合题意;D 、0的绝对值是0,正确,不符合题意.故选:B .4.B【解析】解析:353000=3.53×105.故选:B5.B【解析】解析:353000=3.53×105.故选:B6.C【解析】解:A 、﹣(+4)=﹣4,+(﹣4)=﹣4,故A 选项不符合题意;B 、﹣(﹣4)=4,|﹣4|=4,故B 选项不符合题意;C 、﹣22=﹣4,(﹣2)2=4,故C 选项符合题意;D 、﹣23=﹣8,(﹣2)3=﹣8,故D 选项不符合题意,故选:C .7.C【解析】解:A .当A 为原点,则剩余三个点表示的数均是正数,故A 不合题意. B .当B 为原点,则A 表示负数,C 与D 表示正数,故B 不符合题意.C .当C 为原点,则A 与B 表示负数,D 表示正数,故C 符合题意.D .当D 为原点,A 、B 与C 表示负数,故D 不符合题意.故选:C .8.D【解析】解:⋯0a b +>,21a -<<-,⋯0b >,而且1b a >>,⋯1>->,b a符合条件是D,b=2.故选:D.9.D【解析】解:如图所示,⋯数a在原点的左边,数b在原点的右边,⋯a<-1,1>b>0,且|a|>1,|b|<1,>,a<b,⋯a b⋯A不符合题意;⋯D符合题意;⋯|a|>1,⋯-a>1,⋯-a>b,⋯B不符合题意;⋯1>b>0,⋯-1<b<0,⋯a<-b,⋯C不符合题意;故选D.10.C--=,是正数;【解析】()44-=,是正数;224-=-,是负数;11()239-=,是正数;()328-=-,是负数;⋯正数又3个;故选C.11.3-【解析】解:根据题意可得,高于正常水位记作“+”,则低于正常水位记作“-”,-m,则低于正常水位3m时,应记作3-故答案为:312.2-或2【解析】解:⋯64a b ==,⋯6,4a b =±=±又⋯0ab <⋯64a b =⎧⎨=-⎩或64a b =-⎧⎨=⎩ ⋯2a b +=或2a b +=-故答案为2-或213.−476或−56 【解析】解:距离点数−413为312个单位长度的点有两个,它们分别是−413+312=−56,−413−312=−476, 故答案为−476或−56. 14.0 【解析】绝对值小于2021是所有正数为0,1,22020±±⋯±,, ∴()()202010120200-+⋯+-+++⋯+= 故答案为:015.0 【解析】解:()()291223⎛⎫-⨯-+-÷ ⎪⎝⎭=66-=0.故答案为:0.16.-1、0、1、2【解析】解:由数轴可知:被污染的部分的数为-1.3<x <2.9的整数,⋯被污染的整数为:-1、0、1、2,故答案为:-1、0、1、2.17.1,4,6(答案不唯一)【解析】⋯12×1+5×4+3×6=50,⋯可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)18.143【解析】解:⋯1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,⋯右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),⋯M =m (n +1),⋯M =11×(12+1)=143.故答案为:143.19.36【解析】解:如果第二天和第三天选择低强度,则距离为6+6=12(km ),如果第三天选择高强度,则第二天休息,则距离为15km ,⋯12<15,⋯第二天休息,第三天选择高强度,如果第四天和第五天选择低强度,则距离为5+4=9(km ),如果第五天选择高强度,则第四天休息,则距离为8km ,⋯9>8,⋯第四天和第五天选择低强度,为保持最远距离,则第一天为高强度,⋯最远距离为12+0+15+5+4=36(km )故答案为36.20.256 ()2n -【解析】解:设输入数据为a ,输出数据为b ,则由题意可得:()2a b =-,所以:当输入数据是8时,输出的数据是()82256-=;当输入数据是n时,输出的数据是 ()2n-. 故答案为256;()2n -. 21.(1)3;(2)154;(3)19;(4)0;(5)18-;(6)-198 【解析】解:(1)原式()3750.254=---()320.254=-- 3=;(2)原式2554=445⎛⎫+-⨯ ⎪⎝⎭ ()2514=+- 154=; (3)原式8271336363612⎛⎫=-⨯-+⎪⎝⎭ 1913363612-⎛⎫=-⨯+ ⎪⎝⎭ 1933363636-⎛⎫=-⨯+ ⎪⎝⎭ 1633636-=-⨯ ()316=--19;(4)原式=1.5-9+7.5=0;22.4或-2【解析】解:⋯点A在数轴上表示的数为﹣1,且点B和点A的距离为3,⋯点B在数轴上表示的数为-4或2,又点B、C表示的两数和为0⋯点C在数轴上表示的数为4或-223.(1)5,﹣2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5【解析】解:(1)点A.B、C、D、E表示的数分别为5,-2.5,1,2.5,﹣4;故答案为5,-2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5.24.正数集合:{ 26,35,134,0.1008};负数集合:{-16,-12,-0.92,-4.9};整数集合:{-16,26,-12,0};正分数集合:{35,134,0.1008};负分数集合:{-0.92,-4.9}.【解析】解:根据有理数分为:正数、0、负数;有理数也可以分为:整数和分数.⋯正数有:26,35,134,0.1008;负数有:-16,-12,-0.92,-4.9;整数有:-16,26,-12,0;正分数有:3 5,134,0.1008;负分数有:-0.92,-4.9.⋯正数集合:{26,35,134,0.1008⋯};负数集合:{-16,-12,-0.92,-4.9⋯};整数集合:{-16,26,-12,0⋯};正分数集合:{35,134,0.1008⋯};负分数集合:{-0.92,-4.9 ⋯};25.(1)见解析;(2)8(千米);(3)1.6(升)【解析】解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.26.(1)西12km;(2)4L;(3)108元【解析】(1)491010512+-+---, 410512910=----++,3119=-+,12=-,答:小李在西12km 处.(2)491010512-+++-+++-+-, 491010512=+++++,50=,500.084)L ⨯=(,答:共耗油4L .(3)第一次车费:()1043 1.511.5+-⨯=(元), 第二次车费:()1093 1.519+-⨯=(元), 第三次车费:()10103 1.520.5+-⨯=(元), 第四次车费:()10103 1.520.5+-⨯=(元), 第五次车费:()1053 1.513+-⨯=(元), 第六次车费:()10123 1.523.5+-⨯=(元), 11.51920.520.51323.5108+++++=, 答:小李这天上午共得车费108元. 27.(1)一;(2)118【解析】解:(1)⋯除法无分配律⋯解法一是错误的故答案为:一;(2)方法一:原式1143442661414⎛⎫⎛⎫=-÷--+ ⎪ ⎪⎝⎭⎝⎭ 11142214⎛⎫⎛⎫=-÷-+ ⎪ ⎪⎝⎭⎝⎭ 13427⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 118= 方法二:原式的倒数= 132216143742⎛⎫⎛⎫=--+÷- ⎪ ⎪⎝⎭⎝⎭ ()132********⎛⎫=--+⨯- ⎪⎝⎭()()()()13224242424261437=⨯--⨯--⨯-+⨯- 792812=-++-18=⋯原式=118。

2018-2019学年最新人教版七年级数学上册《有理数》综合测试题及解析-经典试题

2018-2019学年最新人教版七年级数学上册《有理数》综合测试题及解析-经典试题

《第1章有理数》一、填空题1.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,整数是,正数是.2.若a>0,|a|= ;若a<0,|a|= ;若a=0,|a|= .3.用“>”“<”“=”填空①﹣|﹣4| ﹣(﹣4);②(﹣)|﹣|;③|﹣0.5| (﹣).4.数轴上表示﹣5和表示﹣14的两点之间的距离是;﹣1的倒数的绝对值是.5.2003+(﹣1)2004= .6.填空:|﹣1+|+|﹣+|+|﹣+|+┉+|﹣+|= .7.用科学记数法表示下列各数.(1)320100= ;(2)﹣10200= .8.在(﹣)2中的底数是,指数是.9.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.10.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.11.观察:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6651…,根据以上的规律,判断数字32005的个位数字是.二、选择题12.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.313.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)14.下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A.3个 B.2个 C.1个 D.0个15.已知字母a、b表示有理数,如果a+b=0,则下列说法正确的是()A.a、b中一定有一个是负数B.a、b都为0C.a与b不可能相等 D.a与b的绝对值相等16.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.217.下列各式的结论,成立的是()A.若|m|=|n|,则m=n B.若m>n,则m|>|n|C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n|18.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<019.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>020.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22三、解答题21.(1)(﹣5)+2+(﹣)+(﹣2)(2)(﹣+﹣)×|﹣24|(3)8﹣23÷(﹣4)3﹣(4)(﹣5)×6+(﹣125)÷(﹣5)(5)﹣64÷3×(﹣)(6)1﹣×[3×(﹣)2﹣(﹣1)3]+÷(﹣)2.22.已知(a ﹣4)2+|a+b|=0,求(﹣a )2+(﹣b )3的值.23.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?24.规定一种运算: =ad ﹣bc ,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算和的值.25.已知有理数a 、b 、c 在数轴上的位置如图所示,且|a|=|b|.①求a 5+b 5的值;②化简|a|﹣|a+b|﹣|c ﹣a|+|c ﹣b|+|ac|﹣|﹣2b|.26.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)2张桌子拼在一起可坐多少人?三张桌子呢?n 张桌子呢?(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改为每8张桌子拼成1张大桌子,则共可坐多少人?《第1章 有理数》参考答案与试题解析一、填空题1.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,整数是 0,﹣|﹣5|,24 ,正数是﹣(﹣1.5),2,,24 . 【考点】绝对值;有理数;相反数.【分析】先化简各数,再根据整数的定义,正数的定义进行分类即可求解.【解答】解:∵﹣(﹣1.5)=1.5,﹣|﹣5|=﹣5,24=16,∴在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,整数是0,﹣|﹣5|,24,正数是﹣(﹣1.5),2,,24.故答案为:0,﹣|﹣5|,24;﹣(﹣1.5),2,,24. 【点评】此题考查了绝对值,有理数,相反数,关键是化简各数.2.若a >0,|a|= a ;若a <0,|a|= ﹣a ;若a=0,|a|= a .【考点】绝对值.【分析】根据绝对值实数轴上的点到原点的距离,可得答案.【解答】解:若a >0,|a|=a ;若a <0,|a|=﹣a ;若a=0,|a|=a ;故答案为:a ,﹣a a .【点评】本题考查了绝对值,非负数的绝对值等于它本身,负数的绝对值等于他的相反数.3.用“>”“<”“=”填空①﹣|﹣4| < ﹣(﹣4);②(﹣) < |﹣|;③|﹣0.5| > (﹣).【考点】有理数大小比较.【分析】①、②先去括号及绝对值符号,再比较大小即可;③先去括号,再比较大小即可.【解答】解:①∵﹣|﹣4|=﹣4<0,﹣(﹣4)=4>0,∴﹣|﹣4|<﹣(﹣4).故答案为:<;②∵﹣<0,|﹣|>0,∴﹣<|﹣|.故答案为:<;③∵|﹣0.5|=0.5>0,(﹣)=﹣<0,∴|﹣0.5|>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知绝对值的性质及正数与负数比较大小的法则是解答此题的关键.4.数轴上表示﹣5和表示﹣14的两点之间的距离是9 ;﹣1的倒数的绝对值是.【考点】倒数;数轴;绝对值.【分析】根据数轴上两点间的距离是大数减小数,乘积为1的两个数互为倒数,可得答案.【解答】解:数轴上表示﹣5和表示﹣14的两点之间的距离是﹣5﹣(﹣14)=﹣5+14=9,﹣1的倒数是﹣,倒数的绝对值是,故答案为:9,.【点评】本题考查了倒数,先求倒数,再求绝对值,把带分数化成假分数是求倒数的关键.5.(﹣1)2003+(﹣1)2004= 0 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用﹣1的奇次幂为﹣1,偶次幂为1计算即可得到结果.【解答】解:原式=﹣1+1=0.故答案为:0【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.6.填空:|﹣1+|+|﹣+|+|﹣+|+┉+|﹣+|= .【考点】有理数的加减混合运算;绝对值.【专题】计算题;实数.【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故答案为:【点评】此题考查了有理数的加减混合运算,以及绝对值,熟练掌握运算法则是解本题的关键.7.用科学记数法表示下列各数.(1)320100= 3.201×105;(2)﹣10200= ﹣1.02×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)320100=3.201×105;(2)﹣10200=﹣1.02×104.故答案为:3.201×105,﹣1.02×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.在(﹣)2中的底数是﹣,指数是 2 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用幂的定义判断即可得到结果.【解答】解:在(﹣)2中的底数是﹣,指数是2.故答案为:﹣;2【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.9.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.【考点】有理数的混合运算.【专题】计算题;开放型.【分析】24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.【解答】解:答案不唯一,如:3×7+(4﹣1)=24.【点评】此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.10.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21 .【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.【点评】此题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.11.观察:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6651…,根据以上的规律,判断数字32005的个位数字是 3 .【考点】尾数特征.【专题】规律型;实数.【分析】观察已知结果尾数特征,归纳总结得到一般性规律,确定出所求个位数字即可.【解答】解:根据题意得:结果尾数特征为:3,9,7,1循环,∵2005÷4=501…1,∴数字32005的个位数字是3,故答案为:3【点评】此题考查了尾数特征,弄清题中的规律是解本题的关键.二、选择题12.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.3【考点】有理数大小比较.【分析】求出大于﹣3.5,小于2.5的整数,然后可求解.【解答】解:大于﹣3.5,小于2.5的整数有﹣3,﹣2,﹣1,0,1,2,所以共有6个.故答案为A.【点评】比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.13.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.14.下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A.3个 B.2个 C.1个 D.0个【考点】绝对值.【分析】①一个数的绝对值的相反数一定是负数.反例:当这个数是0时,结果还是0不是负数,所以错误;②只有负数的绝对值是它的相反数.反例:当这个数是0时,结果还是0也是0的相反数,所以错误;③正数和零的绝对值都等于它本身.由绝对值性质可知,正确;④互为相反数的两个数的绝对值相等.正确.所以错误的有2个.【解答】解:根据绝对值的性质和相反数的概念,得①,②错误;③,④正确.故选B.【点评】主要考查了绝对值,相反数的性质和定义.本题中要特别注意一些特殊的数字,如0,有时该数是最后的反例.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;15.已知字母a、b表示有理数,如果a+b=0,则下列说法正确的是()A.a、b中一定有一个是负数B.a、b都为0C.a与b不可能相等 D.a与b的绝对值相等【考点】有理数的加法.【分析】根据互为相反数的两个数相加得0,以及绝对值的性质即可作出判断.【解答】解:∵a+b=0,∴a与b互为相反数,∵互为相反数的两个数的绝对值相等,∴a与b的绝对值相等.【点评】考查了有理数的加法,关键是熟悉互为相反数的两个数相加得0.16.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.2【考点】倒数.【专题】计算题.【分析】根据负倒数的定义,可得出﹣2的负倒数.【解答】解:与﹣2乘积为﹣1的数为.﹣2的负倒数为.故选C.【点评】此题考查了倒数的知识,解答本题的关键是理解题意,理解负倒数的定义,属于基础题,难度一般.17.下列各式的结论,成立的是()A.若|m|=|n|,则m=n B.若m>n,则m|>|n|C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n|【考点】绝对值.【分析】如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【解答】解:A、若m=﹣3,n=3时,|m|=|n|,而m≠n.故本选项错误;B、若m>n>0,则m|>|n|.故本选项错误;C、若|m|>|n|,则m>n>0.故本选项错误;D、若若m<n<0,则|m|>|n|.故本选项正确.故选D.【点评】本题考查了绝对值.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0【考点】有理数的乘法;有理数的加法.【专题】计算题.【分析】根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b小于0,即可得到a与b都为负数.【解答】解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.【点评】此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.19.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【考点】有理数的减法;数轴;有理数的加法.【专题】常规题型.【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.20.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22【考点】有理数的乘方.【分析】根据有理数的乘方运算法则分别计算,进行比较,得出数值相等的选项.【解答】解:A、﹣23=﹣8,(﹣2)3=﹣8,故A选项符合题意;B、32=9,23=8,故B选项不符合题意;C、﹣32=﹣9,(﹣3)2=9,故C选项不符合题意;D、﹣(3×2)2=﹣36,﹣3×22=﹣12,故D选项不符合题意.故选:A.【点评】本题考查有理数的运算能力,解决此类题目的关键是熟记有理数的运算法则.三、解答题21.(1)(﹣5)+2+(﹣)+(﹣2)(2)(﹣+﹣)×|﹣24|(3)8﹣23÷(﹣4)3﹣(4)(﹣5)×6+(﹣125)÷(﹣5)(5)﹣64÷3×(﹣)(6)1﹣×[3×(﹣)2﹣(﹣1)3]+÷(﹣)2.【考点】有理数的混合运算.【分析】(1)先算同分母分数,再算加减法;(2)根据乘法分配律计算;(3)(6)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(4)先算乘除,后算加法;(5)将除法变为乘法,再约分计算即可求解.【解答】解:(1)(﹣5)+2+(﹣)+(﹣2)=﹣5+(2﹣2)+(﹣)=﹣5+0﹣=﹣5;(2)(﹣+﹣)×|﹣24|=(﹣+﹣)×24=﹣×24+×24﹣×24=﹣12+16﹣6=﹣2;(3)8﹣23÷(﹣4)3﹣=8﹣8÷(﹣64)﹣=8+﹣=8;(4)(﹣5)×6+(﹣125)÷(﹣5)=﹣30+25=﹣5;(5)﹣64÷3×(﹣)=﹣64××(﹣)=12;(6)1﹣×[3×(﹣)2﹣(﹣1)3]+÷(﹣)2.=1﹣×[3×﹣(﹣1)]+÷=1﹣×[﹣(﹣1)]+1=1﹣×+1=1﹣+1=.【点评】考查了有理数的混合运算,有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.22.已知(a ﹣4)2+|a+b|=0,求(﹣a )2+(﹣b )3的值.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a ﹣4=0,a+b=0,解得a=4,b=﹣4,所以,(﹣a )2+(﹣b )3=(﹣4)2+[﹣(﹣4)]3=16+64=80.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?【考点】有理数的除法;正数和负数.【专题】应用题.【分析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.【解答】解:(1)最高分是80+12=92分,最低分是80﹣10=70分;(2)低于80分的有5个,所占的百分比是5÷10×100%=50%;(3)平均分是80+(8﹣3+12﹣7﹣10﹣3﹣8+1+0+10)÷10=80分.【点评】主要考查了正负数的基本运算,要掌握数的加法和减法法则,才能准确的计算结果.要注意基本数和记录结果之间的关系.24.规定一种运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算和的值.【考点】有理数的混合运算.【专题】新定义.【分析】读懂新运算的运算规则,按新规则解答.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5;=(﹣1)2010×(﹣9)﹣4×1.25=﹣9﹣5=﹣14.【点评】此题是定义新运算题型.读懂新运算规则,是关键.25.已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|.①求a5+b5的值;②化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|.【考点】数轴;绝对值;有理数的乘方.【专题】计算题.【分析】根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,继而即可求出①的值,对②中的式子去绝对值,也即可得出答案.【解答】解:根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,则a+b=0,所以有①a5+b5=0;②|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|,=a﹣0﹣(a﹣c)+(b﹣c)﹣ac+2b,=3b﹣ac.【点评】本题考查了数轴,绝对值,有理数的乘方的知识,注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号.同时注意把一个代数式看作一个整体.26.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)2张桌子拼在一起可坐多少人?三张桌子呢?n张桌子呢?(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改为每8张桌子拼成1张大桌子,则共可坐多少人?【考点】规律型:图形的变化类.【专题】规律型.【分析】(1)根据所给的图,正确数出即可.在数的过程中,能够发现多一张桌子多2个人,根据这一规律用字母表示即可;(2)结合(1)中的规律,先求出5张桌子放在一起可以坐的人数,然后计算出40张桌子拼成8张大桌子所坐的总人数;(3)结合(1)中的规律,先求出8张桌子放在一起可以坐的人数,然后计算出40张桌子拼成5张大桌子所坐的总人数.【解答】解:(1)2张桌子拼在一起可坐2×2+4=8人,3张桌子拼在一起可坐2×3+4=10人,那么n张桌子拼在一起可坐(4+2n)人;(2)∵每5张桌子拼在一起,40张可拼40÷5=8张大桌子,再利用字母公式,得出40张大桌子共坐8×(4+2×5)=112人;(3)∵每8张桌子拼成1张大桌子,40张可拼40÷8=5张大桌子,再利用字母公式,得出40张大桌子共坐5×(4+2×8)=100人.【点评】本题考查规律型中的图形变化问题,此类题一定要结合图形发现规律:多一张桌子多2个人.把这一规律运用字母表示出来即可.。

【精选】人教版七年级上册数学 有理数综合测试卷(word含答案)

【精选】人教版七年级上册数学 有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。

(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。

2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.4.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.5.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

有理数综合测试卷(word含答案)

 有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。

有理数全章综合测试(含答案)

有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1mB.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。

有理数测试题及答案

有理数测试题及答案

有理数测试题及答案一、选择题(每题2分,共10分)1. 下列数中,属于有理数的是()。

A. πB. √2C. 0.33333...D. 0.12. 有理数的乘法法则是()。

A. 同号得正,异号得负B. 同号得正,异号得负,绝对值相乘C. 同号得负,异号得正D. 绝对值相乘,符号相加3. 两个有理数相除,其结果为()。

A. 正数B. 负数C. 非负数D. 非正数4. 绝对值的定义是()。

A. 一个数的相反数B. 一个数到原点的距离C. 一个数的平方D. 一个数的立方5. 有理数的加法法则是()。

A. 同号相加,取相同的符号,并把绝对值相加B. 同号相加,取相反的符号,并把绝对值相加C. 异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值D. 异号相加,取绝对值较小的数的符号,并用较大的绝对值减去较小的绝对值二、填空题(每题2分,共10分)1. 一个有理数的绝对值是它到原点的距离,即 |-3| = ____。

2. 有理数的乘法法则是同号得____,异号得____,绝对值相乘。

3. 有理数的除法法则是同号得____,异号得____,绝对值相除。

4. 有理数的加法法则是同号相加,取相同的符号,并把绝对值____。

5. 有理数的减法法则是减去一个数等于加上这个数的____。

三、解答题(每题10分,共20分)1. 计算下列有理数的和:-3 + 4 + (-5) + 6。

2. 计算下列有理数的积:(-2) × 3 × 4 × (-1)。

四、判断题(每题1分,共10分)1. 有理数包括正整数、负整数、正分数、负分数和零。

()2. 0是正数。

()3. 有理数的绝对值一定是正数。

()4. 有理数的乘法法则是同号得正,异号得负,绝对值相乘。

()5. 有理数的除法法则是同号得正,异号得负,绝对值相除。

()答案:一、选择题1. C2. B3. C4. B5. A二、填空题1. 32. 正,负3. 正,负4. 相加5. 相反数三、解答题1. -3 + 4 + (-5) + 6 = 22. (-2) × 3 × 4 × (-1) = 24四、判断题1. 正确2. 错误3. 错误4. 正确5. 正确。

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。

2024新人教版七年级上册数学《有理数》单元测试卷及答案

2024新人教版七年级上册数学《有理数》单元测试卷及答案

第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。

人教版《有理数》章节测试卷(含答案与详细解析)

人教版《有理数》章节测试卷(含答案与详细解析)

……○…………外…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○……《有理数》章节测试卷考试时间:120分钟满分:120分题号一二三四五六总分评分阅卷人一、单选题(共6题;共18分)得分1.(3分)-3相反数是()A.3B.-3C.D.2.(3分)下列各数中比-2小的数是()A.-3B.-1C.0D.23.(3分)我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度是7100米/秒,将7100用科学记数法表示为()A.7100B.C. D.4.(3分)下列说法中,不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.0的相反数是0D.0的绝对值是05.(3分)2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:,0,,,,则这5天他共背诵汉语成语()A.38个B.36个C.34个D.30个6.(3分)若ab≠0,则的取值不可能是()A.0B.1C.2D.-2阅卷人二、填空题(共6题;共18分)得分7.(3分)比较大小:________(填写"<”或">”)8.(3分)在数轴上距原点个单位的点所表示的数是________.9.(3分)将1295330精确到十万位后,近似数是________(用科学记数法表示)10.(3分)如图,数轴上A 、B 两点所表示的数分别是﹣4和2,点C 是线段AB 的中点,则点C 所表示的数是________.11.(3分)数a=-0.32,b=-32,c=(-)-2,则a 、b 、c 按从小到大的顺序排列________.12.(3分)如图A ,B,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若则原点可能是________.阅卷人三、本大题共五小题,每小题6分,共30分得分13.(6分)计算:(1)-7-3+8(2)(-)+12(-)14.(6分)在数轴上表示下列各数:0,﹣(﹣4),|﹣3|,﹣2.5,+5并用“<”号连接.15.(6分)已知a 、b 、c 的大小为0<c<1,b<-1,a<b ;化简:|a +c |+2|b +c |-3|a +b |.16.(6分)正式排球比赛时对所使用的排球质量有严格的规定,检查5个排球的重量,超过规定重量的数记作正数,不足规定重量的克数记作负数,检查结果如下:+15,-10,+30,-20,-40.指出哪个排球质量好一些(即重量接近规定重量),怎样用学过的绝对值的知识说明哪个排球的质量好一些?17.(6分)学习了有理数计算之后,老师给出了这样一道题目:.小明的解法如下:===0你认为小明的这种解法正确吗?如果错误,请你把正确的过程写出来.………○…………外…………○…………装…………○…………订…………○…………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○……阅卷人四、本大题共三小题,每小题8分,共24分得分18.(8分)把下列各数按要求分类.,5,,0,,,,,,;正数集合:,负整数集合:,分数集合:非正数集合:19.(8分)已知:、互为相反数,、互为倒数,的绝对值是2,求+的值.20.(8分)若a ,b ,c 是有理数,|a|=3,|b|=10,|c|=5,且a ,b 异号,b ,c 同号,求a -b-(-c )的值.阅卷人五、本大题共2小题,每小题9分,共18分得分21.(9分)小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑到学校.如果小明跑步的速度均匀的,到达小彬家用了8分钟,整个跑步过程用时共32分钟.(1)以小明家为原点、向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家;(2)用点C 表示出学校的位置;(3)求小彬家与学校之间的距离.22.(9分)某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+1﹣1﹣2请问,该服装店售完这30件连衣裙后,赚了多少钱?阅卷人六、本大题共12分得分23.(12分)阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,________.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,________.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”……○…………外…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○……答案解析部分一、单选题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-3的相反数是3故答案为:A .【分析】根据相反数的定义可得答案.2.【答案】A【考点】有理数大小比较【解析】【解答】∵|-3|=3,|-1|=1,又0<1<2<3,∴-3<-2,所以,所给出的四个数中比-2小的数是-3,故答案为:A【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.3.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【解答】7100=.故答案为:D .【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.4.【答案】B【考点】正数和负数的认识及应用,相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【分析】正数:定义:比0大的数是正数。

人教版七年级上册数学第一章 有理数含答案(综合考察)

人教版七年级上册数学第一章 有理数含答案(综合考察)

人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、计算下列各式,结果为负数的是()A. B. C. D.2、数轴上表示整数的点称为整点.某数轴的单位长度是1 ,若在这个数轴上随意画出一条长为2020 的线段,则线段盖住的整点个数是()A.2018或2019B.2019或2020C.2020或2021D.2021或20223、若与互为相反数,则的值为()A.-bB.C.-8D.84、,两数在数轴上的位置如图所示,下列结论中,正确的是()A. ,B. ,C.D.5、一个物体作上下方向的运动,规定向上运动5m记作+5m,那么向下运动5m 记作()A.﹣5 mB.5 mC.10 mD.﹣10 m6、-6×0×(-10)=()A.0B.4C.-6D.6或07、据调查:仅我国大学食堂中,每天就倒掉了大约人的一天所需食物,其浪费程度令人震惊!将用科学记数法表示为( )A. B. C. D.8、|﹣3|=()A.﹣3B.﹣2C.3D.29、4的相反数等于()A.4B.C.﹣4D.﹣10、下列各组数中,相等的一组是()A.(﹣2)3和﹣(﹣2 3)B.﹣(﹣2)和﹣|﹣2|C.(﹣2)2和﹣(﹣2 2)D.|﹣2| 3和﹣|2| 311、太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×10 6B.6.96×10 8C.0.696×10 7D.6.96×10 512、若每人每天浪费水0.32升,那么100万人每天浪费的水,用科学记数法表示为()A. 升B. 升C. 升D. 升13、如果a=a³成立,则a可能的取值有().A.1个B.2个C.3个D.无数个14、已知地球上海洋面积约为316 000 000km2, 316 000 000这个数用科学记数法可表示为()A.3.16×10 9B.3.16×10 8C.3.16×10 7D.3.16×10 615、两个数的和是负数,面积是正数,那么这两个数()A.都是正数B.都是负数C.一正一负D.同号二、填空题(共10题,共计30分)16、的绝对值等于________;﹣的倒数是________.17、绝对值最小的整数是________18、的倒数是________ ,的相反数是________ .19、比较下列每组数的大小:(1)0________-2;(2)-13________-21.20、五峰山长江大桥是连淮扬镇铁路的关键控制性工程,位于连镇高铁扬州东至大港南站间,是世界上首座运行荷载量最大的高速公铁两用悬索桥.五峰山长江大桥全长6.409千米,精确到0.01千米,其近似值为________千米.21、某整数用科学记数法表示为-7.8×104,则此整数是________22、两个有理数的和为5,其中一个加数是–7,那么另一个加数是________。

(完整版)有理数综合测试题

(完整版)有理数综合测试题

有理数综合测试题 姓名一、选择题(本题共有10个小题,每小题都有A 、B 、C 、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题3分,共30分)1、下列说法正确的是( )A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数2、下列各对数中,数值相等的是( )A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( ) A -12 B -101 C -0.01 D -5 4、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数中,正数的个数是( )A 1B 2或4C 5D 1和35、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 56、计算:(-2)100+(-2)101的是( )A 2100B -1C -2D -21007、比-7.1大,而比1小的整数的个数是( )A 6B 7C 8D 98、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A 0B -1C 1D 0或19、我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A 63×102千米B 6.3×102千米C 6.3×104千米D 6.3×103千米10、已知8.62=73.96,若x 2=0.7396,则x 的值等于( )A 6.8B ±0.68C ±0.86D ±86二、填空题(本题共有8个小题,每小题3分,共27分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

有理数综合测试卷含答案.pdf

有理数综合测试卷含答案.pdf

6、绝对值小于2008的所有整数的和

7、已知∣x∣=8,∣y∣=2,则(x + y )²=

8、已知∣a∣=3,∣b∣=2,且ab<0,则a﹣b=

9、若2x−3与− 1 3
互为倒数,则x=______。
10、如果|2x-3y|+(y-2)²=0 成立时,则x²+y ² =

2n+1 2n
11、(﹣1) +(﹣1)
16、若x与2y互为相反数,-y与-3z互为倒数,m是任何正偶次幂都等于
本身的数,求代数式2x+4y-3 y z+m²的值 17、如果|a+b|+|a-2|=0,求|3a-2b|= 18、若a>0,b<0,且|a|>|b|,则a+b 0。 a+b 0。
。 。
若a>0,b<0,且|a|<|b|,则
二、选择题:(每题每题3分,共42分)
分)
6、已知在纸面上有一数轴(如图),折叠纸面. -3 -2 -1 0 1 2 3
(1)若1表示的点与-1表示的点重合,则-2表示的点与数 表示的 点重合;(1分) (2)若-1表示的点与3表示的点重合,回答以下问题: ① 5表示的点与数 表示的点重合;(1分) ② 若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经 折叠后重合,求A、B两点表示的数是多少?(3分)
C、4 D、不能确定
4、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数
中,正数的个数( )
A 、1
B、2或4
C 、5 D、1和3
5、下列说法正确的是 (

A、有最小的正数,B、有最小的自然数; C、有最大的有理数;D、

有理数综合测试题(附答案)

有理数综合测试题(附答案)

以下是查字典数学网为您推荐的有理数综合测试题(附答案),希望本篇文章对您学习有所帮助。

有理数综合测试题(附答案)一、选一选(每小4分,共28分)1、下面的说法中,正确的个数是 ()(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是负数;(3)一个整数不是正的就是负的;(4)一个分数不是正的就是负的。

A、1 B、2 C、3 D、42、若ab0,a+b0,那么必有 ()A、符号相反B、符号相反且绝对值相等C、符号相反且负数的绝对值大D、符号相反且正数的绝对值大3、下列几个算式中正确的有()(1)-2-(-5)=-3;(2)-22=-4;(3)(-1/4)(-4)=1;(4)(-3)3=-2A.0个 B.1个 C.2个 D.3个4、已知:a、b、c在数轴上位置如图1,O为原点,则下列正确的是()A、abc0 B、|a||c| C、|a||b| D、 05、用计算器求103,键入顺序为()6、下列每组数中,相等的是 ()A.-(-3)和-3;B.+(-3)和-(-3);C.-(-3)和|-3|; D.-(-3)和-|-3|.7、若abc,a+b+c=1,M= ,N= ,P= ,则M、N、P之间的大小关系是()A、MP B、NM C、PN D、MN二、填一填(每小题4分,共44分)8、 __ 数的相反数大于它本身; __的倒数等于它本身.9、绝对值等于它本身的数是 ___;绝对值小于5且大于2的整是 __.10、a为有理数,且|a|=-a,则a是.11、-2 的相反数的倒数是.12、-7与绝对值等于8的数的和等于 .13、用简便方法计算:99 (-5)= .14、观察下面一列数,按某种规律填上适当的数:1,-2,4,-8, , .15、某校有男生m人,占全校学生的48%,则该校女生有 .16、如果n是正整数,那么(-1)4n-1+(-1)4n+1=______.17、在一个班的40名学生中,14岁的有10人,15岁的有24人,16岁的有2人,17岁的有4人,那么这个班学生的平均年龄为______岁.18、观察以下等式,猜想第n个等式应为__________.12=1/31212+23=1/323412+23+34=1/33412+23+34+45=1/3456,根据以上规律,请你猜测:12+23+34++n(n+1)=(n为自然数)三、计算(每小题7分,共21分)19、17-8(-2)+420、-24+3(-1)6-(-2)3;21、计算:四(7分)、先化简,再求值:22、阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3++100=?经过研究,这个问题的一般性结论是1+2+3++ ,其中n是正整数。

第2章 有理数的运算 综合检测卷(含答案) 初中数学人教版(2024)七年级上册

第2章  有理数的运算  综合检测卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024年新教材)七年级(上)综合检测卷第2章《有理数的运算》考试时间:100分钟总分值:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算:2+(﹣6)=( )A.4B.﹣4C.8D.﹣82.﹣2024的倒数是( )A.﹣2024B.2024C.D.3.横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃4.据国家统计局发布,2023年全国固定资产投资(不含农户)50.3万亿元,同比增长3.0%.其中数据“50.3万亿”用科学记数法表示为( )A.5.03×1014 B.5.03×1013 C.0.503×1014 D.5.03×10125.不改变原式的值,将6﹣(﹣3)+(﹣7)﹣(+2)中的减法改成加法,并写成省略加号的形式是( )A.6+3﹣7+2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣26.下列计算不正确的是( )A.﹣1.5×(﹣3)=4.5B.(﹣1.2)×(﹣7)=﹣8.4C.﹣8×(﹣1.3)=10.4D.0×(﹣1.6)=07.两个非零有理数的和为零,则它们的商( )A.1B.﹣1C.0D.不能确定8.下列各数中,结果相等的是( )A.23和32B.(﹣2)3和﹣23C.(﹣3)2和﹣32D.|﹣2|3和(﹣2)39.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于( )A.﹣2B.﹣6C.0D.210.数轴上的两点所表示的数分别为a,b,且满足ab>0,a+b<0,下列结论正确的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0二.填空题(共6小题,满分18分,每小题3分)11.比﹣27大3的数是 .12.底数是﹣2,指数是4的幂可以写成 .13.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.14.将数2 024.624四舍五入取近似值,精确到个位为 .15.计算(﹣2)÷6×的结果是 .16.在数4、﹣6、3、﹣2、1中,任意取3个不同的数相乘,其中乘积最大是 .三.解答题(共9小题,满分72分,每小题8分)17.(8分)计算:(1)(﹣7)+13﹣5;(2)(﹣)﹣(﹣)﹣|﹣1|.18.(6分)如果a、b互为相反数,c、d互为倒数,m的绝对值为5,求的值.19.(6分)先阅读第(1)小题,再计算第(2)小题:(1)计算:﹣1+(﹣5)+24+(﹣3)解:原式=(﹣1﹣)+(﹣5﹣)+(24+)+(﹣3﹣)=﹣1﹣﹣5﹣+24+﹣3﹣=﹣1﹣5﹣3+24﹣﹣+﹣=15﹣=13(2)计算(﹣15)+(﹣19)+14+(﹣1).20.(10分)计算:(1);(2).21.(6分)阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).22.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.(8分)某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图,增加粮食记作“+”,减少粮食记作“﹣”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化精况的一半,求7号这天仓库粮食变化情况.24.(10分)①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.25.(10分)阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数.所以,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.根据以上阅读完成:(1)|3.14﹣π|= ;(2)|x+y|=x+y,则x+y ;(3)计算:.参考答案一.选择题1.B.2.C.3.D.4.B.5.D.6.B.7.B.8.B.9.B.10.B.二.填空题11.﹣24.12.(﹣2)4.13.8.14.2025.15..16.48.三.解答题17.解:(1)原式=6﹣5=1;(2)原式=﹣﹣=﹣=0.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值为5,∴a+b=0,cd=1,m=±5,当a+b=0,cd=1,m=5时,;当a+b=0,cd=1,m=﹣5时,;所以原式的值为﹣7或3.19.解:(﹣15)+(﹣19)+14+(﹣1)=﹣15﹣﹣19﹣+14+﹣1﹣=﹣15﹣19+14﹣1﹣﹣+﹣=﹣21﹣=﹣2220.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.21.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)﹣4+2﹣6+5+3﹣7=﹣7答:前6天,仓库粮食减少7袋;(2)设7号粮食变化x袋,由题意得,,解得:x=﹣2答:7号粮食减少2袋.24.解:①当a、b、c中没有负数时,都是正数,则原式=1+1+1+1=4;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1﹣1=0;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1+1=0;当a、b、c都是负数时,则原式=﹣1﹣1﹣1﹣1=﹣4,综上所述,代数式的值是4或﹣4或0;②当有理数a+b+c=0且abc≠0时,a、b、c中至少有1个正数,有1个负数.则代数式的值是:0.25.解:(1)|3.14﹣π|=π﹣3.14;故答案为:π﹣3.14;(2)|x+y|=x+y,则x+y≥0,故答案为:≥0;(3)原式=1﹣+﹣+﹣+⋯+﹣=1﹣=.。

【精选】 有理数综合测试卷(word含答案)

【精选】 有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.3.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.4.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.5.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章《有理数》综合测试卷(100分钟120分)
一、填空题:(每题2分,共20分)
1、绝对值等于4的数有 个,它们是 .
2、绝对值等于-3的数有 个.
3、绝对值等于本身的数有 个,它们是
4、已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 。

5、若 a 、b 互为相反数,c 、d 互为倒数,则(a +b )20 -(c d )20 = 。

6、若 | a|<2 ,且a 是整数,那么a = 。

7、已知|x |=3,()412
=+y , 且xy <0 ,则x -y 的值是 . 8、比-8大3的数是 ,比a 大-5的数是
9、 相反数等于它本身的数是 ,绝对值等于它本身的数是 ,倒数等于它本身的数是
10、如果2-=-x ,则x =______
二、思考题:(1、2题每小题2分,3、4题各5分,共20分)
1、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2 ,1+3+5+7+9=25=5 2 ,……
猜想:(1) 1+3+5+7…+99 = ;
(2) 1+3+5+7+…+(2n-1)= _____________ .
(结果用含n 的式子表示,其中n =1,2,3,……)。

2、如图21所示,数轴上标出了7个点,相邻两点之间的距离都相等,已
知点A表示-4,点G表示8
(1)点B表示的有理数是
表示原点的是点
(2)图21中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是。

(3)若将原点取在点D,则点C表示的有理数是,此时点B与点
表示的有理数互为相反数。

3、甲、乙、丙、丁四个有理数讨论大小问题.甲说:我是正整数中最小的.•乙说:我是绝对值最小的.丙说:我与甲的一半相反.丁说:我是丙的倒数.你能写出它们分别是多少吗?然后按从小到大的顺序排列.
4、已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2,•那么所有满足条件的点B对应的数有哪些?
三、选择题:(每题2分,共44分)
1、在算式1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是().
A、+
B、-
C、×
D、÷
2、两个有理数a ,b 在数轴上的位置如图,下列四个
式子中运算结果为正数的式子是( ).
A 、a+b
B 、a -b
C 、ab
D 、b a 3、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ).
A 、-1
B 、1
C 、-5
D 、10
4、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动,开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙、丙之间,则x 值可能是下列数中 的( ).
A 、11
B 、14
C 、17
D 、20
5、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的 一个算式: .
6、已知m 、n 为有理数时,关于2m +n 值的判断正确的是( )
A 、2m +n ≥0
B 、2m +n ≤0
C 、2m +n >0
D 、2m +n >1
7、已知m 为有理数时,11
22++m m =( )
A 、1
B 、-1
C 、1±
D 、不能确定
8、已知有理数a 、b 满足(),0212
=-+-b a 另有两个不等于零的有理数n m ,使得1-=++-=-mn mn
n n
m m
n m n m 且,试比较bn am 与的大小。

9、在有理数-2
1,+7,-5.3,10%,0,-32中自然数有m 个,分数有n 个,负有理数有p 个,比较m, n ,p 的大小得( ).
A 、m 最小
B 、n 最小
C 、p 最小
D 、m, n, p 三个一样大
10、则│a │≥0,那么 ( )
A .a>0
B .a<0
C .a ≠0
D .a 为任意数
11、若│a │=│b │,则a 、b 的关系是 ( )
A .a=b
B .a=-b
C .a+b=0或a-b=0
D .a=0且
b=0
12、若│x │+x=0,则x 一定是 ( )
A .负数
B .0
C .非正数
D .非负数
13、若 ab > 0 ,且 a + b < 0 ,那么( )
A.a >0,b >0;
B.a >0,b <0;
C. a <0 ,b <0;
D. a <0,b >0
14、│3.14- π|的值是( ).
A .0
B .3.14- π
C .π-3.14
D .3.14+π
15、一个数和它的倒数相等,则这个数是( )
A .1
B .1-
C .±1
D .±1和0
16、如果a a -=||,下列成立的是( )
A .0>a
B .0<a
C .0≥a
D .0≤a
17、 若x 为有理数, 则x x -表示的数是 ( )
A. 正数
B. 非正数
C. 负数
D. 非负数
18、设n 是自然数, 则2)1()1(1
+-+-n n 的值为 ( )
A. 0
B. 1
C. -1
D. 1或-1
19、若x,y 都表示有理数,那么下列各数中一定为正数的是:( )
A |x+5|
B (x +y)2
C y 2+21
D |x 2+y 2|
20、若a 、b 为有理数,a>0,b<0,且│a │<│b │,那么a ,b ,—a ,—b 的大小关系是( )
A 、b< —a< —b<a
B 、b< —b< —a<a
C 、b< —a< a<—b
D 、—a< —b < b <a
21、有理数a 、b 在数轴上的对应的位置如图所示:下列各式正确的是( )
A .a + b <0
B .a + b >0
C .a -b = 0
D .a -b >0
22、│m │与-5m 的大小关系是 ( )
A .│m │>-5m
B .│m │<-5m
C .│m │=-5m
D .以上都有可能
四、计算题:(第1、2、3、4、5、6题各4分,第6题8分,第7题8分,共40分)
1、如果
0)2(12=-++b a ,求20082009)(a b a ++的值。

2、已知 a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为1,

cdx x b a -++2
3、已知│a │=4,│b │=3,且a>b ,求a 、b 的值.
4、已知│a │=1,│b │=4,且ab<0,求b a +的值。

5、已知有理数a ,b ,c 在数轴上的对应点如图所示,化简: a c c b b a ---+- c 0 b a
6、出租车司机小某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6
(1)小下午出发地记为0,他将最后一名乘客送抵目的地时,小距下午出车时的出发地有多远?
(2)若汽车耗油量为0.41升/千米,这天下午小共耗油多少升?
7、股民小胡上星期五以每股13.10元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)
(1)星期五收盘时,每股是元;
(2)本周最高价是每股元,最低价是每股元;
(3)已知小胡买进股票时付了3‰得手续费,卖出时需付成交额3‰的手续费和2‰的交易税,如果小胡在星期五收盘前将全部股票卖出,他的收益情况如何?
参考答案:
一、填空题:
1、2 ±4
2、0
3、无数0和正数(非负数)
4、0
5、-1(a.b互为相反数→a+b=0,c.d互为倒数→cd=1)
6、1,0 ,-1
7、6或-4
8、-5,a -5
9、0 0和正数 1和-1 10、±2
二、思考题:
1、1)2500 2)n 2
2、1)-2 C 2)-5或9 3)-2 F
3、甲1 乙0 丙-21
丁-2 4、-3 -1 1 3
三、选择题:1、C 2、A 3、A 4、B 5、略 6、A
7、A 8、am >bn 9、略 10、D 11、C 12、C
13、C 14、C 15、C 16、D 17、D 18、A
19、C 20、C 21、A 22、D
四、计算题:
1、0
2、0或2
3、A 4 B ±3
4、3或-3
5、解:由图示知:c <0<b <a ,
∴a-b >0,b-c >0,c-a <0,
∴|a-b|=a-b ,|b-c|=b-c ,|c-a|=-(c-a ),
∴|a-b|+|b-c|-|c-a|=a-b+b-c+c-a=0.
6、1)39千米 2)26.65升
7、1)13.05元 2)13.05元 12.75元 3)-151.8元。

相关文档
最新文档