基于ABAQUS的轴承—齿轮系统静力学分析

合集下载

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析采用ABAQUS进行齿轮接触应力分析 1 接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。

不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用;而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。

所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。

两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。

接触问题存在两个较大的难点:其一,在用户求解问题之前,不知道接触区域;其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。

在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。

齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。

但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。

传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。

为此,人们对齿面接触及其应力分布进行了大量的研究。

有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。

2 采用ABAQUS进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例

线性静力学分析实例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

一悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。

ν材料性质:弹性模量32e=E=,泊松比3.0均布载荷:Mpap6.0=图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 -- ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。

1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。

基于abaqus的齿轮模态分析

基于abaqus的齿轮模态分析

基于ABAQUS 的直齿圆柱齿轮模态分析余西伟(上海大学 机电工程与自动化学院,上海 200072)摘要:齿轮是最常用的零部件之一,起到了传递扭矩的作用。

为了研究齿轮固有频率和振型的影响因素,改善齿轮的动态特性,本文运用SolidWorks 三维建模软件建立齿轮建模,并运用ABAQUS 和振动分析理论对模型进行模态分析,用Lanczos 算法提取固有频率,得到齿轮的模态和振型,为优化齿轮的结构设计提供支持。

关键词:模态分析;ABAQUS;固有频率;振型Modal Analysis of Spur Gear Based on ABAQUS(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: T he gear is one of the most common parts, transferring the torque effect. In order to research the factors affecting the gear’s natural frequency and vibration mode and improving the dynamic characteristics.The gear model established by 3D model software SolidWorks was carried on modal analysis by the software ABAQUS and the vibration analysis theory. The modal andvibration model was extracted by using Lanczos algorithm ,providing support for the optimization design of gear.Key words: modal analysis; ABAQUS; natural frequency; vibration mode0引言齿轮是依靠齿的啮合传递扭矩的轮状机械零件。

基于ABAQUS软件下的齿轮动态应力分析

基于ABAQUS软件下的齿轮动态应力分析

基于ABAQUS软件下的齿轮动态应力分析摘要:通过实例阐述了直齿轮齿条的精确建模方法,介绍其具体的设计原理,将生成的一对齿轮齿条进行标准安装生成啮合模型。

通过ABAQUS转化成由节点及元素组成的有限元模型,进行接触应力的静力学求解及算法原理。

说明了新的接触单元法的精确性、有效性和可靠性。

关键词:ABAQUS:有限元;动态应力中图分类号:TH132.41 文献标志码:A 文章编号:1001-7836-作者简介:毕研修(1953-),副高级工程师,从事机械工程研究;狄刚(1979-),讲师,从事轮式装甲车研究。

齿轮传动[1]具有效率高、寿命长等特点,但是齿轮传动的失效将直接影响机械传动。

齿轮失效主要发生在轮齿部位,主要形式为齿面磨损、点蚀、轮齿折断、齿面胶合以及塑性变形等。

在齿轮啮合过程中,由于齿面的弹性变形和齿面载荷分布的非线性以及啮合齿对数发生变化和接触区改变等多种复杂因素的影响,使齿轮的接触强度计算变得异常复杂。

目前,国内、外已广泛采用有限元分析法对齿轮传动强度进行分析计算。

特别是对于接触问题的分析,有限元分析法能较好地处理轮齿受载后的啮合接触面力学和变形的边界条件。

ANSYS软件是一款通用有限元分析软件,其强大的建模、网格划分和分析功能极大的方便了用户对产品进行分析。

本文以ABAQUS软件为平台,研究了在ANSYS环境下实现直齿轮精确建模和接触应力分析的方法,从另一角度对啮合传动过程中齿轮齿条的受力情况进行分析计算。

1 有限元分析为了模拟该机构,在建模时,需要定义齿轮、齿条接触面为接触对。

使用单元接触面上的高斯点确定间隙和接触力,能够使得接触力和摩擦力分布在单元面上,计算精度和可靠性提高,计算有摩擦力时的能力和效率加强,对于任意摩擦系数都可求解,而且效率很高,收敛容易。

1.1 几何模型的建立某渐开线直齿圆柱齿轮齿条的参数齿条材料为42CrMo4V(高频硬化),齿轮材料为17CrNiMo6(表面硬化)。

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析1 接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。

不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用;而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。

所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。

两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。

接触问题存在两个较大的难点:其一,在用户求解问题之前,不知道接触区域;其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。

在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。

齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。

但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。

传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。

为此,人们对齿面接触及其应力分布进行了大量的研究。

有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。

2 采用ABAQUS进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。

因此对齿轮进行接触应力分析在缝翼的运动过程中具有重要的意义。

基于ABAQUS的轴承_齿轮系统静力学分析

基于ABAQUS的轴承_齿轮系统静力学分析

- 13 -基于ABAQUS 的轴承—齿轮系统静力学分析常 立1,2(1. 山东大学机械工程学院,山东 济南250000;2. 山东丝绸纺织职业学院,山东 淄博 255300)摘 要:文章利用ABAQUS 建立了轴承—齿轮系统的静态有限元模型,通过该模型的应力分布云图和位移分布云图,提出了一些优化改进轴承—齿轮系统结构的方案和措施。

关键词:轴承—齿轮系统;ABAQUS ;有限元法中图分类号:TN957.2 文献标识码:A 文章编号:1000-8136(2010)27-0013-02现代战争对雷达的性能要求越来越高,轴承—齿轮系统作为雷达的关键基础构件对其性能有重要影响。

这就要求人们采用现代设计方法对雷达的关键基础构件进行设计,通过有限元方法,设计人员可以综合考虑影响齿轮系统动态特性的各种因素,在产品的设计阶段就对产品的性能和存在的问题一目了然,从而为产品改进设计提供了有效的技术途径,并大大减少了物理样机试制的时间和研制经费的投入,提高了设计效率。

1 研究方法及理论依据轴承—齿轮系统作为天线运动的载体,以底座为基础,包括横滚、俯仰和方位三个互相垂直的旋转运动,工作原理见图1。

横滚转动为第一级运动,俯仰转动为第二级运动,方位转动为第三级运动。

天线安装在方位部分的天线托架上,随着方位部分一起转动。

方位部分的运动是主要运动,带动天线以一定的转速进行扫描,横滚部分和俯仰部分的运动只用来调整扫描的区域范围。

系统通过对电机进行合理的控制,使轴承—齿轮系统的三个轴以一定的转速转动或转到某个角度。

在3个轴的运动合成下,天线可完成对一定区域的扫描。

图1 轴承—齿轮系统工作原理图轴承—齿轮系统的每一级运动都由一个独立的伺服电机驱动。

伺服电机经过两级齿轮减速,最后输出到轴承—齿轮系统的每一个轴上。

在横滚的传动中,电机和减速部分固定不动,只有横滚转体转动;而在俯仰和方位的传动中,伺服电机和减速部分跟着转体一起绕轴转动。

基于ABAQUS电主轴动静态分析技术_徐福林

基于ABAQUS电主轴动静态分析技术_徐福林

2011 年 12 月 的整体性能。
徐福林, 等: 基于 ABAQUS 电主轴动静态分析技术
· 19·
1
1. 1
电主轴动静态有限元数学模型
电主轴的静态特性数学模型
电主轴静态特性 的 指 标 是 电主 轴的 主 轴 单 元 的 ( 以下简称主轴) 静刚度。反 映 主 轴 抵抗 静态 外 载荷 的能力, 它 与 主 轴 的 负 荷 能 力 和 抗 震 性 密 切 相 关。 主轴的弯曲刚度定 义 为: 径 向 载荷 作 用 下, 主 轴产生 的单位径向 位 移。 径 向 静 载荷 为 F r , 主 轴产生的 径 向位移为 a。则主轴的弯曲静刚度 K 为:
0
引言
和高加工精 度 为 主要 特 征 的 切 削 加 工技术, 是近年 来发展迅速的数控 切 削 加 工技术。 主 轴系统 配 置 是 数控机床高 速 加 工的一项 关 键 技术, 数控机 床 的机 电一体化电主轴是实 现高 速 切 削 的 关 键 部 件。 与 普 通电机主轴相比具有如下特点: ( 1 ) 转速高, 启动时间短、 输出扭矩和功率大; ( 2 ) 恒功率调速范围宽; ( 3 ) 典型的机 电 一 体 化部 件。 能 对 轴 承 与 电 机 的温升、 主轴的振动 等 参 数实 施 在线 监 控, 确保 主 轴 高速运转时安全可靠。 因此, 数控机床的 主 轴系统设计时, 必 须 对 电主 轴动静态特 性进行 分 析, 以优 化 电主 轴的结构设计 及支承结构的 配 置, 使 数控机 床 的 电主 轴 具有 较 高 的回转精度 和 较 好 的动 态响应 特 性, 提 高 数控机 床
[1 ]
, 电主 轴的动
( 2)
式中, φ 为结点振幅矩阵, ω 为该振型对应的频率。 将( 7 ) 式代入( 6 ) 式得:

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例

线性静力学分析实例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

一 悬臂梁的线性静力学分析问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises 应力、位移分布。

材料性质:弹性模量32e E =,泊松比3.0=ν均布载荷:Mpa p 6.0=图1-1 悬臂梁受均布载荷图启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS -- ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。

创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。

可以参照下面步骤创建悬臂梁的几何模型。

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例ABAQUS(全称为Abaqus FEA)是一种广泛使用的有限元分析软件。

它可用于进行结构、热、电、磁、多物理场等各类工程问题的数值模拟和分析。

在本文中,我们将介绍一个ABAQUS线性静力学分析的实例。

假设我们要分析一个悬臂梁的变形和应力分布。

悬臂梁是一种常见的结构,通常由一根固定在一端的梁杆组成,另一端悬空。

我们将使用ABAQUS来计算这个悬臂梁的变形和应力。

首先,我们需要创建模型。

在ABAQUS中,可以通过几何建模或直接输入节点和单元的方式来创建模型。

这里我们使用几何建模来构建一个悬臂梁。

在ABAQUS的图形用户界面中,选择"Part",然后使用"Sketch"工具绘制悬臂梁的剖面。

在剖面绘制完成后,选择"Extrude"工具将其拉伸为所需长度。

接下来,我们需要定义材料特性。

在这个实例中,我们假设悬臂梁是由钢材料构成的。

在ABAQUS中,可以通过创建相应的材料属性来定义材料的性能。

选择"Material",然后创建一个具有适当材料属性的钢材料。

随后,我们需要定义悬臂梁的边界条件。

在这个实例中,我们将在悬臂梁的固定端施加一个约束,防止其发生位移。

在ABAQUS中,可以选择"Assembly",然后选择"Constraints"来设置边界条件。

在这里我们选择固定一个端点。

完成边界条件的设置后,我们需要划分网格。

在ABAQUS中,使用网格划分将悬臂梁划分成小的单元,以便数值计算。

选择"Mesh",然后选择适当的网格划分方式和单元类型。

然后,我们需要定义加载条件。

在这个实例中,我们将在悬臂梁的空悬端施加一个垂直向下的加载。

在ABAQUS中,可以选择"Loading",然后选择适当的加载类型和大小。

现在,所有的模型设置都完成了,我们可以进行分析。

abaqus有限元分析(齿轮轴)

abaqus有限元分析(齿轮轴)

Abaqus分析报告(齿轮轴)名称:Abaqus齿轮轴姓名:班级:学号:指导教师:一、简介所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。

齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。

图1.齿轮轴装配结构图二、模型建立与分析通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。

1.part针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。

2.材料属性材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性截面类型定义为solid,homogeneous。

4.组装组装时选择dependent方式。

5.建立分析步本例用通用分析中的静态通用分析(Static,General)。

6.施加边界条件与载荷对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。

边界条件:分别在三个轴径突变处采用固定约束,如图2。

载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。

均布载荷比计算:矩形键槽数据:长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm齿轮数据:=齿轮分度圆半径:R2 =14.7mm、压力角:20°、单个齿轮受力面积:S2 ≈72mm2通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。

键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。

取键槽均布载荷幅值为1260,齿轮载荷幅值为200.由于键槽不是平面,所以需要切割,再施加均布载荷。

图3 键槽载荷施加比较保守考虑,此处齿轮载荷只施加到一个齿轮上。

abaqus 静力学显式

abaqus 静力学显式

abaqus 静力学显式Abaqus是一种强大的有限元分析软件,可用于解决各种工程力学问题。

本文将介绍Abaqus的静力学显式分析方法,重点讨论其原理、应用和优势。

静力学显式分析是Abaqus中的一种求解方法,适用于短时间内发生的快速变形问题。

与静力学隐式分析方法不同,显式方法在求解过程中不需要迭代,因此更适合处理大变形和高速碰撞等复杂情况。

Abaqus的静力学显式分析方法基于显式时间积分算法,该算法将结构的动态响应转化为静态问题的求解。

这种方法适用于在求解区域内时间步长较小的情况,可以更准确地模拟结构的变形和应力分布。

在使用Abaqus进行静力学显式分析时,首先需要建立结构的有限元模型。

模型的准确性和精细程度将直接影响分析结果的准确性。

因此,在建模过程中,需要根据实际情况选择适当的单元类型、材料参数和边界条件。

建立好有限元模型后,可以设置加载条件和求解参数。

加载条件包括施加在结构上的外力或位移,可以根据实际需求进行设置。

求解参数包括时间步长、收敛准则等,可以根据结构的特点进行调整,以获得更准确的分析结果。

在开始求解之前,需要定义材料的本构模型。

Abaqus提供了多种材料模型,包括线性弹性模型、塑性模型、黏弹性模型等。

根据结构材料的实际特性,选择适当的本构模型进行定义。

求解过程中,Abaqus将根据加载条件和求解参数逐步求解结构的静态响应。

在每个时间步长内,Abaqus会根据结构的初始状态和外部加载条件计算结构的变形和应力分布。

通过多个时间步长的累积,可以得到整个过程中结构的变形和应力分布情况。

Abaqus的静力学显式分析方法具有以下优势:首先,求解过程简单快速,不需要迭代,适用于处理大变形和高速碰撞等快速变形问题。

其次,可以准确地模拟结构的变形和应力分布,为工程设计和优化提供可靠的分析结果。

此外,Abaqus还具有丰富的后处理功能,可以对分析结果进行可视化和数据处理。

Abaqus的静力学显式分析方法是一种强大的工程力学分析工具,可以用于解决各种结构的静态响应问题。

ABAQUS线性静力学分析报告实例

ABAQUS线性静力学分析报告实例

线性静力学分析实例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS中,该类问题通常采用静态通用(Static,General )分析步或静态线性摄动(Static,Lin ear perturbatio n )分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I )的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

一悬臂梁的线性静力学分析1.1问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。

材料性质:弹性模量E 2e3,泊松比0.3均布载荷:p 0.6Mpa图1-1悬臂梁受均布载荷图1.2 启动 ABAQUS启动ABAQUS 有两种方法,用户可以任选一种。

(1 )在Windows 操作系统中单击“开始”--“程序” --ABAQUS 6.10 -- ABAQUS/CAE 。

(2)在操作系统的 DOS 窗口中输入命令:abaqus cae 。

启动ABAQUS/CAE 后,在出现的Start Section (开始任务)对话框中选 择 Create Model Database 。

1.3创建部件在ABAQUS/CAE 顶部的环境栏中,可以看到模块列表: Module : Part , 这表示当前处在Part (部件)模块,在这个模块中可以定义模型各部分的几何 形体。

abaqus实例

abaqus实例

四川大学
本科生课程考试试卷
姓名:李星
学号:0743058024
所在院、系(所):建筑与环境学院
专业:工程力学
ABAQUS学习实验报告
——轴承座的线性静力学分析
1.问题描述
本文详细讲解一个固定轴承座的静力学分析实例,如图1所示,采用国际单位制;长度mm,力N,应力MPa。

改轴承通过四个安装孔进行固定,轴承孔的下半部分承受由轴传来的径向压力载荷(50MPa),轴承孔周围上承受推力载荷(10MPa)。

轴瓦和轴设置为显示体约束,跟随轴承孔壁上三点定义的坐标系运动。

本例选用静态通用(Static,General)分析步,分析轴承座的应力和位移状态。

图1
2.创建部件
根据部件几何特征及尺寸建立几何模型(具体做法从略),得到定位前的三个部件实体,这三个实体的几何位置如图2所示。

图2
3.定义材料及截面属性
定义的材料常数为:E=200000;v=0.3;之后创建截面特性及分配界面特性。

4.装配部件
在环境栏的Module列表中选择Assembly功能模块,装配三个部件,如图3所示。

图3
5.建模后续工作
图4
6.分析
创建分析作业,再进行数据检查,提交分析作业后保存模型。

Step Time为1秒的时候模型如下图5所示;
此时的变形为下图6所示
此时的应力状态,最大主应力的灰度云图如下图7和图8所示。

图7
Mises应力云图的剖面图如下图9所示。

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例

线性静力学分析实例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

一悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。

ν材料性质:弹性模量32e=E=,泊松比3.0均布载荷:Mpap6.0=图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 -- ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。

1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。

Abaqus静力分析实验报告

Abaqus静力分析实验报告

(一)创建部件1:模块:部件2:从菜单栏中选择部件→创建,弹出创建部件对话框,将名称修改为Basis,模型空间选择三维,类型选择可变形,形状选择实体,类型为拉伸。

采用SI(mm)量纲,考虑到所创建部件的最大尺寸为100mm,大约尺寸改为200,为最大尺寸的2倍。

3:点击继续,进入草绘模式,为实体拉伸绘制界面草图。

4:点击创建构造工具,创建2条构造线,分别与X轴、Y 轴重合5:点击添加约束工具,弹出添加约束对话框,选择固定约束,按住shift点选2条构造线,按鼠标中键。

6:点击创建矩形工具,在绘图区随意绘制一个矩形7:点击添加尺寸工具,修改矩形的长为100,宽为608:点击添加约束工具,使矩形分别关于2条构造线对称9:点击创建圆工具,先绘制1个圆,半径为5,圆心到长边的距离为15,圆心到宽边的距离为1010:点击镜像工具,选择镜像操作的类型为复制,选择水平方向的构造线为镜像轴,选择上一步绘制的第1个圆为待镜像的对象,按下鼠标中键完成镜像11:使用同样的方法绘制另外2个圆12:按下鼠标中键完成截面草图的绘制,弹出编辑基本拉伸对话框,将深度修改为20,点击确定13:拉伸出的实体如下图14:点击创建实体:拉伸工具,为实体拉伸选择一个合适的平面,点选一条合适的边作为草绘的参照,进入草绘模式15:绘制如下界面草图16:按下鼠标中键退出草绘模式,弹出编辑拉伸对话框,类型为指定深度,深度设为20,由于绘图区中的拉伸方向不是想要的方向,点击翻转方向按钮17:点击确定,完成拉伸18:点击创建切削:拉伸工具,为拉伸切削选择一个合适的平面,选择一条合适的边作为草绘参照19:绘制如下界面草图:2 0:按下鼠标中键完成草图绘制,弹出编辑切削拉伸对话框,类型选择指定深度,深度修改为5,选择默认的拉伸切削方向,点击确定,结束切削拉伸21:点击创建实体:拉伸工具,为实体拉伸选择一个合适的平面,选择一条边作为草绘参照,进入草绘模式,绘制如下界面草图22:按下鼠标中键退出草绘模式,弹出编辑拉伸对话框,类型设为指定深度,深度设为523:点击确定,完成拉伸24:创建一个基本平面,作为三角形肋板的镜像平面点击创建基准平面工具,点选偏移所参照的平面,通过输入大小来设定偏移,确定偏移方向,输入偏移大小为30,点击确定完成基准平面的创建25:点击创建镜像工具,选择刚刚创建的基准平面为镜像平面,并选择保留原几何,完成镜像至此已经完成部件模型的创建(二)定义材料和界面属性1:模块:属性2:点击创建材料工具,弹出编辑材料对话框,名称改为Steel,通用→密度,输入密度为7.85e-93:力学→弹性→弹性,输入弹性模量为2.1e5,输入泊松比为0.3,点击确定4:点击创建截面工具,弹出创建截面对话框,将名称修改为Basis_Section,类别为实体,类型为均质,点击继续,在弹出的编辑截面对话框中选择确定5:点击指派截面工具,选择整个部件为要指派截面的区域,点击完成,弹出编辑截面指派对话框,点击确定(三)生成装配件1:模块:装配2:点击创建实例工具,弹出创建实例对话框,点击确定(四)定义分析步和指定输出要求1:模块:分析步2:点击创建分析步工具,弹出创建分析步对话框,修改名称为Basic_Load,程序类型选择通用,静力、通用。

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例

线性静力学分析实例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

一悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。

ν材料性质:弹性模量3=2eE=,泊松比3.0均布载荷:Mpa=p6.0图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 -- ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。

1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQU进行齿轮接触应力分析采用ABAQU ffi行齿轮接触应力分析1接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。

不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用; 而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。

所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。

两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。

接触问题存在两个较大的难点: 其一,在用户求解问题之前,不知道接触区域; 其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。

在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。

齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。

但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。

传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。

为此,人们对齿面接触及其应力分布进行了大量的研究。

有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。

2采用ABAQU进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。

ABAQUS线性静力学分析实例

ABAQUS线性静力学分析实例

线性静力学分析实例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分.一悬臂梁的线性静力学分析1。

1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1—1所示,求梁受载后的Mises应力、位移分布。

ν材料性质:弹性模量3=E=,泊松比3.02e均布载荷:Mpa=p6.0图1-1 悬臂梁受均布载荷图1。

2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”-—ABAQUS 6。

10 -—ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database.1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体.可以参照下面步骤创建悬臂梁的几何模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于ABAQUS的轴承—齿轮系统静力学分析
摘要:文章利用ABAQUS建立了轴承—齿轮系统的静态有限元模型,通过该模型的应力分布云图和位移分布云图,提出了一些优化改进轴承—齿轮系统结构的方案和措施。

关键词:轴承—齿轮系统;ABAQUS;有限元法
中图分类号:TN957.2 文献标识码:A 文章编号:1000-8136(2010)27-0013-02 现代战争对雷达的性能要求越来越高,轴承—齿轮系统作为雷达的关键基础构件对其性能有重要影响。

这就要求人们采用现代设计方法对雷达的关键基础构件进行设计,通过有限元方法,设计人员可以综合考虑影响齿轮系统动态特性的各种因素,在产品的设计阶段就对产品的性能和存在的问题一目了然,从而为产品改进设计提供了有效的技术途径,并大大减少了物理样机试制的时间和研制经费的投入,提高了设计效率。

1研究方法及理论依据
轴承—齿轮系统作为天线运动的载体,以底座为基础,包括横滚、俯仰和方位三个互相垂直的旋转运动,工作原理见图1。

横滚转动为第一级运动,俯仰转动为第二级运动,方位转动为第三级运动。

天线安装在方位部分的天线托架上,随着方位部分一起转动。

方位部分的运动是主要运动,带动天线以一定的转速进行扫描,横滚部分和俯仰部分的运动只用来调整扫描的区域范围。

系统通过对电机进行合理的控制,使轴承—齿轮系统的三个轴以一定的转速转动或转到某个角度。

在3个轴的运动合成下,天线可完成对一定区域的扫描。

图1轴承—齿轮系统工作原理图
轴承—齿轮系统的每一级运动都由一个独立的伺服电机驱动。

伺服电机经过两级齿轮减速,最后输出到轴承—齿轮系统的每一个轴上。

在横滚的传动中,电机和减速部分固定不动,只有横滚转体转动;而在俯仰和方位的传动中,伺服电机和减速部分跟着转体一起绕轴转动。

2轴承—齿轮系统有限元模型建立
该有限元模型以六面体单元、四边形壳单元为主,还有少部分的连接单元、弹簧阻尼单元、刚性单元。

利用Hypermesh统计该模型有111 850个单元,132 053个节点。

轴承—齿轮系统的整体结构的网格划分,见图2。

图2轴承—齿轮系统整体结构的有限元模型
3载荷处理
由于静态分析的特殊性,在静态分析时不用考虑齿轮的啮合,轴承的内外圈的关系,所以在静态分析时就不考虑齿轮的啮合时轮齿的啮合问题,轴承的内圈和外圈与其他相连结构通过实体单元连为一体。

建立如下坐标系:原点位于底座平面与圆筒轴线的交点,X轴沿轴线方向,Y轴位于底座平面内且指向底座缺口,Z轴满足右手定则。

在该轴承—齿轮系统的静力学分析中分别施加x,y,z 3个方向大小为1 g的加速度来分析,每一个方向对应一种工况。

约束加在3个螺栓上,约束其x,y,z 3个方向的平动自由度。

4结果与分析
在ABAQUS上计算了该有限元模型的应力与位移,模拟了3种工况。

见图3、图4、图5。

从中可以看出:
(1)在x,y,z 3种方向的载荷作用下,模型的最大应力分布在底盘的连接螺栓的附近,这是由于应力集中引起的。

另外,除了螺栓的连接处就是底座加强筋上的应力最大。

(2)在x方向加载时模型的最大应力和最大位移都小于在y方向和z方向载入时的位移和应力,说明该模型在y,z方向的刚强度要比在x方向的刚强度小。

(3)在这3个方向上加载时筋板上的应力都比较大,可见筋板的作用就在此体现出来,增强了模型底盘的刚强度。

(4)在位移云图上可以看出方位电机、减速器的地方位移较大,因为此处的刚度较小,而方位驱动电机的质量和减速器的质量都集中于此,故产生较大的作用力,即位移较大。

(5)可以增加筋板的厚度或增加筋板的数目提高底座的刚强度;可以适当增加连接螺栓的数目,这可以减小螺栓连接处的应力。

参考文献
1 石守红、韩玉强、张锁怀.齿轮耦合的转子—轴承系统的研究现状[J].机械科学与技术,2002.21(5):703~706
Based on ABAQUS Bearing—Gear System Static Analysis
Chang Li
Abstract:Using ABAQUS the bearing — gear system static finite element model, stress distribution by the model cloud, and the displacement contours, made some optimization improvements bearing —gear system structure of the programs and measures.
Key words:bearings — gear system; ABAQUS; finite element method。

相关文档
最新文档