第三章:三角恒等变换中角变换的技巧.

合集下载

三角恒等变换与解题技巧

三角恒等变换与解题技巧

三角恒等变换与解题技巧三角函数是数学中重要的一部分,与几何、物理等学科密切相关。

在解三角函数的问题时,常常需要运用恒等变换来简化计算或将复杂的式子转化为简单的形式。

恒等变换是指在等式两边同时做相同的运算而不改变等式的值。

掌握常用的三角恒等变换并灵活运用是解题的关键。

本文将介绍一些常用的三角恒等变换,并分享一些解题技巧。

一、正弦、余弦、正切的恒等变换1. 余切的逆关系根据余切的定义,我们知道cot(A)等于tan(A)的倒数,即cot(A) = 1 / tan(A)。

这是一个重要的恒等变换,在简化复杂式子、证明等题目中经常会用到。

2. 三角函数的平方和恒等式sin^2(A) + cos^2(A) = 1这是三角函数最基本的恒等式之一,也是勾股定理的三角形形式。

该恒等式可以用来将一个三角函数转化为其他三角函数的形式。

3. 正切的平方和恒等式1 + tan^2(A) = sec^2(A)这是正切函数的平方和恒等式,也是解析几何中的一条重要公式。

运用该恒等式可以将一个正切函数的式子转化为其他三角函数的式子。

4. 余切的平方和恒等式1 + cot^2(A) = csc^2(A)这是余切函数的平方和恒等式,与正切的平方和恒等式相对应。

在解题时运用该恒等式可以将一个余切函数的式子转化为其他三角函数的式子。

二、两角和与差的恒等变换1. 正弦的两角和与差sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这是正弦函数的两角和与差公式,可以通过将两个三角函数用另外两个三角函数来表示。

在解题时,可以通过将复杂的三角函数式子转化为正弦函数的形式来简化计算。

2. 余弦的两角和与差cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)这是余弦函数的两角和与差公式,与正弦的两角和与差公式相似。

在解题时,也可以通过转化为余弦函数的形式来简化计算。

高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧

高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧

高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧在高中数学中,三角函数是一个非常重要的概念。

通过恒等变换,我们可以简化复杂的三角式子,使其更易于计算和理解。

本文将介绍一些常用的三角恒等变换以及利用恒等变换简化复杂三角式子的技巧。

一、基本恒等变换1. 正弦函数的基本恒等变换正弦函数的基本恒等变换包括:sin²θ + cos²θ = 1sin(90° - θ) = cosθsin(-θ) = -sinθsin(180° - θ) = sinθ2. 余弦函数的基本恒等变换余弦函数的基本恒等变换包括:cos²θ + sin²θ = 1cos(90° - θ) = sinθcos(-θ) = cosθcos(180° - θ) = -cosθ3. 正切函数的基本恒等变换正切函数的基本恒等变换包括:tanθ = sinθ/cosθtan(-θ) = -tanθtan(π/2 - θ) = 1/tanθtan(π + θ) = tanθ二、常用恒等变换1. 二倍角恒等变换二倍角恒等变换可以将一个角的正弦、余弦、正切函数转化为两倍角的正弦、余弦、正切函数。

常用的二倍角恒等变换包括:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ/1 - tan²θ2. 和差角恒等变换和差角恒等变换可以将两个角的正弦、余弦、正切函数转化为一个角的正弦、余弦、正切函数。

常用的和差角恒等变换包括:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)三、利用恒等变换简化复杂三角式子的技巧1. 利用二倍角恒等变换当我们遇到一个三角函数中带有角度为θ的复杂式子时,可以尝试使用二倍角恒等变换将其转化为两倍角的三角函数。

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧三角恒等变换是指一系列三角函数的等价关系,通过这些等价关系,可以将复杂的三角函数表达式简化为简单的形式,从而更容易进行求解和计算。

在解三角函数方程、化简三角函数表达式、证明三角恒等式等问题中,三角恒等变换技巧是非常重要的。

1.基本恒等式:基本恒等式是指最基本的三角函数之间的等价关系,包括正弦函数、余弦函数和正切函数。

(1)正弦函数的基本恒等式:sin²θ + cos²θ = 1sin(-θ) = -sinθsin(π/2 - θ) = cosθsin(π/2 + θ) = cosθsin(π - θ) = sinθsin(π + θ) = -sinθsin(2θ) = 2sinθcosθ(2)余弦函数的基本恒等式:cos²θ + sin²θ = 1cos(-θ) = cosθcos(π/2 - θ) = sinθcos(π/2 + θ) = -sinθcos(π - θ) = -cosθcos(π + θ) = -cosθcos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ(3)正切函数的基本恒等式:ta nθ = sinθ/cosθtan(-θ) = -tanθtan(π/2 - θ) = 1/tanθtan(π/2 + θ) = -1/tanθtan(π - θ) = -tanθtan(π + θ) = tanθtan(2θ) = 2tanθ/(1 - tan²θ)2.和差角公式:和差角公式是指可以将两个三角函数的和、差转化为一个三角函数的等价关系。

(1)正弦函数的和差角公式:sin(α ± β) = sinαcosβ ± cosαsinβ(2)余弦函数的和差角公式:cos(α ±β) = cosαcosβ ∓ sinαsinβ(3)正切函数的和差角公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)3.二倍角公式:二倍角公式是指可以将一个三角函数的二倍角转化为一个三角函数的等价关系。

进行三角恒等变换的三个技巧

进行三角恒等变换的三个技巧

解题宝典在解答三角函数问题时,经常需对三角函数式进行三角恒等变换,这就要求同学们熟练掌握一些进行三角恒等变换的技巧,以便能顺利化简三角函数式、求出三角函数式的值.那么怎样合理进行三角恒等变换呢?可以从以下三个方面进行.一、变换角当进行三角恒等变换时,首先要仔细观察已知角和所求角之间的差别,并建立两角之间的联系,如互余、互补、半角、倍角等,然后利用诱导公式、二倍角公式、两角的和差公式等求解.在进行角的变换时,还可将已知角、所求角与特殊角,如π6、π4、π3等建立联系,然后利用这些特殊角的函数值进行求解.例1.已知cos æèöøα+π4=35,π2≤α<3π2,求cos(2α+π4)的值.分析:先观察题目中的角可发现,已知角α+π4与所要求的角2α+π4之间相差一个α,可以找到一个关系:2æèöøα+π4−π4=2α+π4,用二倍角公式和诱导公式求出sin 2æèöøα+π4和cos 2æèöøα+π4的值,最后根据余弦的两角和公式cos ()α−β=cos α∙cos β+sin α∙sin β求出cos æèöø2α+π4的值.解:由于π2≤α<3π2,所以3π4≤α+π4<7π4,又因为cos æèöøα+π4=35>0,可知3π2≤α+π4<7π4,因此sin æèöøα+π4=−45,所以sin 2æèöøα+π4=2sin æèöøα+π4cos æèöøα+π4=−2425,cos 2æèöøα+π4=2cos 2æèöøα+π4−1=−725,因此cos æèöø2α+π4=cos éëêùûú2æèöøα+π4−π4=cos 2æèöøα+π4cos π4+sin 2æèöøα+π4sin π4=.二、变换函数名称有些三角函数式中的函数名称并不相同,此时,我们需变换函数的名称,如将正切、余切转化为正弦、余弦,将正弦化为余弦,将余弦化为正弦,等等,以达到统一函数名称的目的.在变换函数名称的过程中,常用到的公式有诱导公式sin ()2k π+α=sin α()k ∈Z 、cos ()2k π+α=cos α()k ∈Z 、tan ()2k π+α=tan α(k ∈Z),重要关系式tan α=sin αcos α、sin 2α+cos 2α=1、辅助角公式a sin α+b cos α=a 2+b 2sin (α+φ)等.例2.化简2cos 2α−12tan æèöøπ4−αsin 2æèöøπ4+α.分析:这个式子中既含有正切函数也有正弦、余弦函数,我们第一步就是要想办法将正切函数转变为正弦函数.观察式子中角的特点,可发现æèöøπ4−α+æèöøπ4+α=π2,根据角的特征,可以利用诱导公式将函数式转化成函数名称一致的式子.解:原式=cos 2α2sin æèöøπ4−αcos æèöøπ4−αsin 2éëêùûúπ2−æèöøπ4−α=cos 2α2sin æèöøπ4−αcos æèöøπ4−α=cos 2αsin æèöøπ2−2α=1.三、变换幂的次数有些三角函数式中幂的次数不相同,此时,我们要对其作升幂或者降幂处理,以便使函数式中的次数相同.“升幂”可以通过二倍角公式cos 2α=cos 2α−sin 2α=2cos 2α−1=1−2sin 2α、tan 2α=2tan α1−tan 2α来实现,“降幂”可以通过二倍角公式sin 2α=2sin αcos α及变形式sin 2α=1−cos 2α2,cos 2α=1+cos 2α2.sin 2α=1−cos 2α2,cos 2α=1+cos 2α2来达到目的.例3.已知tan α=−13,求sin α−cos 2α1+cos 2α的值.分析:由于已知tan α=−13,目标式中含有正弦函数和余弦函数,且含有二次式,可以先利用二倍角公式把2α转变为α,使幂的次数统一,即将所求的式子转化为关于sin α、cos α的齐次式,然后依据tan α=sin αcos α,将目标式中的分子、分母同时除以cos 2α,得到只含有tan α的分式,将tan α=−13代入求解即可得到答案.解:原式=2sin αcos α−cos 2α2cos 2α=2sin α−cos α2cos α=tan α−12=−56.总而言之,在进行三角恒等变换时最重要的就是要做到“变异为同”,灵活使用各种三角函数公式,将角、函数名称、幂的次数不同的式子转化为角、函数名称、次数相同的式子.在解题的过程中,同学们要熟记各种三角函数公式,并灵活使用,根据角、函数名称、幂的特点合理进行变换,以实现“变异为同”.(作者单位:山东省聊城第一中学)41Copyright©博看网 . All Rights Reserved.。

三角恒等变换的方法与技巧

三角恒等变换的方法与技巧

三角恒等变换的方法与技巧三角恒等变换是三角函数中的主要部分,是培养学生等价转化与化归思想、逻辑思维能力、知识的联系性与灵活性的重要内容。

下面举例说明三角恒等变换的方法与技巧。

一、变角角是研究三角函数问题的切入点.若表达式中出现了较多相异的角,必须对比分析变换对象与变换目标,其余的角都朝目标角转化.这是三角变换最基本的策略。

例1.已知cos(α-■)=-■,sin(■-β)=■(■<α<π,0<β<■)求cos(α+β)的值解析:由已知得■ <α-■<π,-■<■-β<■∴sin(α-■)=■,cos(■-β)=■∴cos■=cos[(α-■)-(■-β)]=cos(α-■)cos(■-β)+sin(α-■)sin(■-β)=-■∴cos(α+β)=2cos2■-1=-■点评:(α-■)-(■-β)=■ α+β=2·■注意角的拼凑、拆分,倍、半的相对性。

二、变函数名称若表达式中函数种类较多,变形困难,应尽量减少函数种类.这是恒等变换的又一策略。

例2.已知锐角α,β满足tan(α-β)=sin2β,求证:2tan2β=tanα+tanβ解析:∵sin2β=■∴■= ■t anα=■∴tanα+tanβ=■=2tan2β点评:弦化切,同一为切,正用、逆用公式.三、变结构对较复杂的表达式,一般先变形结论,再寻找由条件得到的有用结论,合理选择公式,建立差异间联系,解决问题。

例3.已知cos(■+x)=■,■<x<■,求■的值解析:■=■=■= 2sinxcosx·■=2sinxcosx·tan(■+x)由■<x<■得■<x+■<2π,又cos(■+x)=■∴sin(■+x)=-■,tan(■+x)=-■cosx=cos[(■+x)-■]=-■,sinx=-■∴■=-■点评:在综合变角、变名的基础上,首先对所求复杂式子结构恒等变形,再结合已知条件,寻找目标。

三角恒等变换的常用技巧

三角恒等变换的常用技巧

三角恒等变换的常用技巧1.三角函数的互余关系三角函数的互余关系是指正弦函数与余弦函数之间、正切函数与余切函数之间存在一种关系,即sin(x) = cos(π/2 - x),cos(x) =sin(π/2 - x),tan(x) = cot(π/2 - x),cot(x) = tan(π/2 - x)。

利用这个关系,可以将一个三角函数用另一个三角函数表示,从而简化计算。

2.三角函数的辅助角公式三角函数的辅助角公式是指通过引入辅助角,使得原函数形式得到简化或变形的运算方法。

常见的辅助角公式包括:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = (2tan(x))/(1 - tan^2(x))利用辅助角公式,可以将一个三角函数表达式化简为另一个形式,从而方便计算。

3.和差角公式和差角公式是指将两个角的三角函数的和或差,表示为一个三角函数乘积的展开公式。

常见的和差角公式包括:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))通过和差角公式,可以将一个复杂的三角函数表达式展开为两个简单的三角函数表达式的和或差,方便进一步计算。

4.二倍角公式二倍角公式是指将一个角的三角函数的平方形式化简为另一个角的三角函数表达式的公式。

常见的二倍角公式包括:sin^2(x) = (1 - cos(2x))/2cos^2(x) = (1 + cos(2x))/2tan^2(x) = (1 - cos(2x))/(1 + cos(2x))通过二倍角公式,可以将一个角的三角函数平方形式化简为另一个角的三角函数的表达式,使得计算更加简化。

三角恒等变换解题技巧

三角恒等变换解题技巧

三角恒等变换解题技巧
三角恒等变的换解题技巧:
三角恒等变换以三角函数基本关系、诱导公式、两角和与差的三角函数公式,倍角公式、半角公式等三角公式为基础。

解题思想是根据试题特点,灵活运用三角公式,使用配凑角、切化弦、降次或升幂等技巧,达到解决问题的目的.三角函数公式众多,方法灵活多变,同学们若能熟练掌握三角函数变换的技巧和化简的方法,可达到事半功倍的效果。

在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(αβ)-β;2α可变为(αβ)(α-β);2α-β可变为(α-β)α;α可视为α/2的倍角等等。

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。

本文将总结常用的三角恒等变换公式,并介绍其应用技巧。

一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。

进行三角恒等变换的技巧

进行三角恒等变换的技巧

思路探寻步骤,不管是求三角函数的值、证明某个结论,都需要进行三角恒等变换.些进行三角恒等变换的技巧是很有必要的.角恒等变换主要是对三角函数式中的角、幂、常数进行变换.下面,三角变换的一些技巧.一、对角进行变换若题设中含有多个不同的角,换,建立已知角与所求角的之间的联系,用诱导公式、两角和差的正余弦公式、将已知角逐步朝着所求角靠拢.同时,角的范围和三角函数值,角函数值.例1.若cos(α-β)=-45,cos(α+β)=1213π),α+β∈(3π2,2π),求cos 2α的值.解析:观察所求角和已知角的差异,系2α=(α+β)+(α-β).和的余弦公式进行三角恒等变换.解:cos 2α=cos[(α+β)+(α-β)]=cos(α-β)cos(α-β)-sin(α+β)sin(α-β)又α-β∈(π2,π),α+β∈(3π2,2π),由已知易得sin(α-β)=35,sin(α+β)=-315代入上式可得cos 2α=-3365.二、对函数名称进行变换我们需要对函数的名称进行变换,同角的三角函数关系式:cos 2α+sin 2α=1、tan 二倍角公式、有“切化弦”或“弦化切”.例2.若3sin α+cos α=0,求cos 2解析:由于3sin α+cos α=0,可得tan α么我们需利用关系式sin2α+cos 2α=1和tan αcos 2α+sin2α用tan α表示出来.解:cos 2α+sin2α=cos 2α+sin 2αcos 2α+sin 2α,将上式的分子、分母同时除以cos 2α,得.三、对幂进行变换有些函数式中幂的次数不统一,一般需将高次的幂变换为低次的幂.常用到的公式有cos2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、cos 2α+sin 2α=1.例3.已知sinα-cosα=12,求sin 3α-cos 3α的值.解析:由于已知式与目标式的次数存在较大的差异,将目标式降次是首要任务.可利用cos 2α=2cos 2α-1=1-2sin 2α和cos 2α+sin 2α=1来进行变换.解:因为(sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α,所以sin αcos α=38,故sin 3α-cos 3α=(sin α-cos α)(sin 2α+cos 2α+sin αcos α)=(sin α-cos α)(1+sin αcos α)=12×(1+38)=1116.四、对常数进行变换对常数进行变换是进行三角恒等变换的常用技巧.常见的变换有1=cos 2α+sin 2α、sin30°=12、sin45°=、sin60°=、sin90°=tan45°=1.这样通过对常数进行变换,可将三角函数式转化为可利用公式进行化简的式子.例4.已知cos α=-13,α是第二象限角,且sin(α+β)=1,求cos(2α+β)的值.解:由cos α=-13,且α是第二象限角,可得sin α=,由于sin(α+β)=1,所以α+β=2k π+π2(k ∈Z ),故cos (2α+β)=cos[(α+β)+α]=cos (2k π+π2+α)=cos (π2+α)=-sin α=-.因为已知条件sin(α+β)=1比较特殊,所以可直接求出α+β的值,将其整体代入求解,便把复杂的三角求值问题变为求特殊角的值的问题.此解法与常规方法不同,但效果很好.总之,进行三角函数恒等变换,需要仔细分析三角函数式的结构特点,选择恰当的公式将三角函数式化成单角、项数尽可能少、次数尽可能低、结构尽可能简单的三角函数式,这样便能快速求得问题的答案.(作者单位:福建省龙岩市长汀县第一中学)Copyright©博看网 . All Rights Reserved.。

常用三角恒等变换技巧(师)

常用三角恒等变换技巧(师)

常用三角恒等变换技巧(师)常用三角恒等变换技巧解答三角函数问题,几乎都要通过恒等变换将复杂问题简单化,将隐性问题明朗化。

三角恒等变换的公式很多,主要有“同角三角函数的基本关系”、“诱导公式”、“和、差、倍、半角公式”、“辅助角公式(化一公式)”等,这些公式间一般都存在三种差异,如角的差异、函数名的差异和运算种类的差异,只有灵活有序地整合使用这些公式,消除差异、化异为同,才能得心应手地解决问题,这是三角问题的特点。

下面从九个方面解读三角恒等变换的常用技巧。

一、“角变换”技巧角变换的基本思想是,观察发现问题中出现的角之间的数量关系,把“未知角”分解成“已知角”的“和、差、倍、半角”,然后运用相应的公式求解。

例1 已知534cos =⎪⎭⎫ ⎝⎛+πx ,4743ππ<<x ,求xxx tan 1sin 22sin 2-+的值。

【分析】考虑到“已知角”是4π+x ,而“未知角”是x 和x 2,注意到44ππ-⎪⎭⎫ ⎝⎛+=x x ,可直接运用相关公式求出x sin 和x cos 。

【简解】因为ππ4743<<x ,所以πππ24<+<x , 又因为534cos >=⎪⎭⎫ ⎝⎛+πx ,所以πππ2423<+<x ,544sin -=⎪⎭⎫ ⎝⎛+πx10274sin 4cos 4cos 4sin 44sin sin -=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=ππππππx x x x ,从而102cos -=x ,7tan =x . 原式=7528tan 1sin 2cos sin 22-=-+x x x x .【反思】(1)若先计算出102cos -=x ,则在计算x sin 时,要注意符号的选取;(2)本题的另一种自然的思路是,从已知出发,用和角公式展开,结合“平方关系”通过解二元二次方程组求出x sin 和x cos . 但很繁琐,易出现计算错误;(3)本题也可由2422ππ-⎪⎭⎫ ⎝⎛+=x x ,运用诱导公式和倍角公式求出x2sin 。

三角恒等变换的技巧

三角恒等变换的技巧

三角恒等变换的技巧三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考.技巧一:式的变换-→两式相加减,平方相加减例1已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36αβαβ+-= 化简得,59sin()72βα-=-,即59sin()72αβ-= 【方法评析】式的变换包括:(1)tan(α±β)公式的变用;(2)齐次式;(3) “1”的运用(1±sin α, 1±cos α凑完全平方);(4)两式相加减,平方相加减;(5)一串特殊的连锁反应(角成等差,连乘).技巧二:角的变换→已知角与未知角的转化例2已知7sin()2425παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ① 由题设条件,应用二倍角余弦公式得,故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α,于是3tan 4α=-故3tan()3πα-++=== 【方法评析】(1)本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到;(2)在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.技巧三:合一变换---辅助角公式例3设关于x的方程sin 0x x a ++=在(0,2)π内有相异二解βσ和.求a 的取值范围.解:∵1sin 2(sin )2sin()23x x x x x π=+=+,∴方程化为sin()32a x π+=-.∵方程sin 0x x a ++=在(0,2)π内有相异二解,∴sin()sin 332x ππ+≠=. 又sin()13x π+≠± (和1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--. 【方法评析】要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4 若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=.方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。

三角恒等变换的常见技巧(师)

三角恒等变换的常见技巧(师)

三角恒等变换的常见技巧一、核心技巧方法1、三角恒等变换中的“统一”思想:三角恒等变换的主要目的是异名化同名、异次化同次、异角化同角、异构化同构,即化异为同,也就是将待证式左右两边统一为一个形式,或将条件中的角、函数式表达为问题中的角或函数式,达到以已知表达未知的目的。

基本切入点是统一角,往往从统一角入手便能全面达到化异为同的目的。

2、统一思想的应用——引入辅助角:对x b x a y cos sin +=型函数式的性质的研究,我们常常引入辅助角ϕ。

即化ab x b a x b x a y =++=+=ϕϕtan ),sin(cos sin 22,然后将该式与基本三角函数x A sin y =进行比照研究。

“位置相同,地位平等”是处理原则。

3、统一思想的应用——拆、拼角,如()()()()22β-α+β+α=αβ-β+α=αβ+β+α=β+α,,等等;4、统一思想的应用——弦切互化,如利用万能公式,把正余弦化为正切等等;对关于正余弦函数的齐次式的处理也属于“弦化切”技巧;5、统一思想的应用——公式变、逆用,主要做法是将三角函数式或其一部分整理成公式的一部分,然后利用公式的这一部分与另一部分的等量关系代入6、代换思想的应用——关于正余弦对等式的处理,常以21t x cos x sin ,t x cos x sin 2-==+代入,把函数式化为关于t 的函数式进行研究;另外,三角代换也是处理函数最值、值域等问题的重要技巧。

二、考点解析与典型例题考点一 引入辅助角研究三角函数的性质例1. 设f (x )=asin x ω+bcos x ω(0,,>ωb a )的周期为π且最大值f (12π)=4; 1)求ω、a 、b 的值;2)若α、β为f (x )=0的两个根(α、β终边不共线), 求tan (α+β)的值。

【解】1)ab x b a x f =++=ϕϕωtan ),sin()(22,则 ⎪⎩⎪⎨⎧===ω⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎩⎪⎨⎧==ϕ=ω⇒⎪⎪⎭⎪⎪⎬⎫=ϕ+ωππ=ωπ=+⇒=+=π=π32b 2a 23a b tan 21)12sin(24b a 4b a )12(f )x (f ,)x (f 2222max 周期为由上可知:)32sin(4)(π+=x x f ,令26320)(ππππk x k x x f +-=⇒=+⇒=因为α、β终边不共线,故33)tan(2123=+⇒++-=+βαππβαk考点二 拆、拼角例2. 已知cos 91)2(-=-βα,sin 32)2(=-βα,且,20,2πβπαπ<<<<求.2cos βα+【分析】观察已知角和所求角,可作出)2()2(2βαβαβα---=+的配凑角变换,然后利用余弦的差角公式求角。

例谈三角恒等变换中的“变角”技巧及其应用

例谈三角恒等变换中的“变角”技巧及其应用

所 D o (r[ ≠0 cs 一 ≠0  ̄cso 3 + ) ,o1 n , 3
未 知 角 之 间 的 关 系 因 此 寻 找 角 与 角 之 间 的 关 系 是 解 题 的 切 人 点 . 面 通 过 对 例 题 的 讲 解 来 强 化 “ 角 ” 技 巧 及 其 下 变 的: n B = tn 【 t ( + ) 2a o a . 分 析 : 想 从 条 件 推 出结 论 , 应使 已 知 条 件 中 出 现结 论 要 就
s [ i3 n ,
×—— 一— — ×—— = —— .
1 5 l 5 6 3 3 5
N t仪) ,(斗_求n 孑. 2 知 1了【[ ) , (斗 : a【= t3 / t +) 已 n+ a -1 a ÷ (32n { 4 f / 0 += 《 I = \ 1 ÷_

所 以 s ( p cs — o( p s p ni( p , i + )op cs n + )j = s + ) n n 即s ( + )0 ( — )csd p s p i d B cs p n = o ( + )i , n n 又 因 为 I> ,lp + 叮,k ) n l0 ≠ l + kT ( ∈Z
中 的0 p /因 此 想 到 B ( p ~/ + : o B + 再 用 恒 l 与0, + - = + )O, p (l ) , . 2 +
等变换变形即可.
解 : 为 s [ s [a 1 一 = i(LB)OO—O (【1 因 i3 i ( + ) d] s O n=n 3 n + OSLCS o+ ) 3
( B s c, + )i t n
 ̄s ( + )o0 20 (【B s c [i c [ cs【 cs0 )i  ̄ 1n t3 = + n. 又因为0 【 ≠ ,+ ≠ + 竹,ke ) oB l k ( Z

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧三角恒等变换是一种重要的数学技巧,用于简化三角函数的表达式,求解三角方程和证明恒等式。

这种技巧通过将一个三角函数转化为另一个三角函数的形式,或者通过将多个三角函数组合成一个三角函数的和或积的形式,来实现简化和转化。

一、三角函数的基本恒等变换1.正弦函数和余弦函数的平方和公式sin²x + cos²x = 1这是最基本的三角恒等变换,它表示任何角的正弦函数平方加上余弦函数平方等于12.正弦函数和余弦函数的差积公式sin2x = 2sinx*cosx这个恒等变换表示正弦函数的二倍角等于两倍的正弦函数和余弦函数的乘积。

3.余弦函数的二倍角公式cos2x = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x这个恒等变换表示余弦函数的二倍角可以表达为余弦函数和正弦函数的平方差。

4.正弦函数和余弦函数的和差公式sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsiny这个恒等变换描述了正弦函数和余弦函数的和差与它们的乘积之间的关系。

5.正切函数的和差公式tan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)这个恒等变换给出了正切函数和它们的和差之间的关系。

1.利用半角公式当要求解一些三角函数值的时候,可以使用半角公式将一个角度的三角函数值表示为另一个角度的三角函数值的形式,从而简化计算。

2.利用和差公式和平方和公式可以利用和差公式和平方和公式,将一个三角函数的和或差化简为一个三角函数的平方和或平方差,或者将一个三角函数的平方和或平方差化简为一个三角函数的和或差。

3.利用倍角公式可以使用倍角公式将一个三角函数的值表示为同一函数的两倍角的形式,或者将一个三角函数的两倍角的值表示为这个函数的值的形式,从而实现简化。

三角恒等变换的类型和技巧

三角恒等变换的类型和技巧

ʏ岳立红三角恒等变换是三角运算㊁化简㊁求值及证明过程中必不可少的手段,理解和掌握基本的三角恒等变换技巧并能灵活运用是提高解决三角问题能力的必要条件㊂下面谈谈三角恒等变换的基本类型和技巧㊂一㊁角的变换在三角的化简㊁求值及证明过程中,条件与结论中往往出现比较多的相异角,此时可根据角之间的和差倍半关系及互余㊁互补关系,寻找已知角与待求角之间的关系,整体使用三角公式求解㊂例1 已知π4<α<3π4,0<β<π4,c o s π4-α =35,s i n 3π4+β=513,求s i n (α+β)的值㊂解:寻求关系α+β=3π4+βπ4-απ2,利用诱导公式及两角差公式求解㊂由已知可得-π2<π4-α<0,所以s i n π4-α=-45㊂因为3π4<3π4+β<π,所以c o s 3π4+β=-1213㊂所以s i n (α+β)=-c o s 3π4+β - π4-α =-c o s 3π4+β ㊃c o s π4-α -s i n 3π4+β ㊃s i nπ4-α =1213ˑ35-513ˑ-45 =5665㊂评注:一般情况下角的变换有三类:和差变换,如α=(α+β)-β,2α=(α+β)-(α-β),α-β=(α-γ)-(β-γ)等;倍半变换,如α与2α,α2与α4等;互余与互补变换,如π3+α与π6-α,2π3+α与π3+α等㊂二㊁常值代换在三角求值过程中,有时可打破常规,用式子代替常数,特别是 1 的代换,常常能出奇制胜,事半功倍㊂例2 已知t a n α+π4=2,求12s i n αc o s α+c o s 2α的值㊂解:由已知可得t a n α的值,考虑到弦化切,利用c o s 2α+s i n 2α代换分子中的1求解㊂由已知得1+t a n α1-t a n α=2,所以t a n α=13㊂原式=c o s 2α+s i n 2α2c o s αs i n α+c o s 2α=1+t a n 2α2t a n α+1=1+1322ˑ13+1=23㊂评注:通常情况下,常值代换可分为两类:公式类,如1=c o s 2α+s i n 2α=s e c 2α-t a n 2α=c s c 2α-c o t 2α等;特殊值类,如22=s i n 45ʎ=c o s 45ʎ,1=t a n 45ʎ=c o t 45ʎ等㊂三㊁降次或升次变换一般地,如果三角式子中出现较高次数或根式时,可借助降次或升次进行变换㊂例3 化简:c o s 8α-s i n 8α+14s i n2α㊃s i n 4α-12+1212+c o s 8α2,αɪ-π2,0㊂解:利用降次,统一角求解㊂原式=(s i n 4α+c o s 4α)(c o s 4α-s i n 4α)+14s i n 2αs i n 4α-12+12c o s 4α=[(c o s 2α+s i n 2α)2-2c o s 2αs i n 2α]㊃(c o s 2α+s i n 2α)㊃(c o s 2α-s i n 2α)+14s i n2αs i n4α-c o s 2α=7知识结构与拓展高一数学 2022年12月Copyright ©博看网. All Rights Reserved.1-12s i n 22αco s 2α+14s i n2α㊃2s i n2α㊃c o s 2α-c o s 2α=c o s 2α-12s i n 22αc o s 2α+12s i n 22αc o s 2α-c o s 2α=0㊂评注:升降次的方法一般有两类:利用倍角㊁半角公式,如c o s 2α=1+c o s 2α2,s i n 2α=1-c o s 2α2,c o s αs i n α=12s i n 2α及平方关系式;利用乘法公式及因式分解,如c o s 8αʃs i n 8α,c o s 6αʃs i n 6α,c o s 4αʃs i n 4α等㊂四㊁结构变换在三角求值㊁化简及证明过程中,常需要对所给的条件及结论进行适当的结构调整,从而使条件便于运用或结论更容易求出㊂例4 已知s i n α+s i n β+s i n γ=0,c o s α+c o s β+c o s γ=0,求c o s (α-β)的值㊂解:对条件式子的结构进行适当变形,产生结论式子所需要的结构,以便于求解㊂由已知得s i n α+s i n β=-s i n γ,c o s α+c o s β=-c o s γ,两式两边分别平方再相加得2+2(c o s αc o s β+s i n αs i n β)=1,所以c o s (α-β)=-12㊂评注:三角函数式结构变化的典型方法有:利用s i n θʃc o s θ与s i n θc o s θ的转化关系;利用辅助角公式,即a s i n θ+b c o s θ=a 2+b 2si n (θ+φ),其中φ由t a n φ=ba确定;利用万能公式;利用三角函数的积化和差与和差化积等㊂五㊁公式的变形应用在三角函数的求值㊁化简及证明过程中,有时使用公式的变形形式,往往会产生事半功倍的效果㊂例5 求(1+t a n 21ʎ)(1+t a n 20ʎ)(1+t a n 25ʎ)(1+t a n 24ʎ)的值㊂解:注意到21ʎ+24ʎ=20ʎ+25ʎ=45ʎ,故可两两组合求解㊂(1+t a n21ʎ)(1+t a n24ʎ)=t a n21ʎ+t a n 24ʎ+t a n21ʎt a n24ʎ+1,由t a n45ʎ=t a n (21ʎ+24ʎ)=t a n 21ʎ+t a n 24ʎ1-t a n 21ʎt a n 24ʎ=1,可得1-t a n21ʎt a n24ʎ=t a n21ʎ+t a n24ʎ,即t a n 21ʎ+t a n24ʎt a n21ʎ+t a n24ʎ=1,所以(1+t a n21ʎ)(1+t a n24ʎ)=2㊂同理可得,(1+t a n20ʎ)(1+t a n25ʎ)=2㊂故(1+t a n 21ʎ)(1+t a n20ʎ)(1+t a n25ʎ)(1+t a n 24ʎ)=4㊂评注:三角公式的典型变形形式有:t a n (α+β)=t a n α+t a n β+t a n (α+β)t a n α㊃t a n β,c o s α=s i n 2α2s i n α,2s i n 2α=1-c o s2α,2c o s 2α=1+c o s 2α等㊂六㊁消元变换消元法是基本的数学方法之一,在三角变换中常常使用它消去某一个角或某一个三角函数,从而使问题得到简化㊂例6 设α,β,γ满足0<α<β<γ<2π,若对任意x ɪR ,c o s (x +α)+c o s (x +β)+c o s (x +γ)=0恒成立,则γ-β=()㊂A .2π3 B .4π3C .2π3或4π3D .无法确定解:三个变量满足同一个关系,依据目标意识和特殊化处理,构建方程寻求切入求解㊂令x =-α得c o s (γ-α)=-1-c o s (β-α),令x =-β得c o s (γ-β)=-1-c o s (β-α),所以c o s (γ-α)=c o s (γ-β)㊂令x =-γ得c o s (γ-β)+c o s (γ-α)=-1,所以c o s (γ-α)=-12㊂因为0<α<β<γ<2π,所以γ-α=2π3或4π3,γ-β=4π3或2π3㊂注意到0<α<β<γ<2π,所以γ-α=4π3,γ-β=2π3㊂故γ-β=2π3㊂应选A ㊂评注:对任意实数x 恒成立的等式,实质是关于x 的方程有无数解的问题,可利用特殊赋值㊁降元构建方程组求解,但要注意隐含条件的挖掘和应用㊂作者单位:甘肃省兰州市第三十四中学(责任编辑 郭正华)8知识结构与拓展 高一数学 2022年12月Copyright ©博看网. All Rights Reserved.。

进行三角恒等变换的几个技巧

进行三角恒等变换的几个技巧

很多三角函数题目侧重于考查三角恒等变换的技巧.进行三角恒等变换的关键是选择合适的公式或变形式,将三角函数式中的角、函数名称、幂等进行灵活的转化,从而顺利化简三角函数式,求出三角函数式的值.下面,笔者介绍几个进行三角恒等变换的技巧,以供大家参考.一、拆角与补角有些三角函数式中的角不相同,就需要运用拆角与补角的技巧,将题目中的角进行转化.在转化角时,要先联系已知条件和所求目标,将角进行拆分、拼凑,再灵活运用诱导公式、二倍角公式、两角的和差公式等进行变换.例1.已知cos (α+π4)=35,π2≤α≤3π2,求cos (2α+π4)的值.解:由于π2≤α≤3π2,所以3π4≤α+π4≤7π4,因为cos (α+π4)=35>0,可知3π2≤α+π4≤7π4,因此sin (α+π4)=-45,所以sin 2(α+π4)=2sin (α+π4)cos (α+π4)=-2425,cos 2(α+π4)=2cos 2(α+π4)-1=-725,因此cos (2α+π4)=cos[2(α+π4)-π4]=cos 2(α+π4)cos π4+sin 2(α+π4)sin π4=.观察题目中的各个角,可以发现:已知角α+π4与所要求的角2α+π4之间相差一个α,可得2(α+π4)-π4=2α+π4,用二倍角公式和诱导公式求出sin 2(α+π4)和cos 2(α+π4)的值,最后根据余弦的两角和公式,即可求出cos(2α+π4)的值.二、降幂与升幂当三角函数式中出现高次或者次数不一的式子时,就要运用降幂与升幂的技巧来解题.常用到的公式有cos 2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、sin 2α+cos 2α=1.例2.证明cos 2α+cos 2(x +π3)+cos 2(x -π3)的值与x 的取值无关.证明:cos 2α+cos 2(x +π3)+cos 2(x -π3)=1+cos 2x 2+1+cos(2x +23π)2+1+cos(2x -23π)2=32+12[cos 2x +cos(2x +23π)cos(2x -2π3)]=32+12(cos 2x -12cos 2x -2x -12cos 2x +2x )=32.该式与x 无关,命题得证.该三角函数式较为复杂,cos 2α、cos 2(x +π3)、cos 2(x -π3)均为二次式,且各个角不相等,需先利用余弦函数的二倍角公式降幂,将其转化为一次式,然后再进行化简,这样运算起来就会容易很多.三、弦切互化当函数式中出现多种不同的三角函数名称时,就需要通过弦切互化,将不同名函数化为同名函数.常用的办法是利用tan α=sin αcos α或sin 2α+cos 2α=1将切化弦或将弦化切.例3.已知tan α=2,求4sin α-2cos α5cos α+3sin α的值.解:因为tan α=2,所以cos α≠0,所以4sin α-2cos α5cos α+3sin α=4sin α-2cos αcos α5cos α+3sin αcos α=4tan α-25+2tan α=611.解答本题,需挖掘题目中的隐含信息cos α≠0,将所求目标式的分子、分母同时除以cos α,利用tan α=sin αcos α,使所求目标式中的函数名称统一为正切函数,最后将已知值代入,求得目标函数式的值.无论是对函数名称、角,还是对幂进行转化,都需要灵活运用三角函数中的基本公式及其变形式,有时也要学会逆用公式.在进行三角恒等变换时,要注意仔细观察三角函数式,选择恰当的三角恒等变换技巧.(作者单位:江苏省射阳县高级中学)解题宝典40。

三角恒等变换与解题技巧

三角恒等变换与解题技巧

三角恒等变换与解题技巧三角函数是高中数学中重要且常用的概念之一,而三角恒等变换是解题过程中非常关键的工具。

本文将介绍三角恒等变换的基本概念,以及如何运用这些变换来解决各种三角函数题目。

一、三角恒等变换的基本概念在开始介绍三角恒等变换之前,我们先来回顾一下三角函数的基本定义:1. 正弦函数(sin)在一个锐角三角形中,正弦函数的定义为:正弦值等于对边与斜边之比。

2. 余弦函数(cos)在一个锐角三角形中,余弦函数的定义为:余弦值等于邻边与斜边之比。

3. 正切函数(tan)在一个锐角三角形中,正切函数的定义为:正切值等于对边与邻边之比。

三角恒等变换是指在三角函数中,通过一系列等价变换,将一个三角函数转化为另外一个三角函数的表达式,而不改变原始三角函数的值,从而简化问题的求解过程。

下面是三角恒等变换的几个基本公式:1. 余弦的平方加正弦的平方等于1:cos²θ + sin²θ = 12. 正切等于正弦除以余弦:tanθ = sinθ / cosθ3. 余切等于1除以正切:cotθ = 1 / tanθ4. 正弦与余弦的关系:sin(π/2 - θ) = cosθ, cos(π/2 - θ) = sinθ5. 正切与余切的关系:tan(π/2 - θ) = cotθ, cot(π/2 - θ) = tanθ二、解题技巧1. 利用三角恒等变换简化表达式当遇到一个复杂的三角函数表达式时,可以通过运用三角恒等变换将其简化。

例如,如果题目要求计算sin²θ + cos²θ的值,我们可以利用公式cos²θ + sin²θ = 1来将表达式简化为1,从而得到最终答案。

2. 利用三角恒等变换解决方程在解决包含三角函数的方程时,我们常常需要利用三角恒等变换将方程转化为更简单的形式。

例如,如果题目要求解方程sinθ = cosθ,我们可以利用公式sin(π/2 - θ) = cosθ将方程转化为sin(π/2 - θ) = sinθ,然后通过等值关系得出π/2 - θ = θ,从而求得θ的值。

三角恒等变换知识点归纳

三角恒等变换知识点归纳

第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 26、22tan tan 21tan ααα=-. 27、⇒(后两个不用判断符号,更加好用) 28、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

)sin αϕA +B ,其中tan ϕB =A. 29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②2304560304515o ooooo=-=-=;问:=12sin π ;=12cos π;③ββαα-+=)(;④)4(24αππαπ--=+;⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

三角恒等变换中的角变换

三角恒等变换中的角变换

数学部分•知识结构与拓展高一使用2021年6月三角恒等变换中的角变换方法很多,如拆角,整角与半角之间的转换,多个倍角之间的转换等。

下面就三角恒等变换中的角变换,通过举例分析,帮助同学们掌握这些常用的解题方法。

方法一:学会拆角例1已知cos(a—弓~)=,sin(>且守Va Vk,0Vj3V守,求cos(a+0)的值。

分析:由于卜―鲁)—(守—耳=宁是一个在三角恒等变换中常见的拆角形式,故可利用差角公式求出驾工的余弦值,再利用二倍角公式求出cos(a+0)的值。

+sin[a—<)•1V54^52_7V5327°故cos(a+p)=2cos2(Q寸")一1=2X说明:三角恒等变换的关键是角的变换,中就是角变解:由今VaV7t,0VpV今,可得于V ov|~—0V贪因为C°s(a_鲁)=—寺, 2z丿32换的关键。

解题时,求出a_g和守一B的取值范围,就容易得到sin(a—£)和cos(|~—0)的值,为求cos申的值铺平了道路。

再进行“切化孩”变换,也可得到辅助痈公式。

三、整体换元的技巧在三角恒等变换中,也可把一个代数式整体视为一个“元”来参与计算和推理,这个“元”可以明确地设出来,女口令t=sin oc—cos工o例3求函数y=sin rc+sin2rc—cos rc QWR)的值域。

令sin rr一cos a:=t,贝!j t=V2-sin(工--),i G E—松,V2-]。

因为sin2re=1—(sin jc一cos re)2=1一护,所以函数y=g Ct)=t1—t2= (1x2r1+才。

据此可得当£=豆时,5»max=&;当Z=—松时,:Ymin=—4^—1o 故此函数的值域为的取值范围。

整体视为一个“元''的本质为消元策略,但要注意新元作者单位:四川省成都经济技术开发区实验中学校(责任编辑郭正华)7数学部分•知识结构与拓展高一使用2021年6月方法二:学会把整角转化为半角例2化简:(sin a+cos a一1)(sin a一cos a+1)sin2a分析:对角进行转化,为约分创造条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 三角恒等变换中角变换的技巧
一、利用条件中的角表示目标中的角
例1 设a B为锐角,且满足cos a=, tan (a— 3= —,求cos B的值.
二、利用目标中的角表示条件中的角
例2 设a为第四象限的角,若=,贝U tan 2 a=___________________ .
三、注意发现互余角、互补角,利用诱导公式转化角
例3 已知sin=, 0<x<,求的值.
四、观察式子结构特征,灵活凑出特殊角
例 4 求函数f(x= sin(x—20°—cos(x+ 40°勺最大值.
2 三角函数化简求值的“主角”
(1 单角化复角
例1已知sin a=, a是第二象限的角,且tan(a+ 3=
(2 复角化单角
例 2 化简:—2cos(a+3.
(3 复角化复角
例 3 已知<a<n 0< 3<, cos(+ a= — , sin( + 3冗=,求sin(a+ 3 的值.
3 三角恒等变换的几个技巧
一、灵活降幂
例 1 = _______ .
二、化平方式
例 2 化简求值:
(a€ (, 2 n
三、灵活变角
例 3 已知sin(— a=,贝U cos(+ 2 a= _______
四、构造齐次弦式比,由切求弦
例4已知tan寻一,则的值是____________ .
五、分子、分母同乘以2n sin a求COS acos 2 a cos 4 a •os 8a・・C0S 2n—1 a
的值
例 5 求值:sin 10 sin 30 sin 50 sin 70 °
4聚焦三角函数最值的求解策略
一、化为y = Asin( 3x+(j)+ B的形式求解
例1求函数f(x =的最值.
例2 求函数y = sin2x + 2sin xcos x + 3cos2x的最小值,并写出y取最小值时x的集合.
二、利用正、余弦函数的有界性求解
例3求函数y =的值域.
例4求函数y =的值域.
三、转化为一元二次函数在某确定区间上求最值
例5 设关于x的函数y= cos 2x —2acos x—2a的最小值为f(a,写出f(a的表达式.
例 6 试求函数y = sin x + cos x + 2sin xcos x + 2 的最值.
四、利用函数的单调性求解
例7求函数y =的最值.
例8 在Rt A ABC内有一内接正方形,它的一条边在斜边BC上,设AB = a, / ABC = 0,△ ABC的面积为P,正方形面积为Q.求的最小值.
易错问题纠错
一、求角时选择三角函数类型不当而致错例1 已知sin话,sin护,a和B都是锐角,求a+ B的值.
二、忽视条件中隐含的角的范围而致错
例 2 已知tan2 汁6tan oF 7= 0, tan2 升6tan 才7= 0, a (0, n 且求a+ B的值.
三、忽略三角形内角间的关系而致错
例 3 在厶ABC 中,已知sin A=, cos B=,求cos C.
四、忽略三角函数的定义域而致错
例4判断函数f(x =的奇偶性.
五、误用公式asin x+ bcos x= sin(x + $而致错
例5 若函数f(x= sin(x+ 0+ cos(x—0, x€ R是偶函数,求B的值.。

相关文档
最新文档