电磁感应定律——单杆+导轨模型(含思路分析)

合集下载

电磁感应中的单杆模型

电磁感应中的单杆模型

一、 单杆模型【破解策略】 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用t NE ∆∆=φ或BLv E =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。

(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。

00≠v 00=v示意图单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力RvL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLE a =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E=开始时m F a =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m =图 像 观 点能 量 观 点动能全部转化为内能: 2021mv Q = 电能转化为动能 221m mv W 电 F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 1.如图12—2一l2所示,abcd 是一个固定的U 形金属框架,ab 和cd 边都很长,bc 长为l ,框架的电阻不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻为R ,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动时的速度.2.两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。

[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。

现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。

核心素养微专题6 电磁感应中的“杆+导轨”模型

核心素养微专题6  电磁感应中的“杆+导轨”模型

(1)若涉及变力作用下运动问题,可选用动量守恒和能量守恒的方法解决。
(2)若涉及恒力或恒定加速度,一般选用动力学的观点。若涉及运动时间
问题也可选用动量定理求解。
17
二轮 ·物理
[示例3] 如图所示,在大小为B的匀强磁场区域内跟磁场方向垂直的水 平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导 体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的 质量都为m,电阻都为R,导轨部分电阻可忽略不计。设导体棒可在导 轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求: (1)当cd棒速度减为0.8v0时的加速度大小; (2)从开始运动到最终稳定,电路中产生的电能; (3)两棒之间距离增加量Δx的上限。
×mgsin θ=ma,解得加速度大小为 2.5 m/s2,B 正确;金属杆滑至底端
的整个过程中,整个回路中产生的焦耳热为 mgh-12mv2m,电阻 R 产生的
13
二轮 ·物理
焦耳热一定小于 mgh-21mvm2 ,C 错误;金属杆达到最大速度后,根据受 力平衡可得 mgsin θ=F 安=BIL,得 I=mgBsiLn θ=neSv-,得v-=ρgnseiBn θ, 其中 n 为单位体积的电子数,ρ 为金属杆的密度,所以杆中定向运动的 电荷沿杆长度方向的平均速度与杆的粗细无关,D 正确。 [答案] BD
8
二轮 ·物理
⑦ ⑧
二轮 ·物理
2.单杆“倾斜导轨”模型 匀强磁场与导轨垂直,磁感应强度为 B,导轨间距 L,导体棒 质量 m,电阻 R,导轨光滑,电阻不计(如图)
物理 模型
9
二轮 ·物理
棒 ab 由静止释放后下滑,此时 a=gsin α,棒 ab 速度 v↑→

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。

[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。

(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。

现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。

电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。

【内化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。

根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。

需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。

举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。

根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。

加速度随速度增大而减小,最终特征为匀速运动。

在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。

需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。

1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。

高二物理:电磁感应中的“杆+导轨”模型

高二物理:电磁感应中的“杆+导轨”模型
(2)金属杆的质量m和阻值r; (3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做 的功W。
转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型

(完整版)高分策略之电磁感应中的杆+导轨模型

(完整版)高分策略之电磁感应中的杆+导轨模型

电磁感应现象中的杆4导轨模型一、单棒问题、含容式单棒问题三、无外力双棒问题竇力愣况分析动力学观点 *动量现点 运动情况伽能冒观点 牛輛定律 平衡羞件动能定理〕 幡■守恒无外力等距式1¥杆1做a渐小的加速运动杆2做a渐小的减速运动V1=V2I = 0无外力不等距式» 1杆1做a渐小的减速运动杆2做a渐小的加速运动a= 0I = 0L1V1 = L2V2四、有外力双棒问题题型一阻尼式单棒模型如图。

1 •电路特点:导体棒相当于电源。

4.运动特点:速度如图所示。

a减小的减速运动基本模型运动特点有外力等距式i厂F12杆1做a渐大的加速运动杆2做a渐小的加速运动有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动最终特征a i=a2, A v 恒定I恒定a i M a2, a i、a2恒定I恒定2•安培力的特点:安培力为阻力,并随速度减小而减小。

F B=BII= B+r3.加速度特点:加速度随速度减小而减小,a==5 •最终状态:静止 6.三个规律(1)能量关系:「'• ■ , -0 = Q ,=【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为 L 的区域内,那么(【答案】B由上述二式可得' ,- •,即B 选项正确。

【典例2】如图所示,AB 杆受一冲量作用后以初速度 V 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止. AB 的质量为m=5g 导轨宽为L=0.4m ,电阻为R=2Q ,其余的电阻不计,磁 感强度B=0.5T ,棒和导轨间的动摩擦因数为卩=0.4 ,测得杆从运动到停止的过程中通过导线的(2)动量关系:BII t 0 mv 0(3)瞬时加速度: a ==-有一个边长为a ( a<L )的正方形闭合线圈以初速V 0垂直磁场边界滑过磁场后速度变为V ( V<V 0)A. 完全进入磁场中时线圈的速度大于( v o +v ) /2B. 安全进入磁场中时线圈的速度等于( V o +V ) /2C. 完全进入磁场中时线圈的速度小于(V o +V ) /2D. 以上情况A B 均有可能,而C 是不可能的【解析】设线圈完全进入磁场中时的速度为对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:V x 。

电磁感应中的导轨模型

电磁感应中的导轨模型
(1)两棒都受外力作用(2)外力提供方式变化
无外力不等距式
1.电路特点棒 1 相当于电源;棒 2 受安培力而加 速起动,运动后产生反电动势.
2.电流特点随着棒 1 的减速、棒 2 的加速,最终当 Bl1v1=Bl2v2 时,电
流为零,两棒都做匀速运动
3.两棒的运动情况
安培力大
小:
两棒的相对速度变小,感应电流变小,安培力变小. 棒 1 做加速度变小的减速运动,最终匀速;棒 2 做加速度变小的 加速运动,最终匀速; 4.最终特征回路B中l1v电1 流B为l2v零2 5.能量转化规律系统动能电能内能 两棒产生焦耳热之比: 6.流过某一截面的电量
3.加速度特点加速度随速度减小而减小 a FB B2l2v
v0
m m(R r)
4.运动特点 a 减小的减速运动
5.最终状态静止
6.三个规律 (1)能量关系:
1 2
mv02
0
Q
(2)动量关系: BIl t 0 mv0
q mv0 Bl
(3)瞬时加速度: a FB B2l2v m m(R r)
电容有外力充电式
1.电路特点导体棒为发电棒;电容器被充电。
2.三个基本关系
FB BIl
导体棒受到的安培力为: a F FB m
导体棒加速度可表示为:
回路中的电流可表示为:
3.四个重要结论: (1)导体棒做初速度为零匀加速运动:
a
m
mg CB2L2
(2)回路中的电流恒定:
I
CBlmg mg CB2l 2
4.运动特点 a 减小的加速运动
5.最终特征匀速运动
6.两个极值
am
F
mg m
(1)v=0 时,有最大加速度:

2025高考物理总复习电磁感应中的“杆—轨道”模型

2025高考物理总复习电磁感应中的“杆—轨道”模型
图2
解析 设导轨间距为 L,释放后电容器充电,电路中有充电电 流 i,棒受到向上的安培力,设瞬时加速度为 a,根据牛顿第二 定律得 mg-iLB=ma,i=ΔΔQt =C·ΔΔtU=C·BΔLtΔv=CBLa,由此 得 mg-BL·CBLa=ma,解得 a=m+mBg2L2C,可见棒的加速度 不变,做匀加速直线运动,v=at,Uab=BLv=BLat,故 A、C 错误;Ek=21mv2=12m×2ax,故 B 正确;q=CUab=BCLat,与时间成正比,而 棒做匀加速运动,故与位移不是正比关系,故 D 错误。
加速运动,稳定时,两杆的加速 变加速运动,稳定时,两杆的
度均为零,以相等的速度做匀速 加速度均为零,两杆的速度之
运动
比为1∶2
2.初速度为零,一杆受到恒定水平外力 光滑的平行导轨
不光滑平行导轨
示 意 质量m1=m2 图 电阻r1=r2
长度L1=L2
摩擦力Ff1=Ff2 质量m1=m2 电阻r1=r2 长度L1=L2
析 v↓⇒F↓⇒a↓,当 v=0 速度 a↓,当 E 感= -F 安=ma 知 a↓, 安培力 F 安=ILB=CB2L2a
时,F=0,a=0,杆保 持静止
E 时,v 最大,且 vm =BEL
当 a=0 时,v 最大, F-F
vm=BF2RL2
安=ma,a=m+BF2L2C,所以杆
以恒定的加速度做匀加速运动
第十一章 电磁感应
增分微点10 电磁感应中的“杆—轨道”模型
一、“单杆+导轨”模型 “单杆+导轨”模型的四种典型情况(不计单杆的电阻)
v0≠0、 轨道水平光滑
示 意 图
v0=0、轨道水平光滑
运 动 分
导体杆以速度 v 切割磁

9-07-物理建模:电磁感应中的“杆+导轨”模型

9-07-物理建模:电磁感应中的“杆+导轨”模型

2017版高三一轮物理教学实用课件
第3页
返回目录
结束放映
二、模型分类及特点 Ⅰ.单杆水平式
物理 模型
F 设运动过程中某时刻棒的速度为 v,加速度为 a=m- B2L2v mR ,a、v 同向,随 v 的增加,a 减小,当 a=0 时,v BLv 最大,I= R 恒定
动态 分析
运动形式 收尾 状态 力学特征 电学特征
2017版高三一轮物理教学实用课件
第20页
转解析
返回目录 结束放映
5.真题演练
2017版高三一轮物理教学实用课件
第22页
返回目录
结束放映
【真题】 (2012· 山东卷· 20)如图示,相距为L的两条足够长的光滑 平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场 垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放, 当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向 下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运 动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电 阻,重力加速度为g.下列选项正确的是( ). A.P=2mgvsin θ B.P=3mgvsin θ C.当导体棒速度达到时加速 度大小为sin θ D.在速度达到2v以后匀速运 动的过程中,R上产生的焦耳 热等于拉力所做的功
2017版高三一轮物理教学实用课件
第4页
匀速直线运动
a= 0 v 最大 vm= FR B2L2
I 恒定
返回目录 结束放映
Ⅱ.单杆倾斜式
物理 模型 棒 释 放 后 下 滑 , 此 时 a = gsin α, 速 度 v↑→E = E BLv↑→I = R ↑→F = BIL↑→a↓, 当 安 培 力 F = mgsin α 时,a=0,v 最大 运动形式 匀速直线运动 mgRsin α 力学特征 a=0 v 最大 vm= B2L2 电学特征 I 恒定

(完整版)电磁感应定律——单杆+导轨模型(含思路分析)

(完整版)电磁感应定律——单杆+导轨模型(含思路分析)

“单杆+导轨”模型1. 单杆水平式(导轨光滑) 物理模型动态分析 设运动过程中某时刻棒的速度为v ,加速度为a =F m -错误!,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,I =错误!恒定收尾状态 运动形式 匀速直线运动力学特征 a =0,v 最大,v m =错误! (根据F=F 安推出,因为匀速运动,受力平衡)电学特征I 恒定注:加速度a 的推导,a=F 合/m (牛顿第二定律),F 合=F —F 安,F 安=BIL ,I=E/R整合一下即可得到答案。

v 变大之后,根据 上面得到的a 的表达式,就能推出a 变小这里要注意,虽然加速度变小,但是只要和v 同向,就是加速运动,是a 减小的加速运动(也就是速度增加的越来越慢,比如1s 末速度是1,2s 末是5,3s 末是6,4s 末是6。

1 ,每秒钟速度的增加量都是在变小的)2。

单杆倾斜式(导轨光滑)物理模型动态分析 棒释放后下滑,此时a =g sin α,速度v ↑E=BLv↑I=错误!↑错误!F=BIL↑错误!a↓,当安培力F=mg sin α时,a=0,v最大注:棒刚释放时,速度为0,所以只受到重力和支持力,合力为mgsin α收尾状态运动形式匀速直线运动力学特征a=0,v最大,v m=错误!(根据F=F安推出)电学特征I恒定【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L=1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m=0。

1 kg,空间存在磁感应强度B=0。

5 T、竖直向下的匀强磁场。

连接在导轨左端的电阻R=3.0 Ω,金属杆的电阻r=1。

0 Ω,其余部分电阻不计。

某时刻给金属杆一个水平向右的恒力F,金属杆P由静止开始运动,图乙是金属杆P运动过程的v-t图象,导轨与金属杆间的动摩擦因数μ=0.5。

在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3∶5。

电磁感应导棒-导轨模型

电磁感应导棒-导轨模型

电磁感应“导棒-导轨”问题专题
一、“单棒”模型
【破解策略】单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:
(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t
∆Φ
=∆或E BLv =求感
应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。

(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。

<1>单棒基本型
(阻尼式)
(电动式)
(发电式)
<2>单棒模型变形
二、“双棒”模型
三、“电容”式单棒模型。

电磁感应导棒-导轨模型

电磁感应导棒-导轨模型

电磁感应“导棒-导轨”问题专题
一、“单棒”模型
【破解策略】单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:
(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t
∆Φ
=∆或E BLv =求感应动
(3)(阻尼式)
单杆ab 以一定初速度0
v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L
(电动式)
轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L (发电式) 导体杆以速度v 切割磁S 闭合,ab 杆受安培力
<2>单棒模型变形
二、“双棒”模型。

物理建模-10.电磁感应中的“杆+导轨”模型

物理建模-10.电磁感应中的“杆+导轨”模型

物理建模10.电磁感应中的“杆+导轨”模型模型构建“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等.模型分类及特点1.单杆水平式F B2L2vE解决电磁感应中综合问题的一般思路是“先电后力再能量”.【典例】图9-2-13(2013·安徽卷,16)如图9-2-13所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)().A.2.5 m/s 1 W B.5 m/s 1 WC.7.5 m/s9 W D.15 m/s9 W解析导体棒MN匀速下滑时受力如图所示,由平衡条件可得F安+μmg cos θ=mg sin θ,所以F安=mg(sin θ-μcos θ)=0.4 N,由F安=BIL得I=F安BL=1 A,所以E=I(R灯+R MN)=2 V,导体棒的运动速度v=EBL=5 m/s,小灯泡消耗的电功率为P灯=I2R灯=1 W.正确选项为B.答案 B图9-2-14即学即练如图9-2-14所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m 的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM ′、NN ′保持良好接触.当ab 运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10 m/s 2. (1)求框架开始运动时ab 速度v 的大小;(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q =0.1 J ,求该过程ab 位移x 的大小.解析 (1)ab 对框架的压力,F 1=m 1g ① 框架受水平面的支持力,F N =m 2g +F 1②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力,F 2=μF N ③ ab 中的感应电动势,E =Bl v ④ MN 中电流,I =ER 1+R 2⑤ MN 受到的安培力,F 安=IlB ⑥ 框架开始运动时,F 安=F 2⑦由上述各式代入数据解得,v =6 m/s ⑧ (2)闭合回路中产生的总热量,Q 总=R 1+R 2R 2Q ⑨ 由能量守恒定律,得,Fx =12m 1v 2+Q 总⑩代入数据解得x =1.1 m 答案 (1)6 m/s (2)1.1 m附:对应高考题组(PPT 课件文本,见教师用书)1.(2011·北京理综,19)某同学为了验证断电自感现象,自己找来带铁芯的线圈L 、小灯泡A 、开关S 和电池组E ,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S ,小灯泡发光;再断开开关S ,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是( ).A .电源的内阻较大B .小灯泡电阻偏大C .线圈电阻偏大D .线圈的自感系数较大解析 由自感规律可知在开关断开的瞬间造成灯泡闪亮以及延时的原因是在线圈中产生了与原电流同向的自感电流且大于稳定时通过灯泡的原电流.由题图可知灯泡和线圈构成闭合的自感回路,与电源无关,故A 错误;造成不闪亮的原因是自感电流不大于稳定时通过灯泡的原电流,当线圈电阻小于灯泡电阻时才会出现闪亮现象,故B 错误,C 正确;自感系数越大,则产生的自感电流越大,灯泡更亮,故D 错误. 答案C2.(2012·课标全国,19)如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt 的大小应为( ).A.4ωB 0π B.2ωB 0π C.ωB 0π D.ωB 02π解析 当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I 1=E R =ΔΦR Δt =B 0ΔS R Δt =12πr 2B 0R πω=B 0r 2ω2R 当线框不动,磁感应强度变化时,I 2=E R =ΔΦR Δt=ΔBS R Δt =ΔB πr 22R Δt ,因I 1=I 2,可得ΔB Δt =ωB 0π,C 选项正确. 答案 C3.(2012·四川理综,20)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B .直杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O 开始,直杆的位置由θ确定,如图所示.则( ).A .θ=0时,直杆产生的电动势为2Ba vB .θ=π3时,直杆产生的电动势为3Ba vC .θ=0时,直杆受的安培力大小为2B 2a v(π+2)R 0D .θ=π3时,直杆受的安培力大小为3B 2a v(5π+3)R 0解析 当θ=0时,直杆切割磁感线的有效长度l 1=2a ,所以直杆产生的电动势E 1=Bl 1v =2Ba v ,选项A 正确.此时直杆上的电流I 1=E 1(πa +2a )R 0=2B v(π+2)R 0,直杆受到的安培力大小F 1=BI 1l 1=4B 2a v (π+2)R 0,选项C 错误.当θ=π3时,直杆切割磁感线的有效长度l 2=2a cos π3=a ,直杆产生的电动势E 2=Bl 2v =Ba v ,选项B错误.此时直杆上的电流I 2=E 2⎝ ⎛⎭⎪⎫2πa -2πa 6+a R 0=3B v(5π+3)R 0,直杆受到的安培力大小F 2=BI 2l 2=3B 2a v(5π+3)R 0,选项D 正确.答案AD4.(2012·山东卷,20)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ). A .P =2mg v sin θ B .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 解析 导体棒由静止释放,速度达到v 时,回路中的电流为I ,则根据平衡条件,有mg sin θ=BIL .对导体棒施加一平行于导轨向下的拉力,以2v 的速度匀速运动时,则回路中的电流为2I ,有F +mg sin θ=2BIL ,所以拉力F =mg sin θ,拉力的功率P =F 2v =2mg v sin θ,故选项A 正确、选项B 错误;当导体棒的速度达到v2时,回路中的电流为I 2,根据牛顿第二定律,得mg sin θ-B I 2L =ma ,解得a =g2sin θ,选项C 正确;当导体棒以2v 的速度匀速运动时,根据能量守恒定律,重力和拉力所做的功之和等于R 上产生的焦耳热,故选项D 错误. 答案 AC5.(2012·广东理综,35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板.R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v .(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .解析 (1)导体棒匀速下滑时,Mg sin θ=BIl ① I =Mg sin θBl②设导体棒产生的感应电动势为E 0,E 0=Bl v ③ 由闭合电路欧姆定律得:I =E 0R +R x④ 联立②③④,得v =2MgR sin θB 2l 2⑤(2)改变R x ,由②式可知电流不变.设带电微粒在金属板间匀速通过时,板间电压为U ,电场强度大小为E U =IR x ⑥ E =U d ⑦mg =qE ⑧联立②⑥⑦⑧,得R x =mldBMq sin θ⑨答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mldBMq sin θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“单杆+导轨”模型
1. 单杆水平式(导轨光滑)
注:加速度a的推导,a=F
合/m(牛顿第二定律),F

=F-F

,F

=BIL,I=E/R
整合一下即可得到答案。

v变大之后,根据上面得到的a的表达式,就能推出a变小
这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1,2s末是5,3s末是6,4s末是6.1 ,每秒钟速度的增加量都是在变小的)
2.单杆倾斜式(导轨光滑)
mg
最大
【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L =1.0 m ,导轨上放有垂直导轨的金属杆P ,金属杆质量为m =0.1 kg ,空间存在磁感应强度B =0.5 T 、竖直向下的匀强磁场。

连接在导轨左端的电阻R =3.0 Ω,金属杆的电阻r =1.0 Ω,其余部分电阻不计。

某时刻给金属杆一个水平向右的恒力F ,金属杆P 由静止开始运动,图乙是金属杆P 运动过程的v -t 图象,导轨与金属杆间的动摩擦因数μ=0.5。

在金属杆P 运动的过程中,第一个2 s 内通过金属杆P 的电荷量与第二个2 s 内通过P 的电荷量之比为3∶5。

g 取10 m/s 2。

求:
(1)水平恒力F 的大小;
(2)前4 s 内电阻R 上产生的热量。

【答案】 (1)0.75 N (2)1.8 J
【解析】 (1)由图乙可知金属杆P 先做加速度减小的加速运动,2 s 后做匀速直线运动
当t =2 s 时,v =4 m/s ,此时感应电动势E =BLv
感应电流I =
E R +r
安培力F ′=BIL =B 2L 2v R +r 根据牛顿运动定律有F -F ′-μmg =0
解得F =0.75 N 。

前4 s内由能量守恒定律得
F(x1+x2)=1
2mv
2+μmg(x
1
+x2)+Q r+Q R
其中Q r∶Q R=r∶R=1∶3
解得Q R=1.8 J。

注:第二问的思路分析,要求R上产生的热量,就是焦耳热,首先想到的是公式Q=I2Rt,但是在这里,前2s的运动过程中,I是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样),所以这个思路行不通。

焦耳热本身也是一种能量,直接用公式求不出来,就应该用能量转化的方式分析,也就是动能定理,能量守恒之类的,解析里用的就是能量守恒,F对这个系统做的功转化为了系统的能量,包括动能和热能,热能分焦耳热和摩擦生热,焦耳热Q就是电阻上产生的热量(电流做功),摩擦生热对应摩擦力做功。

即可列式
F(x1+x2)=1
2mv
2+μmg(x
1
+x2)+Q r+Q R
其中Q r∶Q R=r∶R=1∶3
这时候会发现位移X是不知道的,此时发现还有电荷量那个条件没有用到,肯定所有条件都是有用的,所以就写一下电荷量表达式,应该就能够推导到位移上去
q=>磁通量变化量BS=>由S=长✖宽=>位移
这就是基本的思路,基本上在这类题目里出现求焦耳热的,都是利用能量的方式,肯定就要求做功,因为功能是直接关联的嘛,而如果此时题目条件里有电荷量q 的话,就是通过转化来求位移x的,这是目前常见的考查方式,下面斜面上的题目,和这道题分析是类似的,可以练习一下。

【典例2】如图所示,MN、PQ是间距l为0.5 m的足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ为37°,NQ间连接有一个R为4 Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度B0为1 T.将一根质量m为0.05 kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电荷量q为0.2 C,且金属棒的加速度a与速度v 的关系如图所示,设金属棒沿导轨向下运动过程中始终与NQ平行.求:
(1)金属棒与导轨间的动摩擦因数μ;
(2)cd离NQ的距离x;
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量.(sin 37°=0.6,cos 37°=0.8.g取10 m/s2)
【答案】(1)0.5(2)2m(3)0.08J
【解析】
(1)由乙图知,当v=0时,a=2m/s2.由牛顿第二定律得:
mgsinθ﹣μmgcosθ=ma
代入数据解得:μ=0.5
稳定时金属棒做匀速运动,受力平衡,可得:mgsinθ=F A+μmgcosθ代入数据解得:r=1Ω
在此过程中通过金属棒截面的电量为:
又磁通量的变化量为:△Φ=B0L•s
代入数据解得:s=2m
(3)棒下滑的过程中重力、摩擦力与安培力做功,得:
mgh﹣μmgs•cos37°﹣W F=mv m2﹣0
=W F;
回路中产生的总焦耳热为:Q

电阻R上产生的热量为:Q R=Q总;
代入数据得:Q R=0.08J----1分。

相关文档
最新文档