卫星变轨教案新部编本
变轨问题分析教学设计
卫星变轨问题分析复习课教学设计赵爽【教学目标】(一)知识和能力目标1. 知道卫星变轨的原理2. 理解卫星变轨过程中运行参量和能量的分析方法,并熟练运用(二)过程与方法目标1.学生通过讨论,观看动画演示,总结变轨过程中运行参量和能量的比较方法。
2.通过分析具体问题帮助学生建立常规模型,巩固变轨问题的分析。
(三)情感、态度、价值观目标让学生在讨论交流中培养合作学习,归纳总结的学习素养。
【重点与难点】重点:卫星变轨运行参量和能量的分析难点:卫星变轨运行参量和能量的分析【教学过程】 (一) 复习提问1、开普勒行星运动三定律的内容?2卫星的各物理量随轨道半径变化的规律:3.第一宇宙速度的推导:方法一:方法二:4.离心运动与向心运动的条件?(二)新课教学一、变轨原理分析1、思考:卫星在哪些条件下会变轨运行?2、①当卫星的速度突然增加时G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GM r可知其运行速度比原轨道时减小。
②当卫星的速度突然减小时:G Mm r 2>m v 2r即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GM r 可知其运行速度比原轨道时增大。
卫星的发射和回收就是利用这一原理。
二、卫星变轨运行参量分析1、(1)比较卫星在1轨道通过P 点速度1v 、2轨道通过P 点速度P v 22轨道通过Q 点速度Q v 2、3轨道速度3v 的大小关系?教师分析:①椭圆轨道上远地点速度小,近地点速度大②轨道切点速度规律:内轨道速度小,外轨道速度大③两个圆轨道上,轨道越高,速度越小(2)比较卫星在2轨道通过Q 点加速度和3轨道通过Q 点加速度的大小? 教师分析:由ma r Mm G =2知,加速度大小由r 决定(3)比较卫星在3个轨道上运行的周期大小?教师分析:由开普勒第三定律k T a =23可知,半长轴越大,周期越长例1. 在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图所示,飞船在返回地面时,要在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的一点,M 为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有( )A.飞船在轨道Ⅱ上经过P 的速度小于经过Q 的速度B.飞船在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过M 的速度C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.飞船在轨道Ⅱ上经过P 的加速度小于在轨道Ⅰ上经过M 的加速度【变式训练1】(多选) 航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的与地球相切的一点,如图所示.关于航天飞机的运动,下列说法中正确的有( ).A .在轨道Ⅱ上经过A 的速度小于经过B 的速度B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度三、卫星变轨能量分析学生活动:比较卫星在1、2两个轨道上运行的动能、势能、机械能大小?教师分析:①由1轨道到2轨道,卫星克服引力做功,势能增大②由1轨道到2轨道,需要发动机点火加速,发动机牵引力做正功,卫星机械能增加③由卫星在圆轨道上速度与轨道半径公式rGM v =知,2轨道速度小,动能小 例2. (2013·新课标II 卷)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小。
卫星的轨道变化教学案例
卫星的轨道变化教学案例柳林一中刘富刚一,教学目标:知识与技能:1,知道人造地球卫星的种类和轨道类型。
让学生了解各类轨道上卫星的用途。
2,知道卫星发射过程中的轨道变化情况,了解相关航天知识。
过程与方法:1,通过万有引力对于向心力的提供情况,结合必修二中第五章离心运动的相关知识,引导学生分析为什么卫星轨道会发生变化?2,通过课件演示轨道变化情况。
3,通过例题引导学生判断轨道变化后各有关物理量的变化情况。
情感态度与价值观1.了解人类探索太空的过程,感受科技发展对人类进步的巨大促进作用,通过对我国航天事业发展史的了解,渗透爱国主义教育。
2.感知人类探索宇宙的梦想及巨大成就,激发学生学习物理的热情,促使学生树立献身科学的人生观和价值观。
教学重点:卫星轨道变化是满足的条件教学难点:卫星轨道变化前后加速度,速度,能量的判断教学方法和手段:以启发式教学、建构主义为指导思想,采用以问题为中心的课堂教学模式,结合多媒体辅助教学。
二,问题导学:1,我们知道世界各国发射了许多的人造地球卫星,大家知道卫星的种类有哪些?(提示:从不同的标准来分)2,我们物理中侧重从轨道的角度来研究卫星,那么大家想一下,人造地球卫星有哪些轨道?,3,卫星的轨道发射时是否一步到位?为什么不采取直接发射?人类舍近求远有什么原因?4,卫星轨道的变化是如何操作的?理论依据呢?轨道变化后各物理量的变化情况如何判断?(提示:课后完成),5,结合相关知识谈一下我国近年来航空航天方面的进展和取得的成就?作为中学生,我们又应该抱有多大的抱负?(课后自己查阅相关资料)三,教学过程1,回答上面的几个问题。
2,老师介绍卫星的种类和轨道类型。
按照轨道倾角的大小,卫星的轨道可以分三种:第一种,倾角为零度,卫星轨道平面与地球赤道平面重合,卫星始终在赤道上空飞行,这种轨道称为赤道轨道。
例如,地球同步卫星。
第二种,倾角为90度,卫星轨道平面与地球赤道平面垂直,卫星飞越南北两极上空,叫极地轨道。
高中物理卫星变轨教案
高中物理卫星变轨教案教学目标:
1. 了解卫星的轨道运动和变轨原理
2. 掌握卫星变轨的方法和技术
3. 能够应用所学知识解决实际问题
教学内容:
1. 卫星的轨道运动
2. 卫星的能量和速度
3. 卫星的变轨原理
4. 卫星变轨的方法和技术
教学步骤:
一、导入(5分钟)
引入卫星的概念,并讨论卫星在空间中的运动和轨道。
二、讲解卫星的轨道运动(15分钟)
1. 讲解卫星的轨道类型和特点
2. 分析卫星的轨道运动规律和运行方式
3. 探讨卫星在不同轨道上的运动状态
三、讲解卫星的能量和速度(15分钟)
1. 讲解卫星的动能和势能
2. 探讨卫星的速度与轨道高度的关系
3. 分析卫星所受的牵引力和离心力对轨道的影响
四、讲解卫星的变轨原理(15分钟)
1. 讲解卫星变轨的概念和目的
2. 分析卫星变轨的主要驱动力和影响因素
3. 探讨卫星变轨的方式和方法
五、讲解卫星变轨的方法和技术(20分钟)
1. 讲解卫星的轨道调整和推进技术
2. 分析卫星变轨的主要方法和实施步骤
3. 探讨卫星变轨的前景和应用领域
六、案例分析(15分钟)
通过案例分析卫星变轨的应用和实践,让学生理解卫星变轨的重要性和实际意义。
七、课堂练习(10分钟)
布置相关练习题目,巩固学生对卫星变轨的理解和掌握。
八、总结与展望(5分钟)
总结本节课的重点内容,展望未来学习和实践中对卫星变轨的进一步探讨。
教学结束。
专题08:卫星的发射、变轨与对接--高中物理专题教案(人教版2019必修第二册)
第七章万有引力与宇宙航行专题08:卫星的发射、变轨与对接考点卫星的变轨与飞船的对接(一)从地面发射后变轨到预定轨道卫星发射后要经过多次变轨方可到达预定轨道,如图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B点(远地点)再次点火加速进入圆形轨道Ⅰ。
(二)卫星变轨的实质两类变轨离心运动向心运动示意图变轨起因卫星速度突然增大卫星速度突然减小万有引力与向心力的大小关系GMmr2<mv2r GMmr2>mv2r 变轨结果速度增大——离心:转变为椭圆轨道运动或在较大半径圆轨道上运动速度减小——近心:转变为椭圆轨道运动或在较小半径圆轨道上运动新圆轨道上运动的速率比原轨道的小,周期比原轨道的大新圆轨道上运动的速率比原轨道的大,周期比原轨道的小一、选择题1.(2023江苏盐城高级实验中学模拟)北京时间2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在我国海南文昌航天发射场点火发射,12时10分,天舟五号货运飞船仅用2小时便顺利实现了与中国空间站天和核心舱的快速交会对接,如图所示,创造了世界纪录。
下列说法中正确的是()A.天舟五号货运飞船的发射速度大于11.2 km/sB.天和核心舱的运行速度大于7.9 km/sC.在文昌航天发射场点火发射,是为了更好地利用地球的自转速度D.要实现对接,天舟五号货运飞船应在天和核心舱相同轨道处加速2.(2023江苏常州期中)2023年我国“天宫号”太空实验室实现了长期有人值守,我国迈入空间站时代。
如图所示,“天舟号”沿椭圆轨道运动,A、B两点分别为椭圆轨道的近地点和远地点,在B点“天舟号”与“天宫号”完成对接。
则()A.“天舟号”从A处飞向B处做加速运动B.“天舟号”与“天宫号”的运动周期相等C.“天舟号”与“天宫号”对接前必须先加速运动D.“天舟号”与“天宫号”在对接处受到地球的引力相等3.(2023江苏南通海安高级中学月考)神舟十三号载人飞船从核心舱下方采用“径向对接”的方式实现对接,“径向对接”指两对接口在地球半径的延长线上,对接前两者要在间隔一定距离的位置保持相对静止一段时间,如图所示,之后飞船再向上逐步接近核心舱实现对接,则()A.相对静止时,飞船的速度大于核心舱的速度B.相对静止时,飞船的向心加速度大于核心舱的向心加速度C.飞船通过加速逐步向上靠近核心舱D.飞船的速度大于7.9 km/s才能最终靠近核心舱4.(2022江苏连云港期中)在人类太空征服史中,让人类遗憾的是“太空加油站”的缺乏。
2024届高考一轮复习物理教案(新教材鲁科版):卫星变轨问题 双星模型
专题强化七 卫星变轨问题 双星模型目标要求 1.会处理人造卫星的变轨和对接问题.2.掌握双星、多星系统,会解决相关问题.3.会应用万有引力定律解决星球“瓦解”和黑洞问题.题型一 卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示.(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ.(3)在椭圆轨道B 点(远地点)将做近心运动,G Mm r 22>m v B 2r 2,再次点火加速,使G Mmr 22=m v ′2r 2,进入圆轨道Ⅲ. 2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B . (2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B 点的加速度也相同. (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,从轨道Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速,则E 1<E 2<E 3.考向1 卫星变轨问题中各物理量的比较例1 2021年2月,“天问一号”探测器成功实施近火制动,进入环火椭圆轨道,并于2021年5月软着陆火星表面,开展巡视探测等工作,探测器经过多次变轨后登陆火星的轨迹示意图如图所示,其中轨道Ⅰ、Ⅲ为椭圆,轨道Ⅱ为圆.探测器经轨道Ⅰ、Ⅱ、Ⅲ运动后在Q点登陆火星,O点是轨道Ⅰ、Ⅱ、Ⅲ的切点,O、Q还分别是椭圆轨道Ⅲ的远火星点和近火星点.下列关于探测器说法正确的是()A.由轨道Ⅰ进入轨道Ⅱ需在O点减速B.在轨道Ⅱ上运行的周期小于在轨道Ⅲ上运行的周期C.在轨道Ⅱ上运行的线速度大于火星的第一宇宙速度D.在轨道Ⅲ上,探测器运行到O点的线速度大于运行到Q点的线速度答案 A解析由高轨道进入低轨道需要点火减速,则由轨道Ⅰ进入轨道Ⅱ需在O点减速,A正确;根据开普勒第三定律有r23T22=a33T32,因轨道Ⅱ的半径大于轨道Ⅲ的半长轴,所以在轨道Ⅱ上运行的周期大于在轨道Ⅲ上运行的周期,B错误;根据v=GMR可知,在轨道Ⅱ上运行的线速度小于火星的第一宇宙速度,C错误;根据开普勒第二定律可知,近地点的线速度大于远地点的线速度,所以在轨道Ⅲ上,探测器运行到O点的线速度小于运行到Q点的线速度,D错误.例2嫦娥五号完美完成中国航天史上最复杂任务后,于2020年12月17日成功返回,最终收获1 731克样本.图中椭圆轨道Ⅰ、100公里环月轨道Ⅱ及月地转移轨道Ⅲ分别为嫦娥五号从月球返回地面过程中所经过的三个轨道示意图,下列关于嫦娥五号从月球返回过程中有关说法正确的是()A.在轨道Ⅱ上运行时的周期小于在轨道Ⅰ上运行时的周期B.在轨道Ⅰ上运行时的加速度大小始终大于在轨道Ⅱ上运动时的加速度大小C.在N点时嫦娥五号经过点火加速才能从轨道Ⅱ进入轨道Ⅲ返回D.在月地转移轨道上飞行的过程中可能存在不受万有引力的瞬间答案 C解析 轨道Ⅱ的半径大于椭圆轨道Ⅰ的半长轴,根据开普勒第三定律可知,在轨道Ⅱ上运行时的周期大于在轨道Ⅰ上运行时的周期,故A 错误;在轨道Ⅰ上的N 点和轨道Ⅱ上的N 点受到的万有引力相同,所以在两个轨道上经过N 点时的加速度相同,故B 错误;从轨道Ⅱ到月地转移轨道Ⅲ做离心运动,在N 点时嫦娥五号需要经过点火加速才能从轨道Ⅱ进入轨道Ⅲ返回,故C 正确;在月地转移轨道上飞行的过程中,始终在地球的引力范围内,不存在不受万有引力的瞬间,故D 错误.考向2 变轨问题中的能量变化例3 2020年我国北斗三号组网卫星全部发射完毕.如图为发射卫星的示意图,先将卫星发射到半径为r 1=r 的圆轨道上做匀速圆周运动,到A 点时使卫星加速进入椭圆轨道,到椭圆轨道的远地点B 点时,再次改变卫星的速度,使卫星进入半径为r 2=2r 的圆轨道做匀速圆周运动.已知卫星在椭圆轨道上时到地心的距离与速度的乘积为定值,卫星在椭圆轨道上A 点时的速度为v ,卫星的质量为m ,地球的质量为m 地,引力常量为G ,则发动机在A 点对卫星做的功与在B 点对卫星做的功之差为(不计卫星的质量变化)( )A.34m v 2+3Gm 地m 4r B.34m v 2-3Gm 地m 4r C.58m v 2+3Gm 地m 4r D.58m v 2-3Gm 地m 4r答案 D解析 当卫星在r 1=r 的圆轨道上运行时,有G m 地m r 2=m v 02r ,解得在此圆轨道上运行时通过A点的速度为v 0=Gm 地r ,所以发动机在A 点对卫星做的功为W 1=12m v 2-12m v 02=12m v 2-Gm 地m 2r ;当卫星在r 2=2r 的圆轨道上运行时,有G m 地m (2r )2=m v 0′22r ,解得在此圆轨道上运行时通过B 点的速度为v 0′=Gm 地2r,而根据卫星在椭圆轨道上时到地心的距离与速度的乘积为定值可知,在椭圆轨道上通过B 点时的速度为v 1=r 1r 2v =12v ,故发动机在B 点对卫星做的功为W 2=12m v 0′2-12m v 12=Gm 地m 4r -18m v 2,所以W 1-W 2=58m v 2-3Gm 地m 4r ,D 正确.考向3 飞船对接问题例4 北京时间2021年10月16日神舟十三号载人飞船与在轨飞行的天和核心舱顺利实现径向自主交会对接,整个交会对接过程历时约6.5小时.为实现神舟十三号载人飞船与空间站顺利对接,飞船安装有几十台微动力发动机,负责精确地控制它的各种转动和平动.对接前飞船要先到达和空间站很近的相对静止的某个停泊位置(距空间站200 m).为到达这个位置,飞船由惯性飞行状态转入发动机调控状态,下列说法正确的是( ) A .飞船先到空间站同一圆周轨道上同方向运动,合适位置减速靠近即可 B .飞船先到与空间站圆周轨道垂直的同半径轨道上运动,合适位置减速靠近即可 C .飞船到空间站轨道下方圆周轨道上同方向运动,合适的位置减速即可 D .飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可 答案 D解析 根据卫星变轨时,由低轨道进入高轨道需要点火加速,反之要减速,所以飞船先到空间站下方的圆周轨道上同方向运动,合适位置加速靠近即可,或者飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可,故选D.题型二 双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.(2)特点①各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2. ②两星的周期、角速度相同,即T 1=T 2,ω1=ω2.③两星的轨道半径与它们之间的距离关系为r 1+r 2=L . ④两星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3T 2G .2.多星模型所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.常见的多星及规律:常见的三星模型①Gm 2(2R )2+GMm R 2=ma 向②Gm 2L2×cos 30°×2=ma 向 常见的四星模型①Gm 2L 2×cos 45°×2+Gm 2(2L )2=ma 向②Gm 2L 2×cos 30°×2+GmM ⎝⎛⎭⎫ L 3 2=ma 向例5 (多选)(2023·福建龙岩市调研)有科学家认为,木星并非围绕太阳运转,而是围绕着木星和太阳之间的某个公转点进行公转,因此可以认为木星并非太阳的行星,它们更像是太阳系中的“双星系统”.假设太阳的质量为m 1,木星的质量为m 2,它们中心之间的距离为L ,引力常量为G ,则下列说法正确的是( )A .太阳的轨道半径为m 1m 1+m 2LB .木星的轨道半径为m 2m 1LC .这个“双星系统”运行的周期为2πLLG ()m 1+m 2D .若认为木星绕太阳中心做圆周运动,则木星的运行周期为2πL L Gm 1答案 CD解析 双星是同轴转动模型,其角速度相等,有相同的运动周期,根据万有引力提供向心力,对太阳有Gm 1m 2L 2=m 14π2T 2R ,对木星有Gm 1m 2L 2=m 24π2T 2r ,其中L =R +r ,联立解得R =m 2m 1+m 2L ,r =m 1m 1+m 2L ,T =2πL 3G (m 1+m 2)=2πLLG (m 1+m 2),故A 、B 错误,C 正确;若认为木星绕太阳中心做圆周运动,则有Gm 1m 2L 2=m 24π2T ′2L ,解得T ′=2πLLGm 1,故D 正确. 例6 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称为“潮汐瓦解事件”.天鹅座X -1就是一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .两者之间的万有引力变大B .黑洞的角速度变大C .恒星的线速度变大D .黑洞的线速度变大 答案 AC解析 假设恒星和黑洞的质量分别为M 、m ,环绕半径分别为R 、r ,且m <M ,两者之间的距离为L ,则根据万有引力定律有G MmL 2=F 向,恒星和黑洞的距离不变,随着黑洞吞噬恒星,在刚开始吞噬的较短时间内,M 与m 的乘积变大,它们间的万有引力变大,故A 正确;双星系统属于同轴转动的模型,角速度相等,根据万有引力提供向心力有G MmL2=mω2r =Mω2R ,其中R +r =L ,解得恒星的角速度ω=G (M +m )L 3,双星的质量之和不变,则角速度不变,故B 错误;根据mω2r =Mω2R ,得M m =rR,因为M 减小,m 增大,所以R 增大,r 减小,由v恒=ωR ,v 黑=ωr ,可得v 恒变大,v 黑变小,故C 正确,D 错误.例7 (多选)如图所示,质量相等的三颗星体组成三星系统,其他星体对它们的引力作用可忽略.设每颗星体的质量均为m ,三颗星体分别位于边长为r 的等边三角形的三个顶点上,它们绕某一共同的圆心O 在三角形所在的平面内以相同的角速度做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .每颗星体所需向心力大小为2G m 2r 2B .每颗星体运行的周期均为2πr 33GmC .若r 不变,星体质量均变为2m ,则星体的角速度变为原来的2倍D .若m 不变,星体间的距离变为4r ,则星体的线速度变为原来的14答案 BC解析 任意两颗星体间的万有引力大小F 0=G m 2r 2,每颗星体受到其他两个星体的引力的合力为F =2F 0cos 30°=3G m 2r 2,A 错误;由牛顿第二定律可得F =m (2πT )2r ′,其中r ′=r 2cos 30°=3r3,解得每颗星体运行的周期均为T =2πr 33Gm ,B 正确;星体原来的角速度ω=2πT=3Gm r 3,若r 不变,星体质量均变为2m ,则星体的角速度ω′=2πT ′=6Gmr 3,则星体的角速度变为原来的2倍,C 正确;星体原来的线速度大小v =2πr ′T ,若m 不变,星体间的距离变为4r ,则星体的周期T ′=2π(4r )33Gm=16πr 33Gm =8T ,星体的线速度大小v ′=2πT ′×4r ′=πr ′T ,则星体的线速度变为原来的12,D 错误.题型三 星球“瓦解”问题 黑洞1.星球的瓦解问题当星球自转越来越快时,星球对“赤道”上的物体的引力不足以提供向心力时,物体将会“飘起来”,进一步导致星球瓦解,瓦解的临界条件是赤道上的物体所受星球的引力恰好提供向心力,即GMmR 2=mω2R ,得ω=GMR 3.当ω>GMR 3时,星球瓦解,当ω<GMR 3时,星球稳定运行. 2.黑洞黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.当天体的逃逸速度(逃逸速度为其第一宇宙速度的2倍)超过光速时,该天体就是黑洞.考向1 星球的瓦解问题例8 (2018·全国卷Ⅱ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m 2/kg 2.以周期T 稳定自转的星体的密度最小值约为( )A .5×109 kg/m 3B .5×1012 kg/m 3C .5×1015 kg/m 3D .5×1018 kg/m 3答案 C解析 脉冲星稳定自转,万有引力提供向心力,则有G Mm r 2≥mr 4π2T 2,又知M =ρ·43πr 3,整理得密度ρ≥3πGT 2=3×3.146.67×10-11×(5.19×10-3)2 kg/m 3≈5.2×1015 kg/m 3,故选C.考向2 黑洞问题例9 科技日报北京2017年9月6日电,英国《自然·天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞.科学研究表明,当天体的逃逸速度(逃逸速度为其第一宇宙速度的2倍)超过光速时,该天体就是黑洞.已知某天体与地球的质量之比为k ,地球的半径为R ,地球的环绕速度(第一宇宙速度)为v 1, 光速为c ,则要使该天体成为黑洞,其半径应小于( ) A.2v 12R kc2 B.2kc 2R v 12C.k v 12R 2c 2D.2k v 12R c2答案 D解析 地球的第一宇宙速度为v 1=GMR ,则黑洞的第一宇宙速度为v 2=GkMr,并且有2v 2>c ,联立解得r <2k v 12Rc2,所以D 正确,A 、B 、C 错误.课时精练1.(多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( ) A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于稀薄气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服稀薄气体阻力做的功小于引力势能的减小量 答案 BD解析 在卫星轨道半径变小的过程中,地球引力做正功,引力势能一定减小,卫星轨道半径变小,动能增大,由于稀薄气体阻力做负功,机械能减小,选项A 、C 错误,B 正确;根据动能定理,卫星动能增大,卫星克服稀薄气体阻力做的功小于地球引力做的正功,而地球引力做的正功等于引力势能的减小量,所以卫星克服阻力做的功小于引力势能的减小量,选项D 正确.2.在高空运行的同步卫星功能失效后,往往会被送到同步轨道上空几百公里处的“墓地轨道”,以免影响其他在轨卫星并节省轨道资源.如图所示,我国实践21号卫星在地球同步轨道“捕获”已失效的北斗二号G2卫星后,成功将其送入“墓地轨道”.已知同步轨道和墓地轨道的轨道半径分别为R 1、R 2,转移轨道与同步轨道、墓地轨道分别相切于P 、Q 点,地球自转周期为T 0,则北斗二号G2卫星( )A .在墓地轨道运行的速度大于其在同步轨道运行的速度B .在转移轨道上经过P 点的加速度大于在同步轨道上经过P 点的加速度C .若要从Q 点逃脱地球的引力束缚,则在该处速度必须大于11.2 km/sD .沿转移轨道从P 点运行到Q 点所用最短时间为T 04(R 1+R 2)32R 13答案 D解析 根据GMm R 2=m v 2R可得v =GMR,可知在墓地轨道运行的速度小于其在同步轨道运行的速度,故A 错误;在转移轨道上经过P 点和在同步轨道上经过P 点时受到的万有引力相同,有GMmR 2=ma ,可知在转移轨道上经过P 点的加速度等于在同步轨道上经过P 点的加速度,故B 错误;卫星要逃脱地球引力束缚,则卫星离开地球时的速度必须大于等于11.2 km/s ,卫星从离开地球到墓地轨道过程中动能减少,所以卫星要从墓地轨道逃脱地球,需要的速度比第二宇宙速度11.2 km/s 小,故C 错误;由开普勒第三定律有R 13T 02=(R 1+R 22)3T 12,可得沿转移轨道从P 点运行到Q 点所用最短时间为t =T 12=T 04(R 1+R 2)32R 13,故D 正确. 3.(2023·重庆市模拟)我国2021年9月27日发射的试验十号卫星,轨道Ⅱ与Ⅰ、Ⅲ分别相切于A 、B 两点,如图所示,停泊轨道Ⅰ距地面约200 km ,卫星沿轨道Ⅰ过A 点的速度大小、加速度大小分别为v 1、a 1;卫星沿转移椭圆轨道Ⅱ过A 点的速度大小、加速度大小分别为v 2、a 2,过B 点的速度大小、加速度大小分别为v 3、a 3;同步轨道Ⅲ距地面约36 000 km ,卫星沿轨道Ⅲ过B 点的速度大小、加速度大小分别为v 4、a 4.下列关于试验十号卫星说法正确的是( )A .a 1<a 2 v 1<v 2B .a 2>a 3 v 2=v 3C .a 3=a 4 v 3<v 4D .a 2=a 4 v 2<v 4答案 C 解析 卫星无论沿轨道Ⅰ过A 点还是沿转移椭圆轨道Ⅱ过A 点,受到的万有引力相同,根据GMm r 2=ma 可知,加速度a 1=a 2,但是卫星过A 点由轨道Ⅰ到转移椭圆轨道Ⅱ需要点火加速,所以v 1<v 2,故A 错误;由题图可知,卫星沿转移椭圆轨道Ⅱ过A 点受到的万有引力大于过B 点受到的万有引力,根据GMm r 2=ma 可知a 2>a 3,由开普勒第二定律可知v 2>v 3,故B 错误;同理可得,卫星沿转移椭圆轨道Ⅱ过B 点的加速度等于轨道Ⅲ过B 点的加速度,即a 3=a 4,卫星由转移椭圆轨道Ⅱ经B 点到轨道Ⅲ需要点火加速,故v 3<v 4,故C 正确;根据GMm r2=ma 可知a 2>a 4,由GMm r 2=m v 2r可知v 1>v 4,则v 2>v 4,故D 错误. 4.一近地卫星的运行周期为T 0,地球的自转周期为T ,则地球的平均密度与地球不因自转而瓦解的最小密度之比为( )A.T 0TB.T T 0C.T 02T 2D.T 2T 02 答案 D解析 对近地卫星,有 G Mm R 2=m (2πT 0)2R ,地球的质量M =ρ1·43πR 3,联立解得ρ1=3πGT 02,以地球赤道处一质量为m 0的物体为研究对象,只有当它受到的万有引力大于等于它随地球一起旋转所需的向心力时,地球才不会瓦解,设地球不因自转而瓦解的最小密度为ρ2,则有G Mm 0R2=m 0(2πT )2R ,M =ρ2·43πR 3,联立解得ρ2=3πGT 2,所以ρ1ρ2=T 2T 02,故选D. 5.(多选)宇宙中两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统A 、B 绕其连线上的某固定点O 做匀速圆周运动,如图所示.若A 、B 两星球到O 点的距离之比为3∶1,则( )A .星球A 与星球B 所受引力大小之比为1∶1B .星球A 与星球B 的线速度大小之比为1∶3C .星球A 与星球B 的质量之比为3∶1D .星球A 与星球B 的动能之比为3∶1答案 AD解析 星球A 所受的引力与星球B 所受的引力均为二者之间的万有引力,大小是相等的,故A 正确;双星系统中,星球A 与星球B 转动的角速度相等,根据v =ωr 可知,线速度大小之比为3∶1,故B 错误;A 、B 两星球做匀速圆周运动的向心力由二者之间的万有引力提供,可得G m A m B L 2=m A ω2r A =m B ω2r B ,则星球A 与星球B 的质量之比为m A ∶m B =r B ∶r A =1∶3,故C 错误;星球A 与星球B 的动能之比为E k A E k B =12m A v A 212m B v B 2=m A (ωr A )2m B (ωr B )2=31,故D 正确. 6.(2023·安徽蚌埠市检测)2022年7月24日14时22分,中国“问天”实验舱在海南文昌航天发射场发射升空,准确进入预定轨道,任务取得圆满成功.“问天”实验舱入轨后,顺利完成状态设置,于北京时间2022年7月25日3时13分,成功对接于离地约400 km 的“天和”核心舱.“神舟”十四号航天员乘组随后进入“问天”实验舱.下列判断正确的是( )A .航天员在核心舱中完全失重,不受地球的引力B .为了实现对接,实验舱和核心舱应在同一轨道上运行,且两者的速度都应大于第一宇宙速度C .对接后,组合体运动的加速度大于地球表面的重力加速度D .若对接后组合体做匀速圆周运动的周期为T ,运行速度为v ,引力常量为G ,利用这些条件可估算出地球的质量答案 D解析 航天员受到的地球的引力充当绕地球做圆周运动的向心力,处于完全失重状态,A 错误;为了实现对接,实验舱应先在比核心舱半径小的轨道上加速做离心运动,逐渐靠近核心舱,两者速度接近时实现对接,但速度小于第一宇宙速度,B 错误;对接后,组合体运动的加速度a =GM r 2<GM R 2=g ,C 错误;对接后,若已知组合体的运行周期T 、运行速度v 和引力常量G ,可由GMm r 2=m v 2r 、v =2πr T ,联立得M =v 3T 2πG,D 正确. 7.(2023·福建厦门市模拟)如图所示,设地球半径为R ,假设某地球卫星在距地球表面高度为h 的圆形轨道Ⅰ上做匀速圆周运动,运行周期为T ,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近地点B 时,再次点火进入近地轨道Ⅲ绕地做匀速圆周运动,引力常量为G ,不考虑其他星球的影响,则下列说法正确的是( )A .地球的质量可表示为4π2R 3GT 2B .该卫星在轨道Ⅲ上B 点的速率大于在轨道Ⅱ上A 点的速率C .卫星在圆轨道Ⅰ和圆轨道Ⅲ上做圆周运动时,轨道Ⅰ上动能小,引力势能大,机械能小D .卫星从远地点A 向近地点B 运动的过程中,加速度变小答案 B解析 卫星在轨道Ⅰ上运动过程中,万有引力提供向心力,故G Mm (R +h )2=m 4π2T 2(R +h ),解得M =4π2(R +h )3GT 2,故A 错误;卫星在轨道Ⅰ上过A 点做匀速圆周运动,即G Mm r 2=m v Ⅰ2r,卫星在轨道Ⅱ上过A 点做近心运动,即G Mm r 2>m v Ⅱ2r,所以卫星在轨道Ⅰ上A 点速率大于在轨道Ⅱ上A 点的速率.由v =GM r可知,在轨道Ⅲ上B 点的速率大于在轨道Ⅰ上A 点的速率,因此该卫星在轨道Ⅲ上B 点的速率大于在轨道Ⅱ上A 点的速率,故B 正确;从B 运动到A 的过程中,地球引力对卫星做负功,引力势能增大,因卫星在轨道Ⅲ上的速度大于轨道Ⅰ上的速度,故此过程中卫星的动能减小,在Ⅲ轨道上B 点点火,卫星加速并做离心运动,则卫星的机械能增大,在Ⅱ轨道上A 点再次点火加速,使卫星由低轨道进入高轨道,因此卫星的机械能增大,故C 错误;根据万有引力提供向心力有G Mm r 2=ma ,可得a =GM r2,所以卫星距离地球越远,其向心加速度越小,故卫星从远地点到近地点运动过程中,加速度变大,故D 错误.8.(2023·福建龙岩市第一中学模拟)天文学家观测河外星系大麦哲伦云时,发现了LMCX -3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,其质量分别为m A 和m B .不考虑其他天体的影响,A 、B 围绕连线上的O 点做匀速圆周运动,两者之间的距离保持不变,已知AB =l ,A 、B 轨道半径之差为Δr .下列说法错误的是( )A .A 和B 两星体的角速度相同B .暗星B 的速率v B 与可见星A 速率v A 的比值为m A ∶m BC .A 、B 两星的轨道半径之比为l l -ΔrD .A 、B 两星的质量之比为l -Δr l +Δr答案 C解析 双星系统中的两星始终处于同一直线上,故周期相同,角速度也相同,故A 正确;由Gm A m B L 2=m A ω2r A =m B ω2r B 得m A r A =m B r B ,m A v A 2r A =m B v B 2r B ,联立得v B v A =m A m B,故B 正确; 由r A >r B ,r A +r B =l ,r A -r B =Δr 知,r A =l +Δr 2,r B =l -Δr 2,故A 、B 两星的轨道半径之比为l +Δr l -Δr,故C 错误;A 、B 两星的质量之比为m A m B =r B r A =l -Δr l +Δr,故D 正确. 9.(多选)(2023·广东省模拟)如图所示为发射某卫星的情景图,该卫星发射后,先在椭圆轨道Ⅰ上运动,卫星在椭圆轨道Ⅰ的近地点A 的加速度大小为a 0,线速度大小为v 0,A 点到地心的距离为R ,远地点B 到地心的距离为3R ,卫星在椭圆轨道的远地点B 变轨进入圆轨道Ⅱ,卫星质量为m ,则下列判断正确的是( )A .卫星在轨道Ⅱ上运行的加速度大小为13a 0 B .卫星在轨道Ⅱ上运行的线速度大小为3a 0R 3C .卫星在轨道Ⅱ上运行周期为在轨道Ⅰ上运行周期的33倍D .卫星从轨道Ⅰ变轨到轨道Ⅱ发动机需要做的功为ma 0R 6-m v 0218答案 BD解析 设卫星在轨道Ⅱ上运行的加速度大小为a 1,由GMm r 2=ma 得a =GM r 2,则a 1=R 2(3R )2a 0=19a 0,故A 错误;设卫星在轨道Ⅱ上运行的线速度大小为v 1,有a 1=v 123R ,解得v 1=13a 0R =3a 0R 3,故B 正确;根据开普勒第三定律有T 22T 12=(3R )3(2R )3,解得T 2T 1=364,故C 错误;设卫星在椭圆轨道远地点B 的线速度大小为v ,根据开普勒第二定律有v 0R =v ×3R ,解得v =13v 0,卫星从轨道Ⅰ变轨到轨道Ⅱ发动机需要做的功为W =12m v 12-12m v 2=ma 0R 6-m v 0218,故D 正确. 10.(多选)如图为一种四颗星体组成的稳定系统,四颗质量均为m 的星体位于边长为L 的正方形四个顶点,四颗星体在同一平面内围绕同一点做匀速圆周运动,忽略其他星体对它们的作用,引力常量为G .下列说法中正确的是( )A .星体做匀速圆周运动的圆心不一定是正方形的中心B .每颗星体做匀速圆周运动的角速度均为(4+2)Gm 2L 3C .若边长L 和星体质量m 均是原来的两倍,星体做匀速圆周运动的加速度大小是原来的两倍D .若边长L 和星体质量m 均是原来的两倍,星体做匀速圆周运动的线速度大小不变 答案 BD解析 四颗星体在同一平面内围绕同一点做匀速圆周运动,所以星体做匀速圆周运动的圆心一定是正方形的中心,故A 错误;由2G m 2L 2+G m 2(2L )2=(12+2)G m 2L 2=mω2·22L ,可知ω=(4+2)Gm 2L 3,故B 正确;由(12+2)G m 2L2=ma 可知,若边长L 和星体质量m 均为原来的两倍,星体做匀速圆周运动的加速度大小是原来的12,故C 错误;由(12+2)G m 2L 2=m v 222L 可知星体做匀速圆周运动的线速度大小为v =(4+2)Gm 4L,所以若边长L 和星体质量m 均是原来的两倍,星体做匀速圆周运动的线速度大小不变,故D 正确.11.黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.已知某黑洞的逃逸速度为v =2GM R,其中引力常量为G ,M 是该黑洞的质量,R 是该黑洞的半径.若天文学家观测到与该黑洞相距为r 的天体以周期T 绕该黑洞做匀速圆周运动,光速为c ,则下列关于该黑洞的说法正确的是( )A .该黑洞的质量为GT 24πr3 B .该黑洞的质量为4πr 3GT2 C .该黑洞的最大半径为4π2r 3c2 D .该黑洞的最大半径为8π2r 3c 2T2 答案 D解析 天体绕黑洞运动时,有GMm r 2=m (2πT )2r ,解得M =4π2r 3GT2,选项A 、B 错误;黑洞的逃逸速度不小于光速,则有2GM R ≥c ,解得R ≤2GM c 2=8π2r 3c 2T2,选项C 错误,D 正确. 12.质量均为m 的两个星球A 和B ,相距为L ,它们围绕着连线中点做匀速圆周运动.观测到两星球的运行周期T 小于按照双星模型计算出的周期T 0,且T T 0=k .于是有人猜想在A 、B 连线的中点有一未知天体C ,假如猜想正确,则C 的质量为( )A.1-k 24k2m B.1+k 24k 2m C.1-k 2k2m D.1+k 2k2m 答案 A解析 两星球绕连线的中点转动,则有G m 2L 2=m ·4π2T 02·L 2,所以T 0=2πL 32Gm ,由于C 的存在,星球所需的向心力由两个力的合力提供,则G m 2L 2+G Mm (L 2)2=m ·4π2T 2·L 2,又T T 0=k ,联立解得M =1-k 24k 2m ,可知A 正确,B 、C 、D 错误.。
高中物理人教版《必修第二册》教案讲义:卫星的变轨问题及宇宙航行的几个问题辨析
人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。
宇宙航行(变轨)学案
第六章万有引力与航天第四节宇宙航行(变轨)课前篇(学会自主学习——不看不清)【课标解读】1.了解人造卫星的相关知识,会求卫星的运行参数。
2.理解卫星的运行速度与轨道半径的关系,能够解决“变轨问题”。
【知识储备】1.卫星做匀速圆周运动时向心力的来源。
2.物体做离心运动,向心运动的条件。
3.卫星环绕速度、角速度、周期的大小与那些因素相关。
【自主预习】1.①卫星的绕行速度由得v=_______________.讨论:卫星与地心的距离r越大,则v_________,且v与卫星的质量________关。
②角速度ω:由得ω=,随着轨道半径的增大,卫星的角速度.③周期:由得T=,随着轨道半径的增大,卫星的运行周期.2.①离心运动:②向心运动:3.人造地球卫星在轨道上运行时(能、不能)处于受力平衡状态,其加速度等于_________________________________。
图6【自我体验】1. 2010年10月1日我国成功发射“嫦娥二号”绕月卫星,绕月运行高度为100公里.2007年10月24日发射的“嫦娥一号”绕月运行高度为200公里,如图6所示.“嫦娥二号”卫星与“嫦娥一号”卫星绕月运行相比,下列判断准确的是 ( )A .周期小,线速度大B .周期大,加速度小C .线速度大,加速度小D .角速度大,线速度大【我的困惑】 课上篇(学会合作交流,寻求协助—不议不明)【重难点突破】例1.发射地球同步卫星时,先将卫星发射至近地圆形轨道1运行,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆形轨道3运行。
设轨道1、2相切于Q 点,轨道2、3相切于P 点,则卫星分别在1、2、3轨道上正常运行时.⑴比较卫星经过轨道1、2上的Q 点的加速度的大小;以及卫星经过轨道2、3上的P 点的加速度的大小⑵设卫星在2、3 轨道 P 点上的速度大小为v 2P 、v 3P ,在1、2轨道上Q 点的速度大小分别是v 1Q 、v 2Q ,比较四个速度的大小例2 某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变,某次测量卫星的轨道半径为r 1,后来变为r 2(r 2<r 1),用E k1、E k2表示卫星在这两个轨道上的动能,T 1、T 2表示卫星在这两个轨道上的运行周期,则 ( )A .E k2<E k1,T 2<T 1B .E k2<E k1,T 2>T 1C .E k2>E k1,T 2<T 1D .E k2>E k1,T 2>T 1我的心得:跟踪训练12010年10月26日21时27分,北京航天飞行控制中心对“嫦娥二号”卫星实施了降轨控制,约18分钟后,卫星成功进入了远月点100公里、近月点15公里的试验轨道,为在月球虹湾区拍摄图像做好准备.如图5为“嫦娥二号”某次在近地点A由轨道1变轨为轨道2的示意图,下列说法中准确的是 ( )A.“嫦娥二号”在轨道1的A点处应点火加速B.“嫦娥二号”在轨道1的A点处的速度比在轨道2的A点处的速度大C.“嫦娥二号”在轨道1的A点处的加速度比在轨道2的A点处的加速度大D.“嫦娥二号”在轨道1的B点处的机械能比在轨道2的C点处的机械能大图5跟踪训练2(2010·江苏单科·6)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图3所示.关于航天飞机的运动,下列说法中不准确的有( )A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度【随堂反馈】1.2010年10月1日,“嫦娥二号”在四川西昌发射成功,10月6日实施第一次近月制动,进入周期约为12 h的椭圆环月轨道;10月8日实施第二次近月制动,进入周期约为3.5h的椭圆环月轨道;10月9日实施第三次近月制动,进入轨道高度约为100 km的圆形环月工作轨道.实施近月制动的位置都是在相对应的近月点P,如图7所示.则“嫦娥图7 图8 图9 二号” ( )A .从不同轨道经过P 点时,速度大小相同B .从不同轨道经过P 点(不制动)时,加速度大小相同C .在两条椭圆环月轨道上运行时,机械能不同D .在椭圆环月轨道上运行的过程中受到月球的万有引力大小不变2. 我国“嫦娥二号”探月卫星于2010年10月成功发射.在“嫦娥二号”卫星奔月过程中,在月球上空有一次变轨过程,是由椭圆轨道A 变为近月圆形轨道B ,A 、B 两轨道相切于P 点,如图8所示.探月卫星先后沿A 、B 轨道运动经过P 点时,下列说法准确的是( )A .卫星运行的速度v A =v BB .卫星受月球的引力F A =F BC .卫星的加速度a A >a BD .卫星的动能E k A <E k B3.“嫦娥二号”卫星已成功发射,这次发射后卫星直接进入近地点高度200公里、远地点高度约38万公里的地月转移轨道直接 奔月,当卫星到达月球附近的特定位置时,卫星就必须“急刹车”,也就是近月制动,以确保卫星既能被月球准确捕获,又不会撞上月球,并由此进入近月点100公里、周期12小时的椭圆轨道a .再经过两次轨道调整,进入100公里的近月圆轨道b ,轨道a 和b 相切于P 点,如图9所示,下列说法准确的是 ( )A .“嫦娥二号”卫星的发射速度大于7.9 km/s ,小于11.2 km/sB .“嫦娥二号”卫星的发射速度大于11.2 km/sC .“嫦娥二号”卫星在轨道a 、b 上经过P 点的速度v a =v bD .“嫦娥二号”卫星在轨道a 、b 上经过P 点的加速度分别为a a 、a b ,则a a =a b。
高中物理必修二 新教材 讲义 第7章 专题强化 卫星的变轨和双星问题
专题强化卫星的变轨和双星问题[学习目标] 1.知道卫星变轨的原因,会分析卫星变轨前后的物理量变化(重难点)。
2.知道航天器的对接问题的处理方法(重难点)。
3.掌握双星运动的特点,会分析双星的相关问题(重点)。
一、卫星的变轨问题如图是飞船从地球上发射到绕月球运动的飞行示意图。
(1)从绕地球运动的轨道上进入奔月轨道,飞船应采取什么措施?为什么?(2)从奔月轨道进入月球轨道,又应采取什么措施?为什么?________________________________________________________________________________________________________________________________________________1.变轨过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A点(近地点)点火________(选填“加”或“减”)速,由于速度变________,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动所需的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B点(远地点)再次点火________(选填“加”或“减”)速进入圆轨道Ⅲ。
2.变轨过程各物理量分析(1)两个不同轨道的“切点”处线速度v不相等,图中vⅢ____vⅡB,vⅡA____vⅠ(均选填“>”“<”或“=”)。
(2)同一个椭圆轨道上近地点和远地点线速度大小不相等,从远地点到近地点线速度逐渐________。
(3)两个不同轨道上的线速度v不相等,轨道半径越大,v越________,图中vⅠ____vⅢ(选填“>”“<”或“=”)。
(4)不同轨道上运行周期T不相等。
根据开普勒第三定律a3T2=k知,内侧轨道的周期__________外侧轨道的周期,图中TⅠ<TⅡ<TⅢ。
(5)两个不同轨道的“切点”处加速度a相同,图中aⅢ=aⅡB,aⅡA=aⅠ。
(部编版)2020学年高中物理第六章万有引力与航天习题课2变轨问题双星问题教学案必修01
习题课2 变轨问题 双星问题[学习目标] 1.理解赤道物体、同步卫星和近地卫星的区别.2.会分析卫星(或飞船)的变轨问题.3.掌握双星的运动特点及其问题的分析方法.一、“赤道上物体”“同步卫星”和“近地卫星”的比较例1 如图1所示,A 为地面上的待发射卫星,B 为近地圆轨道卫星,C 为地球同步卫星.三颗卫星质量相同,三颗卫星的线速度大小分别为v A 、v B 、v C ,角速度大小分别为ωA 、ωB 、ωC ,周期分别为T A 、T B 、T C ,向心加速度分别为a A 、a B 、a C ,则( )图1A.ωA =ωC <ωBB.T A =T C <T BC.v A =v C <v BD.a A =a C >a B答案 A解析 同步卫星与地球自转同步,故T A =T C ,ωA =ωC ,由v =ωr 及a =ω2r 得v C >v A ,a C >a A同步卫星和近地卫星,根据GMm r 2=m v 2r =m ω2r =m 4π2T2r =ma ,知v B >v C ,ωB >ωC ,T B <T C ,a B >a C .故可知v B >v C >v A ,ωB >ωC =ωA ,T B <T C =T A ,a B >a C >a A .选项A 正确,B 、C 、D 错误.同步卫星、近地卫星、赤道上物体的比较1.同步卫星和近地卫星相同点:都是万有引力提供向心力即都满足GMm r 2=m v 2r =m ω2r =m 4π2T2r =ma n .由上式比较各运动量的大小关系,即r 越大,v 、ω、a n 越小,T 越大. 2.同步卫星和赤道上物体 相同点:周期和角速度相同 不同点:向心力来源不同对于同步卫星,有GMm r2=ma n =m ω2r 对于赤道上物体,有GMm r2=mg +m ω2r , 因此要通过v =ωr ,a n =ω2r 比较两者的线速度和向心加速度的大小.针对训练1 (多选)关于近地卫星、同步卫星、赤道上的物体,以下说法正确的是( ) A.都是万有引力等于向心力B.赤道上的物体和同步卫星的周期、线速度、角速度都相等C.赤道上的物体和近地卫星的线速度、周期不同D.同步卫星的周期大于近地卫星的周期 答案 CD解析 赤道上的物体是由万有引力的一个分力提供向心力,A 项错误;赤道上的物体和同步卫星有相同周期和角速度,但线速度不同,B 项错误;同步卫星和近地卫星有相同的中心天体,根据GMm r 2=m v 2r =m 4π2T2r 得v =GMr,T =2πr 3GM,由于r 同>r 近,故v 同<v 近,T 同>T 近,D 项正确;赤道上物体、近地卫星、同步卫星三者间的周期关系为T 赤=T 同>T 近,根据v =ωr 可知v 赤<v 同,则线速度关系为v 赤<v 同<v 近,故C 项正确.二、人造卫星的变轨问题 1.卫星的变轨问题卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.(1)当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.(2)当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.以上两点是比较椭圆和圆轨道切点速度的依据. 2.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图2甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.图2(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.例2 如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B解析 卫星在圆轨道上做匀速圆周运动时有:G Mm r 2=m v 2r ,v = GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误. 在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度,D 项错误.判断卫星变轨时速度、加速度变化情况的思路:(1)判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.(2)判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小. (3)判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.(4)判断卫星的加速度大小时,可根据a =Fm =G M r2判断.针对训练2 (多选)如图4所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P 点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P 点,远地点为同步圆轨道上的Q 点),到达远地点Q 时再次变轨,进入同步轨道.设卫星在近地圆轨道上运行的速率为v 1,在椭圆形转移轨道的近地点P 点的速率为v 2,沿转移轨道刚到达远地点Q 时的速率为v 3,在同步轨道上的速率为v 4,三个轨道上运动的周期分别为T 1、T 2、T 3, 则下列说法正确的是( )图4A.在P 点变轨时需要加速,Q 点变轨时要减速B.在P 点变轨时需要减速,Q 点变轨时要加速C.T 1<T 2<T 3D.v 2>v 1>v 4>v 3 答案 CD解析 卫星在椭圆形转移轨道的近地点P 时做离心运动,所受的万有引力小于所需要的向心力,即G Mm r 1 2<m v 22r 1,而在圆轨道时万有引力等于向心力,即G Mm r 1 2=m v 12r 1,所以v 2>v 1;同理,由于卫星在转移轨道上Q 点做离心运动,可知v 3<v 4,故选项A 、B 错误;又由人造卫星的线速度v =GMr可知v 1>v 4,由以上所述可知选项D 正确;由于轨道半径r 1<r 2<r 3,由开普勒第三定律r 3T2=k (k 为常量)得T 1<T 2<T 3,故选项C 正确.三、双星问题例3 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图5所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,求双星的运行轨道半径r 1和r 2及运行周期T .图5答案 r 1=Lm 2m 1+m 2 r 2=Lm 1m 1+m 2 T =4π2L3G (m 1+m 2)解析 双星间的引力提供了各自做圆周运动的向心力 对m 1:Gm 1m 2L2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L , 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2. 由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得1.双星问题的特点(1)两星的运动轨道为同心圆,圆心是它们之间连线上的某一点. (2)两星的向心力大小相等,由它们间的万有引力提供. (3)两星的运动周期、角速度相同.(4)两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .2.双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2. 针对训练 3 如图6所示,两个星球A 、B 组成双星系统,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动.已知A 、B 星球质量分别为m A 、m B ,万有引力常量为G ,求L 3T2(其中L 为两星中心距离,T 为两星的运动周期).图6答案G (m A +m B )4π2解析 设A 、B 两个星球做圆周运动的半径分别为r A 、r B .则r A +r B =L ,对星球A :G m A m B L 2=m A r A 4π2T 2,对星球B :G m A m BL2=m B r B 4π2T 2,联立以上三式求得L 3T 2=G (m A +m B )4π2.1.(“同步卫星”与“赤道物体”及近地卫星的比较)(多选)如图7所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )图7A.a 1a 2=r RB.a 1a 2=(R r)2答案 AD解析 地球同步卫星:轨道半径为r ,运行速率为v 1,向心加速度为a 1; 地球赤道上的物体:轨道半径为R ,随地球自转的向心加速度为a 2; 以第一宇宙速度运行的卫星为近地卫星,其轨道半径为R . 对于卫星,其共同特点是万有引力提供向心力,则G Mm r 2=m v 2r ,故 v 1v 2=Rr. 对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,则a =ω2r ,故 a 1a 2=r R.2.(卫星的变轨问题) (多选)肩负着“落月”和“勘察”重任的“嫦娥三号”沿地月转移轨道直奔月球,如图8所示,在距月球表面100 km 的P 点进行第一次制动后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,之后,卫星在P 点又经过第二次“刹车制动”,进入距月球表面100 km 的圆形工作轨道Ⅱ,绕月球做匀速圆周运动,在经过P 点时会再一次“刹车制动”进入近月点距月球表面15公里的椭圆轨道Ⅲ,然后择机在近月点下降进行软着陆,则下列说法正确的是( )图8A.“嫦娥三号”在轨道Ⅰ上运动的周期最长B.“嫦娥三号”在轨道Ⅲ上运动的周期最长C.“嫦娥三号”经过P 点时在轨道Ⅱ上运动的线速度最大D.“嫦娥三号”经过P 点时,在三个轨道上的加速度相等 答案 AD解析 由于“嫦娥三号”在轨道Ⅰ上运动的半长轴大于在轨道Ⅱ上运动的半径,也大于轨道Ⅲ的半长轴,根据开普勒第三定律可知,“嫦娥三号”在各轨道上稳定运行时的周期关系为T Ⅰ>T Ⅱ>T Ⅲ,故A 正确,B 错误;“嫦娥三号”在由高轨道降到低轨道时,都要在P 点进行“刹车制动”,所以经过P 点时,在三个轨道上的线速度关系为v Ⅰ>v Ⅱ>v Ⅲ,所以C 错误;由于“嫦娥三号”在P 点时的加速度只与所受到的月球引力有关,故D 正确.3.(双星问题) 如图9所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图9A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度为ω,据万有引力定律和牛顿第二定律得G m 1m 2L2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2 所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω,故v 1∶v 2=r 1∶r 2=2∶3. 综上所述,选项C 正确.课时作业一、选择题(1~6为单项选择题,7~10为多项选择题)1.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知万有引力常量为G ,由此可求出S 2的质量为( ) A.4π2r 2(r -r 1)GT2B.4π2r 13GT 2C.4π2r3GT 2D.4π2r 2r 1GT2答案 D解析 设S 1和S 2的质量分别为m 1、m 2,对于S 1有G m 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1,得m 2=4π2r 2r 1GT 2.2.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( )A.质量大的天体线速度较大B.质量小的天体角速度较大C.两个天体的向心力大小一定相等D.两个天体的向心加速度大小一定相等 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L2=m 1ω2r 1=m 2ω2r 2 其中:r 1+r 2=L 故r 1=m 2m 1+m 2L r 2=m 1m 1+m 2L故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误.3. 如图1所示,地球赤道上的山丘e 、近地卫星p 和同步卫星q 均在赤道平面上绕地心做匀速圆周运动.设e 、p 、q 的线速度大小分别为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则( )图1A.v 1>v 2>v 3B.v 1<v 2<v 3C.a 1>a 2>a 3D.a 1<a 3<a 2答案 D解析 卫星的速度v =GMr,可见卫星距离地心越远,即r 越大,则线速度越小,所以v 3<v 2.q 是同步卫星,其角速度ω与地球自转角速度相同,所以其线速度v 3=ωr 3>v 1=ωr 1,选项A 、B 均错误.由G Mm r2=ma n ,得a n =GM r2,同步卫星q 的轨道半径大于近地卫星p 的轨道半径,可知向心加速度a 3<a 2.由于同步卫星q 的角速度ω与地球自转的角速度相同,即与地球赤道上的山丘e 的角速度相同,但q 的轨道半径大于e 的轨道半径,根据a =ω2r 可知a 1<a 3.根据以上分析可知,选项D 正确,选项C 错误.4.设地球半径为R ,a 为静止在地球赤道上的一个物体,b 为一颗近地绕地球做匀速圆周运动的人造卫星,c 为地球的一颗同步卫星,其轨道半径为r .下列说法中正确的是( ) A.a 与c 的线速度大小之比为r R B.a 与c 的线速度大小之比为R rC.b 与c 的周期之比为r R答案 D解析 物体a 与同步卫星c 角速度相等,由v =r ω可得,二者线速度大小之比为R r,选项A 、B 均错误;而b 、c 均为卫星,由T =2πr 3GM 可得,二者周期之比为R r Rr,选项C 错误,D 正确. 5.如图2所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )图2A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 3 答案 D解析 根据万有引力提供向心力,即GMm r 2=ma n 得:a n =GM r 2,由图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,所以v 3>v 2,根据GMm r 2=mv 2r得:v =GMr,又因为r 1<r 3,所以v 1>v 3,故v 1>v 3>v 2.故选D. 6.如图3,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1、a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的是( )图3A.a 2>a 3>a 1B.a 2>a 1>a 3C.a 3>a 1>a 2D.a 3>a 2>a 1答案 D7.如图4,航天飞机在完成太空任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的近地点,关于航天飞机的运动,下列说法中正确的有( )图4A.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的向心加速度小于在轨道Ⅰ上经过A 的向心加速度 答案 ABC8.我国发射的“北斗系列”卫星中同步卫星到地心距离为r ,运行速率为v 1,向心加速度为a 1;在地球赤道上的观测站的向心加速度为a 2,近地卫星做圆周运动的速率为v 2,向心加速度为a 3,地球的半径为R ,则下列比值正确的是( )A.a 1a 2=r RB.a 2a 3=R 3r 3C.a 1a 3=r RD.a 1a 2=R 2r2 答案 AB解析 由于在地球赤道上的观测站的运动和同步卫星的运动具有相同的角速度,根据a n =r ω2可知a 1a 2=rR,A 项正确,D 项错误;再根据近地卫星做圆周运动的向心加速度为a 3,由万有引力定律和牛顿第二定律F =GMm r 2=ma n 可知a 1a 3=R 2r 2,由a 1a 3=R 2r 2,a 1a 2=r R 知a 2a 3=R 3r3,因此B 项正确,C 项错误. 9.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起.如图5所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图5A.质量之比m A ∶m B =2∶1B.角速度之比ωA ∶ωB =1∶2C.线速度大小之比v A ∶v B =1∶2D.向心力大小之比F A ∶F B =2∶1答案 AC解析 双星都绕O 点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A 星:Gm A m B L 2=m A ω2r A ① 对B 星:G m A m B L 2=m B ω2r B ② 联立①②得m A ∶m B =r B ∶r A =2∶1.根据双星的条件有:角速度之比ωA ∶ωB =1∶1,由v =ωr 得线速度大小之比v A ∶v B =r A ∶r B =1∶2,向心力大小之比F A ∶F B =1∶1,选项A 、C 正确,B 、D 错误.10. 如图6所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )图6A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v = GM r可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c ,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b,它将偏离原轨道,做向心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v = GM r 可知,r 减小时,v 逐渐增大,故选项D 正确.二、非选择题11.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图7所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,求:图7(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速?(2)飞船经过椭圆轨道近地点A 时的加速度大小.(3)椭圆轨道远地点B 距地面的高度h 2.答案 (1)加速 (2)gR 2(R +h 1)2 (3) 3gR 2t 24n 2π2-R 解析 (2)在地球表面重力提供向心力,有mg =GMm R 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ② 由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2. (3)飞船在预定圆轨道上飞行时由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③ 由题意可知,飞船在预定圆轨道上运行的周期为T =t n④由①③④式联立解得h 2= 3gR 2t 24n 2π2-R . 12.太阳系以外存在着许多恒星与行星组成的双星系统,它们运行的原理可以理解为:质量为M 的恒星和质量为m 的行星(M >m )在它们之间的万有引力作用下有规律地运动着.如图8所示,我们可认为行星在以某一定点C 为中心、半径为a 的圆周上做匀速圆周运动(图中没有表示出恒星).设万有引力常量为G ,恒星和行星的大小可忽略不计.图8(1)试在图中粗略画出恒星运动的轨道和位置;(2)试计算恒星与点C 间的距离和恒星的运行速率v .答案 见解析解析 (1)恒星运动的轨道和位置大致如图.(2)对行星m :F =m ω2a ①对恒星M :F ′=M ω2R M ②根据牛顿第三定律,F 与F ′大小相等 由①②得:R M =m Ma 对恒星M :Mv 2R M =G Mm (a +R M )2 代入数据得:v =m M +m GM a.。
新教材高中物理第七章拓展课7卫星的变轨及对接问题课件新人教版必修第二册
素养·目标要求 1.知道卫星变轨的原因,会分析卫星变轨前后的物理量变化. 2.知道航天器的对接问题的处理方法.
拓展一 卫星的变轨问题
【导思】 仔细观察图片,请思考: (1)卫星在Ⅰ轨道上经过P点时,如何才能变轨到Ⅱ轨道上? (2)卫星在Ⅱ轨道上经过Q点时,如何才能变轨到Ⅲ轨道上? (3)如图所示,线速度v1、v2、v3、v4的大小关系是怎样的?
取地表重力加速度为g,地球半径为R.则下列说法中正确的是( )
A.神舟十五号应在比空间站轨道半径更小的圆轨道上加速后逐渐靠近空
间站,两者速度接近时才能实现对接
B.对接成功后,欲使空间站恢复到原轨道运行,只点火加速θt
D.组合体在对接轨道上绕地运行时距离地表的高度是
答案:C
例 4 2022年11月30日5时42分中国空间站与神舟十五号载人飞船成功对接,
形成三舱三船构型.7时33分神舟十五号3名航天员进入天和核心舱,与神
舟十四号乘组在太空会师.假设空间站从正常运行轨道降低一定高度后在
圆轨道绕地运行,准备迎接神舟十五号的到来,从二者速度接近到实现对
接用时为t,在这段时间内组合体(三舱三船,后同)绕地心转过的角度为θ,
(3)卫星变轨图示
(1)卫星在A点时受到的力与沿哪个轨道运动无关,即A点位置确定 后,卫星在A点所受的万有引力就确定了.
(2)卫星速度变大时做离心运动,速度变小时做向心运动.
【典例】
例 1 [2023·广东湛江统考一模]2022年11月30日,神舟十五号载人飞船与
“天和核心舱”完成对接,航天员费俊龙、邓清明、张陆进入“天和核心
C.在轨道Ⅰ上A点的加速度大于在轨道Ⅱ上A点的加速度
D.在轨道Ⅲ上B点的线速度大于在轨道Ⅱ上B点的线速度
新教材2025版高中物理微专题二天体或卫星的两类典型问题双星模型卫星的变轨学案教科版必修第二册
微专题(二)天体(或卫星)的两类典型问题(双星模型、卫星的变轨)学习目标1.理解双星模型的动力学特点,并能分析其运动规律.2.会分析卫星的变轨问题,知道卫星变轨的缘由和变轨前后的速度改变.关键实力·合作探究——突出综合性素养形成类型一双星模型归纳总结1.“双星”模型如图所示,宇宙中两个靠得比较近的天体,不考虑其他天体的引力作用,在彼此间的万有引力作用下绕其连线上的某固定点做匀速圆周运动,称为“双星”模型.2.“双星”模型的分析方法两颗星各自所需的向心力由彼此间的万有引力相互供应,即:对m1:=r1对m2:=r23.“双星”模型的特点(1)两颗星的周期及角速度都相同,即T1=T2,ω1=ω2.(2)两颗星的轨道半径与它们之间的距离关系为:r1+r2=L.(3)两颗星到圆心的距离r1、r2与星体质量成反比,即=.(4)“双星”的运动周期T=2π.(5)“双星”的总质量公式m1+m2=.典例示范例 1 宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统.设某双星系统A、B绕其连线上的某固定点O点做匀速圆周运动,如图所示.现测得两星球球心之间的距离为L,运动周期为T,已知万有引力常量为G.若AO>OB,则( )A.星球A的线速度等于星球B的线速度B.星球A所受向心力大于星球B所受向心力C.双星的质量肯定,双星之间的距离减小,其转动周期增大D.两星球的总质量等于素养训练1 科学家发觉.距离地球2 764光年的宇宙空间存在适合生命居住的双星系统,这一发觉为人类探讨地外生命供应了新的思路和方向.假设宇宙中有一双星系统由质量分别为m和M的A、B两颗星体组成.这两颗星绕它们连线上的某一点在二者万有引力作用下做匀速圆周运动,如图所示,A、B两颗星的距离为L,引力常量为G,则( )A.因为OA>OB,所以m>MB.两恒星做圆周运动的周期为2πC.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,恒星A的周期缓慢增大D.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,则恒星A 的轨道半径将缓慢增大素养训练2 银河系的恒星中大约有四分之一是双星,某双星由质量不等的星体S1和S2构成,两星在相互之间万有引力的作用下绕两者连线上某肯定点O做匀速圆周运动(如图所示).由天文视察测得其运动周期为T,S1到O点的距离为r1,S1和S2的距离为r,已知引力常量为G.由此可求出S1的质量为( )A. B. D.类型二卫星的变轨归纳总结1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力供应了卫星做圆周运动的向心力,即G=m.(2)变轨运行当卫星由于某种缘由,其速度v突然改变时,F引和m不再相等,会出现以下两种状况:①当F引>m时,卫星做近心运动;②当F引<m时,卫星做离心运动.2.变轨问题的两种常见形式(1)渐变由于某个因素的影响使卫星的轨道半径发生缓慢的改变,由于半径改变缓慢,卫星每一周的运动仍可以看成是匀速圆周运动.①关键要点:轨道半径r减小(近心运动).这种变轨运动的起因是阻力使卫星速度减小,所须要的向心力减小了,而万有引力大小没有变,因此卫星将做近心运动,即轨道半径r将减小.②各个物理参量的改变:当轨道半径r减小时,卫星线速度v、角速度ω、向心加速度a增大,周期T减小.(2)突变由于技术上的须要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的轨道.放射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v1,在P点第一次点火加速,在短时间内将速率由v1增加到v2,使卫星进入椭圆轨道Ⅱ;卫星运行到远地点Q时的速率为v3,此时进行其次次点火加速,在短时间内将速率由v3增加到v4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.典例示范例2如图所示,某次放射同步卫星的过程如下,先将卫星放射至近地圆轨道1,然后再次点火进入椭圆形的过渡轨道2,最终将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在轨道1、2、3上正常运行时,以下说法正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度素养训练3 2024年2月,“天问一号”探测器胜利实施近火制动,进入环火椭圆轨道,并于2024年5月软着陆火星表面,开展巡察探测等工作,探测器经过多次变轨后登陆火星的轨迹示意图如图所示,其中轨道Ⅰ、Ⅲ为椭圆,轨道Ⅱ为圆.探测器经轨道Ⅰ、Ⅱ、Ⅲ运动后在Q点登陆火星,O点是轨道Ⅰ、Ⅱ、Ⅲ的切点,O、Q还分别是椭圆轨道Ⅲ的远火星点和近火星点.关于探测器,下列说法正确的是( )A.由轨道Ⅰ进入轨道Ⅱ需在O点减速B.在轨道Ⅱ上运行的周期小于在轨道Ⅲ上运行的周期C.在轨道Ⅱ上运行的线速度大于火星的第一宇宙速度D.在轨道Ⅲ上,探测器运行到O点的线速度大于运行到Q点的线速度随堂演练·自主检测——突出创新性素养达标1.2024年6月5日,我国用神舟十四号载人飞船顺当将陈冬、刘洋和蔡旭哲三名航天员送入太空.其放射过程示意图如图,椭圆轨道Ⅰ为转移轨道,圆轨道Ⅱ为神舟十四号和空间站组合体的运行轨道,A为椭圆轨道的近地点,轨道Ⅰ、Ⅱ相切于B点,则( ) A.神舟十四号在轨道Ⅰ上从A点运动到B点,加速度渐渐增大B.神舟十四号在轨道Ⅰ上从A点运动到B点,线速度渐渐减小C.组合体在轨道Ⅱ上运行的周期小于神舟十四号在轨道Ⅰ上运行周期D.组合体在轨道Ⅱ上运行的线速度小于神舟十四号在轨道Ⅰ上运行线速度2.宇宙空间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m的星体位于等边三角形的三个顶点,三角形边长为L.忽视其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G.下列说法正确的是( )A.每颗星做圆周运动的线速度为B.每颗星做圆周运动的加速度与三星的质量无关C.若距离L和每颗星的质量m都变为原来的2倍,则周期变为原来的2倍D.若距离L和每颗星的质量m都变为原来的2倍,则线速度变为原来的2倍3.(多选)天文学家通过观测两个黑洞并合的事务,间接验证了引力波的存在.该事务中甲、乙两个黑洞的质量分别为太阳质量的36倍和29倍,假设这两个黑洞绕它们连线上的某点做圆周运动,且两个黑洞的间距缓慢减小.若该双星系统在运动过程中,各自质量不变且不受其他星系的影响,则关于这两个黑洞的运动,下列说法正确的是( ) A.甲、乙两个黑洞运行的线速度大小之比为36∶29B.甲、乙两个黑洞运行的角速度大小始终相等C.随着甲、乙两个黑洞的间距缓慢减小,它们运行的周期也在减小D.甲、乙两个黑洞做圆周运动的向心加速度大小始终相等4.(多选)2024年7月23日,我国在海南文昌航天放射中心,胜利将我国首个深空探测器天问一号火星探测器送上太空.探测器接近火星后,探测器需经验如图所示的变轨过程,轨道Ⅰ为圆轨道,已知引力常量为G,则下列说法正确的是( )A.探测器在轨道Ⅰ上P点的速度大于在轨道Ⅱ上的速度B.探测器在轨道上运动时,运行的周期TⅢ>TⅡ>TⅠC.探测器若从轨道Ⅱ变轨到轨道Ⅰ,须要在P点朝速度反向喷气D.若轨道Ⅰ贴近火星表面,并已知探测器在轨道Ⅰ上运动的角速度,可以推知火星的密度5.(多选)卫星回收过程的示意图如图所示,卫星在圆轨道1上运行,到达轨道的P点时点火变轨进入椭圆轨道2,到达轨道的Q点时,再次点火变轨进入圆轨道3.轨道1、2相切于P点,轨道2、3相切于Q点.下列说法正确的是( )A.卫星在轨道2上的周期大于在轨道3上的周期B.卫星在轨道1上的角速度小于在轨道3上的角速度C.卫星在轨道1上的速率大于在轨道3上的速率D.卫星在轨道1上经过P点时的速率小于在轨道2上经过P点时的速率微专题(二) 天体(或卫星)的两类典型问题(双星模型、卫星的变轨)关键实力·合作探究类型一【典例示范】例1 解析:双星围绕同一点同轴转动,其角速度、周期相等,由v=rω可知,星球A 的轨道半径较大,线速度较大,A错误;双星靠相互间的万有引力供应向心力,依据牛顿第三定律可知向心力大小相等,B错误;双星A、B之间的万有引力供应向心力,有G=m Aω2R A,G=m Bω2R B,其中ω=,L=R A+R B,联立解得m A+m B=(R A+R B)3=,即T=,故当双星的质量肯定,双星之间的距离减小,其转动周期也减小,C错误;依据C选项计算可得m A+m B=,D正确.答案:D素养训练1 解析:依据万有引力供应向心力有G=m=M,因为OA>OB,所以m<M,由于OA+OB=L,解得T=2π ,当m增大时可知T减小,故A、C错误,B正确;依据m=M,且OA+OB=L,解得OA=,若恒星A由于不断吸附宇宙中的尘埃而使得质量m缓慢增大,其他量不变,则恒星A的轨道半径将缓慢减小,故D错误.答案:B素养训练2 解析:双星之间的万有引力供应各自做圆周运动的向心力,对S2有G=m2(r-r1),解得m1=.A对.答案:A类型二【典例示范】例2 解析:由G=m=mrω2得,v=,ω=,由于r1<r3,所以v1>v3,ω1>ω3,A、B错;轨道1上的Q点与轨道2上的Q点是同一点,到地心的距离相同,依据万有引力定律及牛顿其次定律知,卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度,同理卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度,C错,D对.答案:D素养训练3 解析:由轨道Ⅰ进入轨道Ⅱ需在O点减速,由高轨道进入低轨道须要点火减速,A正确;依据开普勒第三定律=,因轨道Ⅱ的半径大于轨道Ⅲ的半长轴,所以在轨道Ⅱ上运行的周期大于在轨道Ⅲ上运行的周期,B错误;依据v=可知,在轨道Ⅱ上运行的线速度小于火星的第一宇宙速度,C错误;依据开普勒其次定律可知,近地点的线速度大于远地点的线速度,所以在轨道Ⅲ上,探测器运行到O点的线速度小于运行到Q点的线速度,D错误.答案:A随堂演练·自主检测1.解析:神舟十四号在轨道Ⅰ上从A点运动到B点,受到地球的引力渐渐减小,则加速度渐渐减小,A错误;神舟十四号在轨道Ⅰ上从A点运动到B点,即从远地点向近地点运动,由开普勒其次定律知,线速度减小,B正确;依据开普勒第三定律可知=k,因在轨道Ⅱ上运行的轨道半径大于神舟十四号在轨道Ⅰ上运行的半长轴,则组合体在轨道Ⅱ上运行的周期大于神舟十四号在轨道Ⅰ上运行的周期,C错误;组合体从轨道Ⅰ上的B点要加速才能进入轨道Ⅱ,则在轨道Ⅱ上运行的线速度大于神舟十四号在轨道Ⅰ上运行到B点时线速度,D错误.答案:B2.解析:随意两颗星之间的万有引力为F=G,每一颗星受到的合力为F1=F,由几何关系可知,它们的轨道半径为r=L,合力供应它们的向心力=m,联立解得v =,A错误;依据=ma,解得a=,故加速度与它们的质量有关,B错误;依据=m,解得T=,若距离L和每颗星的质量m都变为原来的2倍,则周期变为原来的2倍, C正确;依据v=可知,若距离L和每颗星的质量m都变为原来的2倍,则线速度不变,D错误.答案:C3.解析:由牛顿第三定律知,两个黑洞做圆周运动的向心力大小相等,它们的角速度ω相等,且有F n=mω2r可知,甲、乙两个黑洞做圆周运动的半径与质量成反比,由v=ωr 知,线速度之比为29∶36,A错误,B正确;设甲、乙两个黑洞质量分别为m1和m2,轨道半径分别为r1和r2,有=m1()2r1,=m2()2r2,联立可得=,随着甲、乙两个黑洞的间距缓慢减小,它们运行的周期也在减小,C正确;甲、乙两个黑洞做圆周运动的向心力大小相等,由牛顿其次定律a=可知,甲、乙两个黑洞的向心加速度大小a1∶a2=29∶36,D错误.答案:BC4.解析:探测器在P点从轨道Ⅱ变轨到轨道Ⅰ,须要在P点朝速度方向喷气,从而使探测器减速到达轨道Ⅰ,则探测器在轨道Ⅰ上P点的速度小于在轨道Ⅱ上P点的速度,A、C 错误;依据开普勒第三定律可知,探测器在轨道上运动时半长轴越大其运行的周期越大,故B正确;依据万有引力定律可得G=mω2R,依据ρ=可得M=ρπR3,联立解得ρ=,所以当轨道Ⅰ贴近火星表面,并且已知探测器在轨道Ⅰ上运动的角速度,可以推知火星的密度,故D正确.答案:BD5.解析:依据开普勒第三定律,卫星在轨道2上的周期大于在轨道3上的周期,A正确;卫星绕中心天体做匀速圆周运动,由万有引力供应向心力G=m=mω2r,解得v=,ω=,由公式可知,半径越大,速度和角速度越小,B正确,C错误;从轨道1到轨道2 ,卫星在P点做渐渐靠近圆心的运动,要实现这个运动必需使卫星所需向心力小于万有引力,所以应给卫星减速,所以在轨道1上经过P点时的速率大于在轨道2上经过P点时的速率,D错误.答案:AB。
高中物理卫星运行轨迹教案
高中物理卫星运行轨迹教案
目标:了解卫星的运行轨迹及其影响因素。
一、卫星的运行轨迹类型:
1. 圆形轨道:卫星在地球周围以固定的距离和速度绕地球运行。
2. 椭圆轨道:卫星的轨道呈椭圆形,离地球距离不是固定的,速度也不是恒定的。
3. 非周期轨道:卫星不按照固定的轨道绕地球运行,如太阳同步轨道等。
二、影响卫星轨道的因素:
1. 初始速度:卫星的初始速度决定了其轨道的类型,速度越大,轨道越高。
2. 地球引力:地球的引力是卫星绕地球运行的主要力量,保持卫星在轨道上运行。
3. 空气阻力:地球大气层对卫星有一定的阻力,会减小卫星的速度,影响其轨道的形状。
三、实验探究:
1. 观察卫星轨道图,了解不同类型的轨道特点及其适用场景。
2. 通过模拟实验,探究初始速度对卫星轨道的影响。
3. 利用动画等辅助工具,展示卫星在不同轨道上的运行情况。
四、课堂总结:
通过本节课的学习,同学们了解了卫星的不同轨道类型及其影响因素,加深了对卫星运行轨迹的理解。
同时,也为后续学习卫星通信、导航等内容打下基础。
高中物理卫星轨道变轨教案
高中物理卫星轨道变轨教案
目标:学生能够了解卫星轨道变轨的原理和方法,并能够运用所学知识解决相关问题。
教学重点:卫星轨道的基本概念、卫星轨道的改变原理和方法。
教学难点:理解卫星轨道改变的复杂性和需要考虑的因素。
教学过程:
一、导入(10分钟)
教师简单介绍卫星轨道的基本概念,引导学生思考:为什么卫星需要变轨?卫星轨道变轨的原理是什么?
二、讲解(20分钟)
1. 卫星轨道的种类和特点;地球同步轨道、静止轨道等。
2. 卫星轨道的改变原理:通过推进器改变速度、改变飞行路径等。
3. 卫星轨道变轨的主要方法:重新点火、利用地球引力辅助、利用地球大气等。
三、案例分析(20分钟)
以一颗卫星为例,让学生分析该卫星在轨道中的运动状态,考虑是否需要进行轨道变轨以及如何进行变轨操作。
四、活动设计(30分钟)
1. 观看相关视频,了解卫星轨道变轨的实际操作过程。
2. 分组讨论,设计一个卫星轨道变轨的方案,并向全班汇报。
3. 模拟卫星轨道变轨实验,通过操纵小型模型卫星在轨道上进行变轨操作。
五、总结(10分钟)
学生总结所学内容,思考卫星轨道变轨对于卫星运行的重要性,以及如何应用所学知识解决实际问题。
六、作业布置
1. 阅读相关资料,进一步了解卫星轨道变轨的原理和方法。
2. 完成相关习题,加深对本课内容的理解。
3. 准备下节课的课堂展示内容。
期望效果:通过本节课的学习,学生能够掌握卫星轨道变轨的基本概念和方法,培养他们的动手实践能力和团队合作意识。
高中物理卫星轨道转移教案
高中物理卫星轨道转移教案
年级:高中物理
课时:2课时
教学目标:
1. 知识与技能:掌握卫星轨道转移的基本原理和计算方法;能够运用所学知识解决相关问题。
2. 过程与方法:通过实例分析和数学计算,培养学生综合运用知识的能力。
教学重点:卫星轨道转移的基本概念和计算方法。
教学难点:深入理解地球引力和离心力对卫星轨道的影响,并应用相关知识进行计算。
教学过程:
第一课时:
1. 导入:通过介绍卫星的运行轨道和转移过程,引出本次课的主题。
2. 概念讲解:分别介绍地球引力和离心力对卫星轨道的影响,解释卫星轨道转移的原理。
3. 数学计算:通过具体例题,教学卫星轨道转移时的数学计算方法。
第二课时:
1. 实例分析:通过实际案例,让学生运用所学知识进行分析和计算。
2. 练习与讨论:组织学生进行练习,然后讨论答案及解题思路。
3. 拓展应用:引导学生思考卫星轨道转移在现实生活中的应用,并展开讨论。
4. 总结与评价:回顾本次课程内容,总结学习收获,评价学生对卫星轨道转移的掌握情况。
教学资源:教材、习题、实例案例、多媒体教学设备等。
教学方式:讲授、实例分析、案例研究、讨论。
教学评价:通过学生的课堂表现、练习成绩、课后作业等方面进行评价。
教学反思:根据学生的学习情况和反馈意见,及时调整教学内容和方法,提高教学效果。
高三物理复习《卫星的发射与变轨》教案
变轨问题七大问题
教学环节
教学活动
教师复备
导
卫星围绕行星运行时可以用五大公式分析,那么在轨道变化的时候能够还用五大公式分析吗?
思
思考导学提纲上的自学内容以及大家谈一谈的内容
议
1、在地球上发射速度的范围是多少?
2、比较不同轨道的加速度如何比较?加速度有什么决定?
3、比较同一轨道不同点的速度如何比较?
A.飞船在轨道Ⅱ上运动时,在P点速度大于在Q点的速度
B.飞船在轨道Ⅰ上运动时的机械能大于轨道Ⅱ上运动的机械能
C.飞船在轨道Ⅰ上运动到加速度
D.飞船绕火星在轨道Ⅰ上的运动周期跟飞船返回地面的过程中绕地球以轨道Ⅰ同样半径运动的周期相同
用
教学反思
检查结果及修改意见:
课题名称:卫星的发射与变轨
考纲、大纲描述
万有引力定律及其应用
教材内容分析
本内容涉及万有引力定律的应用,牛顿第二定律的应用;动能定理的应用以及能量守恒定律的应用等。
学情分析
学生有一定的生活经验,通过观察到的一些现象,可以从分析物理规律的现象中应用物理规律。
教学目标
同步卫星、卫星的发射与变轨问题
重点
卫星变轨问题的分析
4、比较不同轨道统一点的速度如何比较?
5、比较不同轨道的机械能如何比较?
6、比较不同轨道的周期又如何比较?
展
我的收获:
评
由学生展具体说开
检
例(2016·常州模拟)(多选)中国志愿者王跃参与人类历史上第一次全过程模拟从地球往返火星的一次实验“火星—500”活动,王跃走出登陆舱,成功踏上模拟火星表面,在火星上首次留下中国人的足迹,目前正处于从“火星”返回地球途中.假设将来人类一艘飞船从火星返回地球时,经历了如图所示的变轨过程,则下列说法中正确的是()
卫星变轨教案
《卫星变轨》教学设计课题名称卫星变轨科目物理年级高一级教学时间1课时教材分析这节课通过对卫星变轨的实例分析,使学生了解:卫星变轨的原理和过程,让学生学会解决卫星变轨问题。
在讲课时,卫星变轨加速原理要交待清楚。
1.从低轨进入高轨要点火加速2.从高轨进入低轨要点火减速3.整个变轨过程是利用了速度变化的时候,从而卫星做离心运动学情分析本节课的学习者特征分析主要是根据学生的实际情况做出的:1.学生是中山高级中学高一(8)班学生;2.学生已经基本掌握万有引力定律和圆周运动的知识;3.学生的基础和学习习惯不太好。
4.设计重趣味性与知识性的结合。
教学目标一、知识与技能1.卫星变轨的原理;2.了解万有引力定律在变轨中的重要应用;3.会用万有引力定律解决变轨问题。
二、过程与方法1.由V增加从而引起的增加,,于是卫星做离心运动。
2.通过万有引力定律在实际中的应用,培养学生理论联系实际的能力三、情感态度与价值观1.利用设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;2.利用万有引力定律变轨,学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。
3.通过介绍中国航天事业的发展及播放卫星视频,激发学生对科学家探究真理的崇拜之情。
教学重点1.卫星变轨原理。
2.卫星在各轨道上的速度、加速度、周期等的大小比较。
教学难点对的理解。
教学资源(1)给同学们准备一些相关资料;(2)教师自制的多媒体课件;(3)上课环境为多媒体大屏幕环境。
《卫星变轨》教学过程描述教学活动1(一)师生互动,激趣导入1.教师展示:中国现今发射的多个卫星过程、神舟六号、神舟七号、神州八号、神州九号的成功发射,神州八号和天宫一号的对接过程,激发学生兴趣。
2.引入课题:万有引力定律的天文学上的应用—卫星变轨教学活动2(二)问题启发,合作探究1.创设情景:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v1,第一次在P点点火加速,在短时间内将速率由v1增加到v2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q时的速率为v3,此时进行第二次点火加速,在短时间内将速率由v3增加到v4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
卫星变轨复习课说课稿
复习课《卫星变轨》说课稿各位评委老师,大家好,我说课的题目是人教版物理必修2《卫星变轨》我将从以下五个环节进行阐述。
一.教材分析我将这一环节分为教材的地位与作用,教学目标,重点难点三个部分。
首先说一下教材的地位与作用,《卫星变轨》是必修二万有引力部分重要内容之一,也是前面知识的综合运用。
万有引力和天体运动的有关问题是高考必考内容之一,,以近几年卫星的发射、运行和回收、神舟飞船、天宫一号等为背景的天体运动信息给予题在高考中频频出现。
卫星的变轨问题主要以圆周运动变椭圆运动或椭圆运动变圆周运动的选择题为主。
下面说一下教学目标,依据《物理新课程标准》及教材内容我设计了如下的教学目标:1. 知道卫星变轨的原理2. 理解卫星变轨过程中运行参量和能量的分析方法,并熟练运用在教学重点难点方面,我将教学重点设计为重点为卫星变轨运行参量和能量的分析因为我将教学难点设计为卫星变轨运行参量和能量的分析。
因为本节知识比较抽象,涉及各种能量问题,相对复杂学生对获得的知识没有完整的结构把它联在一起,对知识的整合归纳分析技巧又欠缺,思路方法没有成体系,所以有一定的难度。
二.学情分析学生对卫星变轨基础知识点已掌握,但学生对所学的知识和方法不能够实现条理化、系统化、结构化,运行参量和能量的分析规律和方法之间不能很好的联系,问题本质的分析等方面还较为薄弱。
三.教学方法鉴于上述学情,本节课我主要采用了自主梳理、讨论法、交流展示、归纳法等教学方法,学生通过讨论,观看动画演示,总结变轨过程中运行参量和能量的比较方法。
通过分析具体问题帮助学生建立常规模型,巩固变轨问题的分析。
在梳理、归纳、感悟的过程中实现知识和方法的温故知新。
四、教学过程为了更好的完成教学目标,突出重点,突破难点,我将教学过程设计为如下过程:1导入课题,引领目标引领目标要突出复习的必要性,让学生明确要深化、完善的重点及要求,2 自主梳理,整体建构让学生自主完成对开普勒行星运动三定律的内容?卫星的各物理量随轨道半径变化的规律,离心运动与向心运动的条件?这几个问题梳理3深化完善,典例导练考虑到学生的思维习惯和认知水平我从学生熟悉的闭合电路的部分导体切割磁感线产生感应电流入手,回顾初中课演示实验,并提问初中产感应电流的产生条件,发现与探宝游戏不同,使学生发生认知冲突。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学活动
3
(三)规律总结
要使卫星由较低的圆轨道进入较高的圆轨道,即增大轨道半径(增大轨道高度h),一定要给卫星增加速度;反之,卫星从高轨道进入低轨道即减小轨道半径(减小轨道高度h),一定要给卫星减小速度。
教师学科教案
[20 – 20学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
《卫星变轨》教学设计
课题名称
卫星变轨
科目
物理
班级
高一(1)班
教学时间
1课时
教材分析
这节课通过对卫星变轨的实例分析,使学生了解:卫星变轨的原理和过程,让学生学会解决卫星变轨问题。
教学活动
4
(四)例题示范,巩固提高
1.如图,地球赤道上山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地球做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )
A.v1>v2>v3B.v1<v2<v3C.a1>a2>a3D.a1<a3<a2
创设情景:
发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v1,第一次在P点点火加速,在短时间内将速率由v1增加到v2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q时的速率为v3,此时进行第二次点火加速,在短时间内将速率由v3增加到v4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
3.2009年2月11日,俄罗斯的“宇宙—2251”卫星和美国“铱—33”卫星在西伯利亚上空约805km处发生碰撞。这是历史上首次发生的完整在轨卫星碰撞事件。碰撞过程中产生的大量碎片可能会影响太空环境。假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是( )
3.上课环境为多媒体大屏幕环境。
《卫星变轨》教学过程描述
教学活动
1
(一)师生互动,激趣导入
1.教师展示:中国现今发射的多个卫星过程、神舟六号、神舟七号、神州八号、神州九号的成功发射,神州八号和天宫一号的对接过程,激发学生兴趣。
2.引入课题:万有引力定律的天文学上的应用—卫星变轨
教学活动
2
(二)问题启发,合作探究
在讲课时,卫星变轨加速原理要交待清楚。
1.从低轨进入高轨要点火加速
2.从高轨进入低轨要点火减速
3.整个变轨过程是利用了速度变化的时候 ,从而卫星做离心运动
学情分析
本节课的学习者特征分析主要是根据学生的实际情况做出的:
1.学生是綦江区永新中学高一(1)班学生;
2.学生已经基本掌握万有引力定律和圆周运动的知识;
2.我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是( )
A.飞船变轨前后的速度相等
B.飞船在圆轨道上时航天员出舱前后都处于超重状态
C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度
2.利用万有引力定律变轨,学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。
3.通过介绍中国航天事业的发展,激发学生对科学家探究真理的崇拜之情。
教学重点
1.卫星变轨原理。
2.卫星在各轨道上的速度、加速度、周期等的大小比较。
教学难点
对 的理解。
教学资源
1.给同学们准备一些相关资料;
2.教师自制的多媒体课件;
当卫星受到的万有引力不够提供卫星做圆周运动所需的向心力时,卫星将做离心运动,当卫星受到的万有引力大于做圆周运动所需的向心力时卫星将在较低的椭圆轨道上运动,做近心运动。导致变轨的原因是卫星或飞船在引力之外的外力,如阻力、发动机的推力等作用下,使运行速率发生变化,从而导致供与需不平衡而导致变轨。这是卫星或飞船的不稳定运行阶段,不能用公式分析速度变化和轨道变化的关系。
3.设计重趣味性与知识性的结合。
教学目标
一、知识与技能
1.卫星变轨的原理;
2.了解万有引力定律在变轨中的重要应用;
3.会用万有引力定律解决变轨问题。
二、过程与方法
1.由v增加从而引起 的增加, ,于是卫星做离心运动。
2.通过万有引力定律在实际中的应用,培养学生理论联系实际的能力
三、情感态度与价值观
1.利用设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;
教学活动
2
2.变轨分析:第一次加速:卫星需要的向心力 增大了,但万有引力 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。点火过程中卫星的线速度增大。在转移轨道上,卫星从近地点P向远地点Q运动过程中速度减小。在远地点Q时如果不进行再次点火,卫星将继续沿椭圆轨道运行,从远地点Q回到近地点P,不会自动进入同步轨道。这种情况下卫星在Q点受到的万有引力大于以速率v3沿同步轨道运动所需要的向心力,因此卫星做向心运动。
A.甲的运行周期一定比乙的长B.甲距地面的高度一定比乙的高
C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大
课堂总结
(五)课堂小节,形成体系
分析变轨问题时,一是物体做圆周运动需要的向心力,二是提供的向心力。只有当提供的力能满足它需要的向心力时,即“供”与“需”平衡时物体才能在稳定的轨道上做圆周运动,否则物体将发生变轨现象——物体远离圆心或靠近圆心。