多元线性回归模型案例(DOC)
多元线性回归模型的案例讲解
多元线性回归模型的案例讲解以下是一个关于房价的案例,用多元线性回归模型来分析房价与其他变量的关系。
假设我们想研究一些城市的房价与以下变量之间的关系:房屋面积、卧室数量、厨房数量和所在区域。
我们从不同的房屋中收集了这些变量的数据,以及对应的房价。
我们希望通过构建多元线性回归模型来预测房价。
首先,我们需要收集数据。
我们找到100个不同房屋的信息,包括房屋的面积、卧室数量、厨房数量和所在区域,以及对应的房价。
接下来,我们需要进行数据处理和探索性分析。
我们可以使用统计软件,如Python的pandas库,对数据进行清洗和处理。
我们可以检查数据的缺失值、异常值和离群点,并对其进行处理。
完成数据处理后,我们可以继续进行变量的选择和模型构建。
在多元线性回归中,我们需要选择合适的自变量,并建立模型。
可以使用统计软件,如Python的statsmodels库,来进行模型的构建。
在本例中,我们使用房屋面积、卧室数量、厨房数量和所在区域作为自变量,房价作为因变量。
我们可以构建如下的多元线性回归模型:房价=β0+β1*面积+β2*卧室数量+β3*厨房数量+β4*所在区域其中,β0、β1、β2、β3和β4是回归模型的系数,表示因变量与自变量之间的关系。
我们需要对模型进行拟合和检验。
使用统计软件,在模型拟合之后,我们可以得到回归模型的系数和统计指标。
常见的指标包括回归系数的显著性、解释方差、调整R方和残差分析等。
根据回归模型的系数,我们可以解释不同自变量对因变量的影响。
例如,如果回归系数β1大于0且显著,说明房屋面积对房价有正向影响。
同理,其他自变量的系数也可以解释其对因变量的影响。
最后,我们可以使用建立的多元线性回归模型进行房价的预测。
通过输入房屋的面积、卧室数量、厨房数量和所在区域等自变量的数值,我们可以预测其对应的房价。
需要注意的是,多元线性回归模型的效果不仅取决于数据的质量,还取决于模型的选择和拟合程度。
因此,在模型选择和拟合过程中,我们需要进行多次实验和优化,以得到较好的模型。
多元线性回归模型(6)
样本,可表示为
Y1 1 2 X 21 3 X31 ... k X k1 u1 Y2 1 2 X 22 3 X32 ... k X k2 u2
Yn 1 2 X 2n 3 X3n ... k X kn un
11
用矩阵表示
Y1 1
即 X可X逆
假定6:正态性假定 ui ~ N(0,σ2)
15
第二节 多元线性回归模型的估计
本节基本内容:
● 普通最小二乘法(OLS) ● OLS估计式的性质 ● OLS估计的分布性质
● 随机扰动项方差 的估2 计
● 回归系数的区间估计
16
一、普通最小二乘法(OLS)
最小二乘原则
剩余平方和最小: min ei2 (Yi -Yˆi)2
1 X 22
X kiei
X
k1
Xk2
1 e1
0
X
2n
e2
=
XБайду номын сангаас
e
=
0
X
kn
en
0
X
e
因为样本回归函数为 Y = Xβˆ + e
两边乘 X有 :
X Y = X Xβˆ + X e
因为 Xe,= 0则正规方程为:
X Xβˆ = X Y
19
OLS估计式
由正规方程 多元回归中 二元回归中
或取固定值的矩阵
2.无偏特性:
E(βˆk ) βk
21
3. 最小方差特性
在 βk所有的线性无偏估计中,OLS估计 β具ˆk 有
最小方差
结论:在古典假定下,多元线性回归的 OLS估计 式是最佳线性无偏估计式(BLUE)
第三章多元线性回归模型案例
第三章多元线性回归模型案例第三章多元线性回归模型案例⼀、邹式检验(突变点检验、稳定性检验) 1.突变点检验1985—2002年中国家⽤汽车拥有量(t y ,万辆)与城镇居民家庭⼈均可⽀配收⼊(t x ,元),数据见表3.1。
表3.1 中国家⽤汽车拥有量(t y )与城镇居民家庭⼈均可⽀配收⼊(t x )数据年份 t y (万辆)t x (元)年份 t y (万辆)t x (元)1985 28.49 739.1 1994 205.42 3496.2 1986 34.71 899.6 1995 249.96 4283 1987 42.29 1002.2 1996 289.67 4838.9 1988 60.42 1181.4 1997 358.36 5160.3 1989 73.12 1375.7 1998 423.65 5425.1 1990 81.62 1510.2 1999 533.88 5854 1991 96.04 1700.6 2000 625.33 6280 1992 118.2 2026.6 2001 770.78 6859.6 1993155.772577.42002968.987702.8下图是关于t y 和t x 的散点图:从上图可以看出,1996年是⼀个突变点,当城镇居民家庭⼈均可⽀配收⼊突破4838.9元之后,城镇居民家庭购买家⽤汽车的能⼒⼤⼤提⾼。
现在⽤邹突变点检验法检验1996年是不是⼀个突变点。
H 0:两个⼦样本(1985—1995年,1996—2002年)相对应的模型回归参数相等 H 1:备择假设是两个⼦样本对应的回归参数不等。
在1985—2002年样本范围内做回归。
在回归结果中作如下步骤:输⼊突变点:得到如下验证结果:由相伴概率可以知道,拒绝原假设,即两个样本(1985—1995年,1996—2002年)的回归参数不相等。
所以,1996年是突变点。
2.稳定性检验以表3.1为例,在⽤1985—1999年数据建⽴的模型基础上,检验当把2000—2002年数据加⼊样本后,模型的回归参数时候出现显著性变化。
多元线性回归模型案例(DOC)
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
—多元线性回归分析案例
t=(2.184942) (3.849318) (12.80847)
(7.130844)
R2 0.963517 R 2 0.959307 F 228.2846 df 26
模型检验:拟合优度可决系数 R2 0.963517 较高, 修正的可决系数 R 2 0.959307 也较高,表明模型 拟合较好。
t0025260684因为各解释变量的参数对应的t统计量均大于0684这说明在5的显著水平下斜率系数均显著不为零表明三大产业的增长率对gdp增长都有显著影响
多元线性回归分析 案例
目录
• 1.建立模型 • 2.模型参数估计 • 3.检验 • 4.预测 • 5.软件操作
1.建立模型
考察三大产业的增长对我国经济增长 的贡献
F检验: 针对H0: b1=b2=b3=0
F 228.2846
给定 0.05,得临界值F0.0(5 k,n k 1) F0.05(3,26) 2.98 由于228.2846>2.98,故拒绝H0 回归方程是显著的。
t检验: 给定 0.05,查自由度t分布表得:t0.025(26)=0.684 因为各解释变量的参数对应的t统计量均大于0.684, 这说明在5%的显著水平下,斜率系数均显著不为零, 表明三大产业的增长率对GDP增长都有显著影响。
8.3
2.8
8.4
10.3
1987 11.6
4.7
13.7
14.4 2002
9.1
2.9
9.8
10.4
1988 11.3
2.5
14.5
13.2 2003 10.0
2.5
多元线性回归实例分析
SPSS--回归—多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释.今天跟大家一起讨论一下,SPSS—-—多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型.数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量"拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量"弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3",(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
多元回归模型分析案例
多元回归模型分析案例在统计学中,多元回归模型是一种用来分析多个自变量和一个因变量之间关系的统计方法。
它可以帮助我们理解自变量对因变量的影响程度,以及它们之间的相互关系。
在本文中,我们将介绍一个关于多元回归模型的实际案例,以便更好地理解这一统计方法的应用。
假设我们有一份数据集,其中包括了房屋的售价(因变量)、房屋的面积、房龄和附近学校的评分(自变量)。
我们想要建立一个多元回归模型,来分析这些自变量对房屋售价的影响。
首先,我们需要对数据进行预处理,包括缺失值处理、异常值处理和变量转换等。
然后,我们可以利用统计软件(如SPSS、R或Python)来建立多元回归模型。
在建立模型之前,我们需要进行模型诊断,以确保模型符合统计假设。
接下来,我们可以利用模型的系数来解释自变量对因变量的影响。
例如,如果房屋面积的系数为0.5,那么可以解释为每增加1平方米的房屋面积,房屋售价将增加0.5万元。
此外,我们还可以利用模型的拟合优度来评估模型的表现,以及利用残差分析来检验模型的假设是否成立。
最后,我们可以利用模型来进行预测和决策。
例如,我们可以利用模型来预测某个房屋的售价,或者利用模型来分析不同自变量对房屋售价的影响程度,以便制定相应的策略。
通过以上案例,我们可以看到多元回归模型在实际应用中的重要性和价值。
它不仅可以帮助我们理解自变量对因变量的影响,还可以用来预测和决策。
因此,掌握多元回归模型分析方法对于统计学习者和数据分析师来说是非常重要的。
总之,多元回归模型是一种强大的统计工具,可以帮助我们分析多个自变量和一个因变量之间的关系。
通过本文介绍的实际案例,希望读者们能够更好地理解和应用多元回归模型分析方法,从而提升数据分析的能力和水平。
多元线性回归模型的案例讲解
多元线性回归模型的案例讲解案例:房价预测在房地产市场中,了解各种因素对房屋价格的影响是非常重要的。
多元线性回归模型是一种用于预测房屋价格的常用方法。
在这个案例中,我们将使用多个特征来预测房屋的价格,例如卧室数量、浴室数量、房屋面积、地段等。
1.数据收集与预处理为了构建一个准确的多元线性回归模型,我们需要收集足够的数据。
我们可以从多个渠道收集房屋销售数据,例如房地产公司的数据库或者在线平台。
数据集应包括房屋的各种特征,例如卧室数量、浴室数量、房屋面积、地段等,以及每个房屋的实际销售价格。
在数据收集过程中,我们还需要对数据进行预处理。
这包括处理缺失值、异常值和重复值,以及进行特征工程,例如归一化或标准化数值特征,将类别特征转换为二进制变量等。
2.模型构建在数据预处理完成后,我们可以开始构建多元线性回归模型。
多元线性回归模型的基本方程可以表示为:Y=β0+β1X1+β2X2+……+βnXn其中,Y表示房屋价格,X1、X2、……、Xn表示各种特征,β0、β1、β2、……、βn表示回归系数。
在建模过程中,我们需要选择合适的特征来构建模型。
可以通过统计分析或者领域知识来确定哪些特征对房价具有显著影响。
3.模型评估与验证构建多元线性回归模型后,我们需要对模型进行评估和验证。
最常用的评估指标是均方误差(Mean Squared Error)和决定系数(R-squared)。
通过计算预测值与实际值之间的误差平方和来计算均方误差。
决定系数可以衡量模型对观测值的解释程度,取值范围为0到1,越接近1表示模型越好。
4.模型应用完成模型评估与验证后,我们可以将模型应用于新的数据进行房价预测。
通过将新数据的各个特征代入模型方程,可以得到预测的房价。
除了房价预测,多元线性回归模型还可以用于其他房地产市场相关问题的分析,例如预测租金、评估土地价格等。
总结:多元线性回归模型可以在房地产市场的房价预测中发挥重要作用。
它可以利用多个特征来解释房价的变化,并提供准确的价格预测。
R语言与多元线性回归分析计算案例
R语⾔与多元线性回归分析计算案例⽬录计算实例分析模型的进⼀步分析计算实例例 6.9 某⼤型⽛膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司⽣产的⽛膏销售量与销售价格,⼴告投⼊等之间的关系,从⽽预测出在不同价格和⼴告费⽤下销售量。
为此,销售部门的研究⼈员收集了过去30个销售周期(每个销售周期为4周)公司⽣产的⽛膏的销售量、销售价格、投⼊的⼴告费⽤,以及周期其他⼚家⽣产同类⽛膏的市场平均销售价格,如表6.4所⽰。
试根据这些数据建⽴⼀个数学模型,分析⽛膏销售量与其他因素的关系,为制订价格策略和⼴告投⼊策略提供数量依据。
分析由于⽛膏是⽣活的必需品,对于⼤多数顾客来说,在购买同类⽛膏时,更多的会关⼼不同品牌之间的价格差,⽽不是它们的价格本⾝。
因此,在研究各个因素对销售量的影响时,⽤价格差代替公司销售价格和其他⼚家平均价格更为合适。
模型的建⽴与求解记⽛膏销售量为Y,价格差为X1,公司的⼴告费为X2,假设基本模型为线性模型:输⼊数据,调⽤R软件中的lm()函数求解,并⽤summary()显⽰计算结果(程序名:exam0609.R)计算结果通过线性回归系数检验和回归⽅程检验,由此得到销售量与价格差与⼴告费之间的关系为:模型的进⼀步分析为进⼀步分析回归模型,我们画出y与x1和y与x2散点图。
从散点图上可以看出,对于y与x1,⽤直线拟合较好。
⽽对于y与x2,则⽤⼆次曲线拟合较好,如下图:绘制x1与y的散点图和回归直线绘制x2与y的散点图和回归曲线其中 I(X2^2),表⽰模型中X2的平⽅项,及X22,从上图中,将销售量模型改为:似乎更合理,我们做相应的回归分析:此时,我们发现,模型残差的标准差Residual standard error有所下降,相关系数的平⽅Multiple R-squared有所上升,这说明模型修正的是合理的。
但同时也出现了⼀个问题,就是对于β2的P-值>0.05。
多元线性回归模型案例
我国农民收入影响因素的回归分析本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。
?农民收入水平的度量常采用人均纯收入指标。
影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。
但可以归纳为以下几个方面:一是农产品收购价格水平。
二是农业剩余劳动力转移水平。
三是城市化、工业化水平。
四是农业产业结构状况。
五是农业投入水平。
考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。
因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。
一、计量经济模型分析 (一)、数据搜集根据以上分析,我们在影响农民收入因素中引入7个解释变量。
即: 2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。
资料来源《中国统计年鉴2006》。
(二)、计量经济学模型建立 我们设定模型为下面所示的形式:利用Eviews 软件进行最小二乘估计,估计结果如下表所示:Dependent Variable: Y Method: Least Squares Sample: 1986 2004Included observations: 19VariableCoefficientStd. Errort-StatisticProb.C X1 X3 X4 X5 X6 X7 X8R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson statProb(F-statistic)表1 最小二乘估计结果回归分析报告为:()()()()()()()()()()()()()()()()23456782ˆ -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66R Df DW F ====二、计量经济学检验(一)、多重共线性的检验及修正①、检验多重共线性(a)、直观法从“表1 最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4 x6的t统计量并不显着,所以可能存在多重共线性。
多元线性回归的数学模型
多元线性回归的数学模型随着经济的发展和人民生活水平的提高,国内旅游市场呈现出迅速增长的趋势。
旅游消费作为国民经济的重要组成部分,其发展对经济增长有着重要的推动作用。
因此,对国内旅游消费进行分析和研究,对于促进旅游市场的发展、提升旅游消费水平具有重要意义。
本文基于多元线性回归模型,对国内旅游消费进行分析,以期为相关研究和政策制定提供参考。
本文所使用的数据来源于国家统计局发布的年度数据以及旅游管理部门的相关统计数据。
在研究旅游消费的影响因素时,我们考虑了多个变量,包括国内生产总值(GDP)、居民人均收入、旅游资源丰度、旅游基础设施状况等。
因此,我们构建了一个多元线性回归模型,以这些变量作为自变量,旅游消费总额作为因变量,进行回归分析。
(1)国内生产总值(GDP):反映一个国家经济总体水平的重要指标,对旅游消费有着重要影响。
我们使用GDP总量作为代理变量。
(2)居民人均收入:居民的收入水平直接影响了其消费能力和旅游消费意愿。
我们使用居民人均收入作为代理变量。
(3)旅游资源丰度:一个地区的旅游资源丰度对旅游消费有着重要影响。
我们使用旅游景区数量和等级作为代理变量。
(4)旅游基础设施状况:旅游基础设施的好坏直接影响了游客的旅游体验和消费水平。
我们使用酒店数量和等级作为代理变量。
我们使用SPSS软件对模型进行回归分析,得到的回归结果如下:模型系数分别为:常数项b0=2;GDP总量b1=587;居民人均收入b2=093;旅游景区数量b3=012;酒店数量b4=076;酒店等级b5=001。
(1)国内生产总值(GDP):回归系数为587,表明GDP总量对旅游消费的影响为正。
一个地区的经济发展水平直接影响了该地区的旅游消费水平。
当GDP总量增加时,人们的可支配收入增加,进而导致旅游消费的增加。
因此,政府应通过提高经济发展水平,增加居民的可支配收入,以促进旅游消费的增长。
(2)居民人均收入:回归系数为093,表明居民人均收入对旅游消费的影响为正。
多元线性回归模型案例(DOC)
多元线性回归模型案例分析中国人口自然增长分析一•研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势, 需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
⑶文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二•模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据年份人口自然增长率国民总收入 居民消费价格指数增长人均GDP (%)(亿元)率(CPI ) %(元)1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 20065.382131321.516024设定的线性回归模型为:三、估计参数利用EViews 估计模型的参数,1、建立工作文件:启动 EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ” 在 “ Workfile frequency ” 中选择 “Annual ”(年 度),并在“ Start date’中输入开始时间“ 1988”在“end date’中输 入最后时间“ 2005”,点击“ ok ”出现“ Workfile UNTITLED ”工作 框。
建模实例(多元线性回归模型)
以上图为例,按当年价格计算,我国1992年的GDP 是1980年的5.9倍,而按固定价格计算,我国1992 年的GDP是80年的2.8倍。
2、依照经济理论以及对具体经济问题的深入
分析初步确定解释变量。例:关于某市的食 用油消费量,文革前常驻人口肯定是重要解 释变量。现在则不同,消费水平是重要解释 变量,因为食用油供应方式已改变。 3、当引用现成数据时,要注意数据的定义是 否与所选定的变量定义相符。例:“农业人 口”要区别是“从事农业劳动的人口”还是 相对于城市人口的“农业人口”。
t
案例2:《全国味精需求量的计量经济模型》
1.依据经济理论选择影响味精需求量变化的因素 依据经济理论初设为: 商品需求量 = f (商品价格,代用品价格,收入水 平,消费者偏好) 根据分析,针对味精需求量只考虑两个重要解释变 量,商品价格和消费者收入水平。 味精需求量 = f (商品价格,收入水平)
一建模过程中应注意的问题?1研究经济变量之间的关系要剔除物价变动因素?以上图为例按当年价格计算我国1992年的gdp是1980年的59倍而按固定价格计算我国1992年的gdp是1980年的28倍
一、建模过程中应注意的问题
1、研究经济变量之间的关系要剔除物价变动因素
30000 25000 20000 15000 10000 5000 GD P GD P(f) 0 80 81 82 83 84 85 86 87 88 89 90 91 92
4、通过散点图,相关系数,确定解释变量与
被解释变量的具体函数关系。(线性、非线 性、无关系)
5、谨慎对待离群值(outlier)。离群值可能是正常
值也可能是异常值。不能把建立模型简单化为一个纯 数学过程,目的是寻找经济规律。(欧盟对华投资和 中国从欧盟进口)
多元线性回归模型案例分析之欧阳地创编
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1中国人口增长率及相关数据设定的线性回归模型为:三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range”。
在年份 人口自然增长率(%。
)国民总收入(亿元) 居民消费价格指数增长率(CPI )%人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 0.8 6796 1999 8.18 88479 1.4 7159 20007.58 98000 0.4 7858 6.95 108068 0.7 8622 6.45 119096 0.8 9398 6.01 135174 1.2 10542 5.87 159587 3.9 12336 5.89 184089 1.8 140405.382131321.516024“Workfile frequency”中选择“Annual” (年度),并在“Start date”中输入开始时间“1988”,在“end date”中输入最后时间“”,点击“ok”,出现“Workfile UNTITLED”工作框。
多元线性回归数学建模经典案例
多元线性回归黄冈职业技术学院数学建模协会胡敏作业:在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。
x1 x2 x3 x4 x5 y9.200 2.732 1.471 0.332 1.138 1.1559.100 3.732 1.820 0.112 0.828 1.1468.600 4.882 1.872 0.383 2.131 1.84110.233 3.968 1.587 0.181 1.349 1.3565.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.1148.200 4.646 1.615 0.379 4.565 0.8988.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104编写程序如下:data ex;input x1-x5 y@@;cards;9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104 ;proc reg;model y=x1 x2 x3 x4 x5/cli;run;运行结果如下:(1)回归方程显著性检验.Analysis of VarianceSum of MeanSource DF Squares S quare F Value Pr > FModel 5 2.252070.45041 11.63 0.0170Error 4 0.154970.03874Corrected Total 9 2.40704Root MSE 0.19683 R-Square 0.9356Dependent Mean 1.13100 Adj R-Sq 0.8551Coeff Var 17.40333由Analysis of Variance表可知,其F Value=11.63,Pr > F的值0.0170小于0.05,故拒绝原假设,接受备择假设,认为y与x1 x2 x3 x4 x5之间具有显著性相关系;由R-Square的值为0.9356可知该方程的拟合度高,样本观察值有93.6%的信息可以用回归方程进行解释,故拟合效果较好,认为y与x1 x2 x3 x4 x5之间具有显著性的相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归模型案例分析
——中国人口自然增长分析一·研究目的要求
中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定
为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):
表1 中国人口增长率及相关数据
设定的线性回归模型为:
1222334t t t t t Y X X X u ββββ=++++
三、估计参数
利用EViews 估计模型的参数,方法是:
1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对
话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。
年份 人口自然增长率
(%。
) 国民总收入(亿元) 居民消费价格指数增长
率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006
5.38 213132 1.5 16024
2、输入数据:点击“Quik ”下拉菜单中的“Empty Group ”,出现“Group”窗口数据编辑框,点第一列与“obs ”对应的格,在命令栏输入“Y ”,点下行键“↓”,即将该序列命名为Y ,并依此输入Y 的数据。
用同样方法在对应的列命名X 2、X
3、X 4,并输入相应的数据。
或者在EViews 命令框直接键入“data Y 2X X 3 X 4 … ”,回车出现“Group”窗口数据编辑框,在对应的Y 、X 2、X 3、X 4下输入响应的数据。
3、估计参数:点击“Procs “下拉菜单中的“Make Equation ”,在出现的对话框的“Equation Specification ”栏中键入“Y C X 2 X 3 X 4”,在“Estimation Settings ”栏中选择“Least Sqares ”(最小二乘法),点“ok ”,即出现回归结果: 表3.4
根据表3.4中数据,模型估计的结果为:
432005109.0047918.0000332.060851.15X X X Y t -++=Λ
(0.913842) (0.000134) (0.033919) (0.001771)
t= (17.08010) (2.482857) (1.412721) (-2.884953) 930526.02
=R 915638.02
=R F=62.50441 四、模型检验
1、经济意义检验
模型估计结果说明,在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,当年居民消费价格指数增长率每增长 1%,人口增长率增长0.047918%;在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%。
这与理论分析和经验判断相一致。
2、统计检验
(1)拟合优度:由表3.4中数据可以得到:930526.02
=R ,修正
的可决系数为915638
.02
=R
,这说明模型对样本的拟合很好。
(2)F 检验:针对0234:0H βββ===,给定显著性水平0.05α=,在F 分布表中查出自由度为k-1=3和n-k=14的临界值34.3)14,3(=αF 。
由表3.4中得到F=62.50441 ,由于F=62.50441 >(3,21) 3.075F α=,应拒绝原假设0234:0H βββ===,说明回归方程显著,即“国民总收入”、“居民消费价格指数增长率”、“人均GDP ”等变量联合起来确实对“人口自然增长率”有显著影响。
(3)t 检验:分别针对0H :0(1,2,3,4)j j β==,给定显著性水平0.05α=,
查t 分布表得自由度为n-k=14临界值145.2)(2/=-k n t α。
由表3.4中数据可得,与^
1β、^
2β、^
3β、^
4β对应的t 统计量分别为17.08010、2.482857 、1.412721、-2.884953
除^
3β,其绝对值均大于145.2)(2/=-k n t α,这说明分别都应当拒
绝0H :)4,2,1(0==j j β,也就是说,当在其它解释变量不变的情况下,
解释变量“国民总收入”、“人均GDP ”分别对被解释变量“人口自
然增长率”Y 都有显著的影响。
^
3β的绝对值小于145.2)(2/=-k n t α,:这说明接受0H :03=β,X3系数对t 检验不显著,这表明很可能存在多重共线性。
所以计算各解释变量的相关系数,选择X2、X3、X4数据,
点”view/correlations ”得相关系数矩阵(如表4.4):
表4.4
由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。
五、消除多重共线性
采用逐步回归的办法,去检验和解决多重共线性问题。
分别作Y 对X2、X3、X4的一元回归,结果如表4.5所示:
表4.5
变量 X2
X3 X4 参数估计值 0.000134 0.033919 0.001771 t 统计量
2.482857
1.412721 -
2.88495
0.873915
0.388495
0.886412
按2R 的大小排序为:X4、X2、X3
以X2为基础,顺次加入其他变量逐步回归。
首先加入X2回归结果为:
40005397.02000350.035540.16ˆX X Y
-+= t=(2.542529) (-2.970874) 920622.02
=R
当取05.0=α时,131
.2)318(025
.0)(2
/=-=-t
t k n α,X2参数的t 检验显
著,加入X3回归得
432005109.0047918.0000332.060851.15X X X Y t -++=Λ
t= (17.08010) (2.482857) (1.412721) (-2.884953)
930526.02
=R 915638.02
=R F=62.50441
当取05.0=α时, 145.2)418(2/=-αt ,X3参数的t 检验不显著,予以剔除
即40005397.02000350.035540.16ˆX X Y
-+=,这是最后消除多重共线性的结果。
在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%。
金服131 王亚平
13019122。