1-等腰三角形-第2课时PPT课件
合集下载
等腰三角形的判定PPT授课课件
(4)为了测量小车运动过程中下半程的平均速度,某同学让 小车从B点由静止释放,测出小车到达C点的时间,从 而计算出小车运动过程中下半程的平均速度。他的做 法正确吗?__不__正__确__,理由是__因__为__所__测___时__间__不__是__运__ _动__过__程__中__下__半__程__的__时__间__(_或__小__车__从__A_到___C_的__过__程__中__通__过_
感悟新知
又AB=AC, ∴∠B=∠C ∴∠B=∠C=∠A =60°. ∴△ABC是等边三角形.
知2-导
感悟新知
结论
知2-导
有一个角是60°的等腰三角形是等边三角形.
感悟新知
知2-讲
1.三个角都是60°的三角形是等边三角形. 2.有一个角是60°的等腰三角形是等边三角形.
特别解读 在等腰三角形中,只要有一个角是60°,无
1.下列三角形:
知2-练
①有两个角等于60°的三角形;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的有( D ) A.①②③ B.①②④C.①③④ D.①②③④
感悟新知
知2-练
2.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,
能力提升练
【点拨】A、C 两点间的距离为 s=10.20 cm,物体由 A 点至 C 点所用的时间为 t=0.02 s×2=0.04 s,物体在 AC 段运动的平均 速度 v=st=100..2004csm=255 cm/s=2.55 m/s。
【答案】10.20;2.55
能力提升练
(3)实验中为了方便计时,应使斜面的坡度较__小___ (填“大” 或“小”)。
感悟新知
又AB=AC, ∴∠B=∠C ∴∠B=∠C=∠A =60°. ∴△ABC是等边三角形.
知2-导
感悟新知
结论
知2-导
有一个角是60°的等腰三角形是等边三角形.
感悟新知
知2-讲
1.三个角都是60°的三角形是等边三角形. 2.有一个角是60°的等腰三角形是等边三角形.
特别解读 在等腰三角形中,只要有一个角是60°,无
1.下列三角形:
知2-练
①有两个角等于60°的三角形;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的有( D ) A.①②③ B.①②④C.①③④ D.①②③④
感悟新知
知2-练
2.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,
能力提升练
【点拨】A、C 两点间的距离为 s=10.20 cm,物体由 A 点至 C 点所用的时间为 t=0.02 s×2=0.04 s,物体在 AC 段运动的平均 速度 v=st=100..2004csm=255 cm/s=2.55 m/s。
【答案】10.20;2.55
能力提升练
(3)实验中为了方便计时,应使斜面的坡度较__小___ (填“大” 或“小”)。
等腰三角形的性质PPT授课课件
HK版 八年级上
第三章 声的世界
第2节 声音的特性
第2课时 噪声的防治
习题链接
提示:点击 进入习题
1 噪声;空气 4 dB;不能
答案呈现
7 人耳 10 见习题
2D
5D
8C
3C
6 声源;传播过程 9 B
基础巩固练
8.[中考·山东潍坊]将教室的门窗关闭,室内同学听到的 室外噪声减弱。对该现象说法正确的是( C ) A.室外噪声不再产生 B.噪声音调大幅降低 C.在传播过程中减弱了噪声 D.噪声在室内的传播速度大幅减小
AB=AC,
∵
BD=CD,
AD=AD,
∴△BAD ≌△CAD (SSS).
∠B=∠C.
这样,我们就证明了性质1
感悟新知
归纳
知1-讲
我们可以发现等腰三角形的性质: 性质1 等腰三角形的两个底角相等(简写成“等边 对顶角”.
感悟新知
例 1 如图,在△ABC中,AB=AC,点D在AC上,且 BD=BC=AD,求△ABC各角的度数.
16 B
答案呈现
17 B 18 见习题 19 见习题
基础巩固练
1.某市已经明令禁止在城区内燃放烟花爆竹,因为燃放 烟花爆竹除了会造成空气污染外,燃放烟花爆竹时的 巨大声音还是一种___噪__声___(填“乐音”或“噪声”),爆 竹的巨大声音是__空__气____的振动产生的。
基础巩固练
7.[安徽霍邱月考]如图所示,在女子10 m气手枪比赛中,射 击时,很多运动员在耳朵里放一个耳塞或戴上耳罩,这 主要是在___人__耳___处减弱噪声。
能力提升练
解:(1)据题可知,“控制音量”是在声源处减弱噪声, 控制的是噪声的响度。
1.1 等腰三角形第2课时(课件)八年级数学下册(北师大版)
D
B
E
C
五、当堂达标检测
5.如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,求∠EDA的度数.
解:
∵ △ABC是等边三角形,
B
∴∠CBA=60°.
∵BD是AC边上的中线,
∴∠BDA=90°, ∠DBA=30°.
C
∵ BD=BE,
∴ ∠BDE=(180 °-∠DBA) ÷2 = (180°-30°)÷2=75°.
两条腰上的中线相等;两条腰上的高线相等.
你能证明你
的猜想吗?
二、自主合作,探究新知
探究一:等腰三角形的重要线段的性质
猜想证明
1.证明:等腰三角形两底角的平分线相等.
A
已知:如图, 在△ABC中, AB=AC, BD和CE是
△ABC的角平分线.
D
E
求证:BD=CE.
B
1 2
C
二、自主合作,探究新知
D
C
二、自主合作,探究新知
(4)如果AD= AC,AE= AB,那么BD=CE吗?
A
为什么?
E
解:(4)BD=CE.
证明:∵AB=AC,AD= AC,AE= AB,
∴AD=AE.
在△ABD和△ACE中
∵AD=AE,∠A=∠A,AB=AC,
∴△ABD≌△ACE(SAS).
∴BD=CE(全等三角形的对应边相等).
6.已知:如图所示,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,点M,
N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.
证明: ∵AM=2MB,∴AM= AB.
等腰三角形 PPT课件
第十三章 轴对称
13.3 等腰三角形
第1课时 等腰三角形的性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握等腰三角形的性质.(重点) 2.经历等腰三角形的性质的探究过程,能初步运用
等腰三角形的性质解决有关问题.(难点)
导入新课
情境引入
定义及相关概念 有两条边相等的三角形叫做等腰三角形.
例3 已知点D、E在△ABC的边BC上,AB=AC. (1)如图①,若AD=AE,求证:BD=CE; (2)如图②,若BD=CE,F为DE的中点,求证: AF⊥BC.
图①
图②
证明:(1)如图①,过A作 AG⊥BC于G. ∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE; (2)∵BD=CE,F为DE的中点, ∴BD+DF=CE+EF, ∴BF=CF. ∵AB=AC,∴AF⊥BC.
形的底角的大小是( A )
A.65°或50°
B.80°或40°
C.65°或80°
D.50°或80°
解析:当50°的角是底角时,三角形的底角就是 50°;当50°的角是顶角时,两底角相等,根据 三角形的内角和定理易得底角是65°.故选A.
方法总结:等腰三角形的两个底角相等,已知 一个内角,则这个角可能是底角也可能是顶角, 要分两种情况讨论.
∴ ∠B= ∠ADB,∠C= ∠DAC 设 ∠C=x,则 ∠DAC=x, ∠B= ∠ADB= ∠C+ ∠DAC=2x, 在△ABC中, 根据三角形内角和定理,得
2x+x+26°+x=180°, 解得x=38.5°.
∴ ∠C= x=38.5°, ∠B=2x=77°.
13.3 等腰三角形
第1课时 等腰三角形的性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握等腰三角形的性质.(重点) 2.经历等腰三角形的性质的探究过程,能初步运用
等腰三角形的性质解决有关问题.(难点)
导入新课
情境引入
定义及相关概念 有两条边相等的三角形叫做等腰三角形.
例3 已知点D、E在△ABC的边BC上,AB=AC. (1)如图①,若AD=AE,求证:BD=CE; (2)如图②,若BD=CE,F为DE的中点,求证: AF⊥BC.
图①
图②
证明:(1)如图①,过A作 AG⊥BC于G. ∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE; (2)∵BD=CE,F为DE的中点, ∴BD+DF=CE+EF, ∴BF=CF. ∵AB=AC,∴AF⊥BC.
形的底角的大小是( A )
A.65°或50°
B.80°或40°
C.65°或80°
D.50°或80°
解析:当50°的角是底角时,三角形的底角就是 50°;当50°的角是顶角时,两底角相等,根据 三角形的内角和定理易得底角是65°.故选A.
方法总结:等腰三角形的两个底角相等,已知 一个内角,则这个角可能是底角也可能是顶角, 要分两种情况讨论.
∴ ∠B= ∠ADB,∠C= ∠DAC 设 ∠C=x,则 ∠DAC=x, ∠B= ∠ADB= ∠C+ ∠DAC=2x, 在△ABC中, 根据三角形内角和定理,得
2x+x+26°+x=180°, 解得x=38.5°.
∴ ∠C= x=38.5°, ∠B=2x=77°.
人教版《等腰三角形》ppt课件初中数学1
一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°
17.1 等腰三角形 - 第2课时课件(共20张PPT)
D
2.下列条件中,不能得到等边三角形的是 ( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形
D
3.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC. 求证:△BDE是等腰三角形.
证明:∵DE∥AC,∴∠CAD=∠EDA,∵AD平分∠BAC,∴∠CAD=∠EAD,∴∠EAD=∠EDA,∵AD⊥BD,∴∠EAD+∠B=90°,∠EDA+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.
1.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是( ) A. ∠A=50°,∠B=70° B. ∠A=70°,∠B=40°C. ∠A=30°,∠B=90°D. ∠A=80°,∠B=60°
D
拓展提升
2.如图,在△ABC中,∠B=60°,D是BC延长线上一点,过D作DE⊥AB于E,交AC于F,若CD=CF。求证:△ABC是等边三角形
分析:先作出线段BC=a,再作出BC的垂直平分线.在这条垂直平分线上截取点A,使点A到BC的距离=h,连接相关点即得.
作法:如图.(1)作线段BC=a.(2)作BC的垂直平分线MD,垂足为D.(3)在DM上截取DA=h.(4)连接AB,AC.△ABC即为所求.
随堂练习
1.如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形有 ( )A.3个 B.4个 C.5个 D.6个
证明:①当∠A=60°时,∵AB=AC, ∴∠B=∠C,∵在△ABC中,∠A= 60 °,∴∠B=∠C= ½(180。-∠A) = 60°.∴∠A= ∠ B =∠C.∴△ABC是等边三角形.②当∠B=60°(或∠C=60°)时,∵AB=AC, ∴∠B=∠C=60°,∴∠A(180。-∠B-∠C) = 60°.∴∠A= ∠ B =∠C.∴△ABC是等边三角形.
2.下列条件中,不能得到等边三角形的是 ( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形
D
3.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC. 求证:△BDE是等腰三角形.
证明:∵DE∥AC,∴∠CAD=∠EDA,∵AD平分∠BAC,∴∠CAD=∠EAD,∴∠EAD=∠EDA,∵AD⊥BD,∴∠EAD+∠B=90°,∠EDA+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.
1.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是( ) A. ∠A=50°,∠B=70° B. ∠A=70°,∠B=40°C. ∠A=30°,∠B=90°D. ∠A=80°,∠B=60°
D
拓展提升
2.如图,在△ABC中,∠B=60°,D是BC延长线上一点,过D作DE⊥AB于E,交AC于F,若CD=CF。求证:△ABC是等边三角形
分析:先作出线段BC=a,再作出BC的垂直平分线.在这条垂直平分线上截取点A,使点A到BC的距离=h,连接相关点即得.
作法:如图.(1)作线段BC=a.(2)作BC的垂直平分线MD,垂足为D.(3)在DM上截取DA=h.(4)连接AB,AC.△ABC即为所求.
随堂练习
1.如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形有 ( )A.3个 B.4个 C.5个 D.6个
证明:①当∠A=60°时,∵AB=AC, ∴∠B=∠C,∵在△ABC中,∠A= 60 °,∴∠B=∠C= ½(180。-∠A) = 60°.∴∠A= ∠ B =∠C.∴△ABC是等边三角形.②当∠B=60°(或∠C=60°)时,∵AB=AC, ∴∠B=∠C=60°,∴∠A(180。-∠B-∠C) = 60°.∴∠A= ∠ B =∠C.∴△ABC是等边三角形.
度沪科版八年级数学上册课件1等腰三角形(第2课时)
B
C
D
定理:在直角三角形中,如果一个锐 角等于 30°,那么它所对的直角边等 于斜边的一半.
生活实例:一次数学实践活动的内容是测量河宽,如
图,即测量A, B之间的距离。小明想出了一个方法:从 点A出发,沿着与直线AB成60 °角的AC方向前进至C , 在C处测得∠ C= 30 °,量出AC的长,它就是河的宽度。 这个方法正确吗?请说明理由。
(等角对等边)
错,因为都不是在同一个三角形中。
练一练
1.在△ABC中, 已∠A=40°,∠B=70°,判断 △ABC是什么三角形,为什么?
A
2.已知:如图,∠A=∠DBC =360,∠C=720。计算∠1和∠2, 并说明图中有哪些等腰三角形?
D
1 2
B
C
• 推论1 三个角都相等的三角形是等 边三角形.
探索思考
任画线段BC,分别以点B和
点C为顶点,以BC为一边,
在BC的同侧画两个相等的角,
两角的终边相交A点.因此,
在△ABC中,∠B=∠C.量一
量, AB与AC相等吗?
A
B
C
思考:“等腰三角形两个底角相等” 逆命题是什么吗?是真命题吗?
如果一个三角形有两个角相等,那么这 两个角所对的边也相等.
已知:如图,在△ABC中,∠B=∠C.
• 推论2 有一个角是60°的等腰三角 形是等边三角形.
• 在△ABC中, ∠C=90°, ∠A=30°,
延长BC到点D,使CD=BC.连接AD,
A
则△ACD≌△ACB.
所以AD=AB, ∠BAC=∠DAC=30°, ∠BAD= 60°.
所以 △ABD是等边三角形,
所以BD=AB.则
1.1等腰三角形(第2课时)等边三角形的性质课件19张北师大版八年级数学下册
15°
解析:在等边△ABC中,
∵AD为BC边上的高,
A
∴∠ADC=90°,
∠CAD=30°,
∵AE=AD,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
B
D
E
C
2.如图,△ABC和△BDE都是等边三角形,求证:AE=CD.
证明:∵△ABC是等边三角形,
∴AB=CB,∠ABE=60°,
∵△BDE是等边三角形,
两腰上的中线相等,两腰上的高相等.
探究新知
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
1
1
(1)如果∠ABD= ∠ABC,∠ACE = ∠ACB,那么BD=CE吗?如
3
1
果∠ABD= ∠ABC,
4
么结论?
∠ACE
3
1
= ∠ACB呢?由此你能得到一个什
4
A
证明:∵AB=AC,∴∠ABC=∠ACB,
∵ ∠ABD=∠ABC,∠ACE =∠ACB,
E
D
∴∠ABD=∠ACE,∠DBC=∠ECB,
∵BC=CB,∴△EBC≌△DCB,
∴BD=CE.
B
C
探究新知
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
1
1
(1)如果∠ABD= ∠ABC,∠ACE = ∠ACB,那么BD=CE吗?如
三条对称轴
探究归纳
等边三角形的性质:
等边三角形的三个内角都相等,并且每一个角都
等于60°.
A
符号语言:
∵
∴
△ABC 是等边三角形,
∠A =∠B =∠C =60°.
解析:在等边△ABC中,
∵AD为BC边上的高,
A
∴∠ADC=90°,
∠CAD=30°,
∵AE=AD,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
B
D
E
C
2.如图,△ABC和△BDE都是等边三角形,求证:AE=CD.
证明:∵△ABC是等边三角形,
∴AB=CB,∠ABE=60°,
∵△BDE是等边三角形,
两腰上的中线相等,两腰上的高相等.
探究新知
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
1
1
(1)如果∠ABD= ∠ABC,∠ACE = ∠ACB,那么BD=CE吗?如
3
1
果∠ABD= ∠ABC,
4
么结论?
∠ACE
3
1
= ∠ACB呢?由此你能得到一个什
4
A
证明:∵AB=AC,∴∠ABC=∠ACB,
∵ ∠ABD=∠ABC,∠ACE =∠ACB,
E
D
∴∠ABD=∠ACE,∠DBC=∠ECB,
∵BC=CB,∴△EBC≌△DCB,
∴BD=CE.
B
C
探究新知
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
1
1
(1)如果∠ABD= ∠ABC,∠ACE = ∠ACB,那么BD=CE吗?如
三条对称轴
探究归纳
等边三角形的性质:
等边三角形的三个内角都相等,并且每一个角都
等于60°.
A
符号语言:
∵
∴
△ABC 是等边三角形,
∠A =∠B =∠C =60°.
《认识三角形》三角形PPT课件(第2课时)教学课件
若三角形的两边为2和5,则第三边c的长度应满足的条件___3__﹤__c_﹤__8____; 若三角形的两边为a和b,则第三边c的长度应满足的条件 是_____∣__a_-_b_∣__﹤__c__﹤__∣__a_+_b__∣__;
随堂检测
1.已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( D )
将它的一个角对折,使其两边重合.
折痕AD即为三角形的∠A的角平分线.
AA
A分线”是一条射线
“三角形的角平分线”还是射线 吗?
在三角形中,一个内角的平分线与它的对边
相交,这个角的顶点与交点之间的线段叫三
角形的角平分线.
B
线段
注意 ! “三角形的角平分线”是一条线段.
A.2
B.3
C.4
D.1
2.小李有2根木棒,长度分别为10cm和15cm,要组成一个三角形(木棒的首
尾分别相连接),还需在下列4根木棒中选取( C )
A.4cm长的木棒
B.5cm长的木棒
C.20cm长的木棒
D.25cm长的木棒
随堂检测
3.下列长度的三根小木棒能构成三角形的是( D )
A.2cm,3cm,5cm
A 12
D
C
∠1=∠2
活动探究
每人准备锐角三角形、钝角三角形和直角三角形纸片各一个. (1) 你能分别画出这三个三角形的三条角平分线吗? (2) 你能用折纸的办法得到它们吗? (3) 在每个三角形中,这三条角平分线之间有怎样的位置关系? 将你的结果与同伴进行交流.
三角形的三条角平分线交于同一点.
随堂检测
c 2.5;
三角形三边关系,三角形任意两边之和大于第三边;三角形任意两边之 差小于第三边.
随堂检测
1.已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( D )
将它的一个角对折,使其两边重合.
折痕AD即为三角形的∠A的角平分线.
AA
A分线”是一条射线
“三角形的角平分线”还是射线 吗?
在三角形中,一个内角的平分线与它的对边
相交,这个角的顶点与交点之间的线段叫三
角形的角平分线.
B
线段
注意 ! “三角形的角平分线”是一条线段.
A.2
B.3
C.4
D.1
2.小李有2根木棒,长度分别为10cm和15cm,要组成一个三角形(木棒的首
尾分别相连接),还需在下列4根木棒中选取( C )
A.4cm长的木棒
B.5cm长的木棒
C.20cm长的木棒
D.25cm长的木棒
随堂检测
3.下列长度的三根小木棒能构成三角形的是( D )
A.2cm,3cm,5cm
A 12
D
C
∠1=∠2
活动探究
每人准备锐角三角形、钝角三角形和直角三角形纸片各一个. (1) 你能分别画出这三个三角形的三条角平分线吗? (2) 你能用折纸的办法得到它们吗? (3) 在每个三角形中,这三条角平分线之间有怎样的位置关系? 将你的结果与同伴进行交流.
三角形的三条角平分线交于同一点.
随堂检测
c 2.5;
三角形三边关系,三角形任意两边之和大于第三边;三角形任意两边之 差小于第三边.
等腰三角形的判定PPT课件
4:1
13. (易错题)用粗细均匀的电热丝烧水,通电10 min可烧
开一壶水,若将电热丝对折起来接在原来的电路中,
知1-讲
1.判定定理:有两个角相等的三角形是等腰三角形(简称 “等角对 等边”). 几何语言:如图,在△ABC中, ∵∠B=∠C, ∴AB=AC.
2. 等腰三角形的性质与判定的异同: 相同点:使用的前提都是“在同一个三角形中”. 不同点:由三角形的两边相等,得到它们所对的角相等,是等腰 三角形的性质; 由三角形的两角相等,得到它是等腰三角形,是等腰三角形的判定. 即:等腰三角形的性质:两边相等→这两边所对的角相等. 等腰三角形的判定:两角相等→这两角所对的边相等.
知2-练
1
(中考·泰安)如图,AD是△ABC的角平分线,
DE⊥AC,垂足为E,BF∥AC交ED的延长线
于点F,若BC恰好平分∠ABF,AE=2BF.给
出下列结论:①DE=DF;②DB=DC;
③AD⊥BC;④AC=3BF,
其中正确的结论共有( )
A.4个 B.3个 C.2个 D.1个
知2-练
2
如图,在△ABC中,∠ABC和∠ACB
三角形是等腰三角形”来证明. (3)当线段垂直平分线上的点与线段两端点构成三角形
时,应用“线段垂直平分线上的点到线段两端的距离 相等”来证明.
1.必做: 完成教材P138 T2 2.补充: 请完成《点拨》剩余部分习题
第十五章 电能与电功率
15.4 探究焦耳定律
第1课时 认识焦耳定律
(1)图乙是等质量的水和煤油温度随加热时间变化的图象, 为了使图甲中温度计示数变化更明显,则烧瓶内的液体
电流大小
9.在如图所示的电路中,电阻丝R1=R3=10 Ω,R2=R4 =5 Ω,电源电压相等且不变。闭合开关S1、S2后, 电路都正常工作,则在相同时间内产生热量最少的 电阻丝是_____。若电阻丝R1、R2都由同种材料制成 且长度相同R,2 则电阻 丝_____比较细。
13. (易错题)用粗细均匀的电热丝烧水,通电10 min可烧
开一壶水,若将电热丝对折起来接在原来的电路中,
知1-讲
1.判定定理:有两个角相等的三角形是等腰三角形(简称 “等角对 等边”). 几何语言:如图,在△ABC中, ∵∠B=∠C, ∴AB=AC.
2. 等腰三角形的性质与判定的异同: 相同点:使用的前提都是“在同一个三角形中”. 不同点:由三角形的两边相等,得到它们所对的角相等,是等腰 三角形的性质; 由三角形的两角相等,得到它是等腰三角形,是等腰三角形的判定. 即:等腰三角形的性质:两边相等→这两边所对的角相等. 等腰三角形的判定:两角相等→这两角所对的边相等.
知2-练
1
(中考·泰安)如图,AD是△ABC的角平分线,
DE⊥AC,垂足为E,BF∥AC交ED的延长线
于点F,若BC恰好平分∠ABF,AE=2BF.给
出下列结论:①DE=DF;②DB=DC;
③AD⊥BC;④AC=3BF,
其中正确的结论共有( )
A.4个 B.3个 C.2个 D.1个
知2-练
2
如图,在△ABC中,∠ABC和∠ACB
三角形是等腰三角形”来证明. (3)当线段垂直平分线上的点与线段两端点构成三角形
时,应用“线段垂直平分线上的点到线段两端的距离 相等”来证明.
1.必做: 完成教材P138 T2 2.补充: 请完成《点拨》剩余部分习题
第十五章 电能与电功率
15.4 探究焦耳定律
第1课时 认识焦耳定律
(1)图乙是等质量的水和煤油温度随加热时间变化的图象, 为了使图甲中温度计示数变化更明显,则烧瓶内的液体
电流大小
9.在如图所示的电路中,电阻丝R1=R3=10 Ω,R2=R4 =5 Ω,电源电压相等且不变。闭合开关S1、S2后, 电路都正常工作,则在相同时间内产生热量最少的 电阻丝是_____。若电阻丝R1、R2都由同种材料制成 且长度相同R,2 则电阻 丝_____比较细。
湘教版八年级上册等腰三角形的性质课件
7如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、
AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则
∠BDE的度Байду номын сангаас是 (
A.45°
B.52.5°
C.67.5°
D.75°
C )
分层作业
8如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=
102°,则∠ADC=
52 度.
称轴过哪个顶点,哪条边?
是.对称轴过两条腰相交的顶点,过底边.
预习导学
2.通过上述的“操作”,试视察右图,AD为折痕(即对称轴),
思考:
(1)底角∠B与底角∠C能完全重合吗?说明了什么?
能,两底角相等.
(2)BD与CD能完全重合吗?说明AD是△ABC的什
么特殊线段?
能,是底边上的中线.
预习导学
(3)∠CAD与∠BAD能完全重合吗?说明了AD是△ABC的什
36°,则∠1的度数为
A.36°
B.60°
C.72°
D.108°
( C
)
5等腰三角形中有一个角是50°,那么其他两个角的度数是
50°,80°或65°,65° .
分层作业
6腰长与底边长不相等的等腰三角形中,三角形的中线、角平分
线和高共有(重合的算一条)
A.9条
B.3条
C.7条
D.3条或7条
(
C
)
分层作业
等腰三角形底边中线、 顶角平分线
、 底
,三线合一,在证明或计算中,一定要记得使用,
因为不需要再添辅助线,这条线本身就具有多重“身份”.
合作探究
·方法点拨·
等腰三角形性质定理的常用运用方法:由两边相等推导出两角
等腰三角形的判定 教学课件
AB=AC
C (B)
新知导入 课程讲授 随堂练习 课堂小结
等腰三角形的判定定理
问题2 运用所学知识,证明你的猜想. 已知:如图,在△ABC中, ∠B=∠C.
求证:AB=AC. 证明:作∠A的平分线,交BC于点D.
在△ABD和△ACD中,
∠B=∠C, ∠1=∠2, AD=AD, ∴ △ABD ≌ △ACD,∴AB=AC.
CONTENTS
2
新知导入 课程讲授 随堂练习 课堂小结
等腰三角形的判定定理
问题1 如图,在△ABC 中,∠B=∠C.
A
(1)请你作出∠BAC的平分线AD.
(2)将△ABC沿AD所在直线折叠△ABC
被直线AD分成的两部分能够重合吗?
(3)由上面的操作,你是否发现了边 AB
B
D
和边AC之间的数量关系?
A.5个 B.4个 C.3个 D.2个
新知导入 课程讲授 随堂练习 课堂小结
3.在如图所示的三角形中,若AB=AC,则能被一条直线分成两个小等 腰三角形的是( D )
A.①②③ B.①②④ C.②③④ D.①③④
新知导入 课程讲授 随堂练习 课堂小结
4.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种 衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆 OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之 间的距离是__1_8____cm.
九年级数学上册人教版
第十七章 特殊三角形
17.1 等腰三角形
第2课时 等腰三角形的判定
知识要点
1 2 3
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:等腰三角形的两底角平分线相等.
已知:如图在△ABC中,AB=AC,BD,CE是△ABC的
角平分线. 求证:BD=CE
A
证明:∵AB=AC
∴∠ABC=∠ACB
E
D
∵ BD,CE是△ABC的角平分线
∴ ∠DBC= 12∠ABC, ∠ECB= ∴ ∠DBC= ∠ECB
∠_1A_ CB
2
B
C 又∵BC=CB,∠ABC=∠ACB
A
方法一:三角形的三边相等;
方法二:三角形的三角相等;
B
C
方法三:有一个角等于60°的等腰三角形是等边三角形
你能说明 理由吗?
.
13
讲授新课
等边三角形的判定方法:
1.三边相等的三角形是等边三角形.
2.三个内角都等于60 °的三角形是等边三角形.
3.有一个内角等于60 °的等腰三角形是等边三 角形.
.
7
讲授新课
等腰三角形和等边三角形的关系
等腰三角形 等边三角形
.
8
讲授新课
1、关于等边三角形你已经知道了哪些知识? 2、你还想知道些什么?
.
9
讲授新课
提出问题:等边三角形
A
有哪些特殊的性质呢?
AB=BC=CA
B
C
根据等腰三角形的性质去探讨等边三角形的 性质:
①从边看;②从角看;③从重要线段看
.
10
讲授新课
探索结论:
等边三角形性质定理
1.等边三角形的内角都相等,且等于60 °
2.等边三角形各边上中线,高线和所对角的
平分线都三线合一
C
F
E
A
D
BB
.
11
讲授新课
3.等边三角形每条边上的中线,高和它所对角的平分
线互相重合.
A
56
D
E
O
3 1
B
78 9 10
F
4 2
C
.
12
讲授新课
怎样判断三角形ABC是等边三角形?
∴△BDC≌△CEB(ASA)
∴ BD=CE
.
3
讲授新课
等腰三角形两条腰上的中线相等吗? 等腰三角形两条腰上的高相等吗?
.
4
讲授新课
等腰三角形中,有一种特殊的情况,就是 底边与腰相等,这时三角形三边都相等,我们 把三条边都相等的三角形叫做等边三角形.
A
B
C
.
5
讲授新课
三条边都相等的三角形叫做等边三角形
北师版 八年级 下册
•第一章 三角形的证明
1 等腰三角形(第2课时)
.
1
复习旧知
A
1.等腰三角形两个底角相等,简称 “等边对等角”.
2.等腰三角形的顶角平分线、底边
上的中线、底边上的高
B
C
互相重合.简称“三线合一”.
D
.
2
讲授新课
在等腰三角形中作出两底角的平分线,这两个底角的
平分线相等吗?你能证明你的结论吗?
A B C 6 0
根据“等边对等角”可得:
A B C
而 A B C 1 8 0
所以 A B C
180 60
B
3
.
AC6ຫໍສະໝຸດ 讲授新课1. 在△ ABC中,若AB=BC=CA, A
则 ∠A=__6_0_°__
∠B=__6_0_°__
∠C=__6_0_°__
B
C
2.推论
等边三角形的各角都相等,并且每 一个角都等于60 °.
.
14
课堂练习
例证1、明:△∵AB△C是AB等C是边等三边角三形角,形以下三种分法分别得 到∴的∠△AA=D∠EB是=∠等C边=6三0°角形吗,为什么?
①又在∵D边EA∥BB、CAC上分别截取AD=AE. ②∴作∠A∠DAE=D∠EB=,6∠0°A,EDD=、∠EC分别在边AB、AC上. ③∴∴△过∠A边ADDAAEE是B=上∠等A一边=三点∠角ADE形作D.DAE∥BC,交边ACA于E点.
A
R●
Q ●
B
●
P
C
.
17
课后小结
通过本节课的学习,你有哪些收获?
等腰三角形
等边三角形性质定理 等边三角形的判定方法
.
18
D B
①
E
D 60° E
D
E
CB
②
CB
③
C
.
15
课堂练习
例2、已知:如图,P、Q是△ABC的边BC 上的两点,并PB=PQ=QC=AP=AQ, 求∠BAC的大小.
.
16
课堂练习
例3、如图,已知△ABC是等边三角形,P是BC 上一点,问在CA和AB上是否存在点Q和R,使 △PQR为等边三角形?若存在,求出点Q和R, 并加以证明;若不存在.请说明理由.