初中数学整体代入法求代数式的值专项训练

合集下载

初一数学-代数式的值

初一数学-代数式的值

初一数学1 代数式、代数式求值例1、(特殊值代入)已知()01556677713a x a x a x a x a x +++++=- ,试求01567a a a a a +++++ 的值。

练习:若不论x 取什么值,代数式83++bx ax 的值都相同,试求a 与b 的关系。

例2、(换元法)已知32,3a c b a ==,求代数式c b a c b a -+++的值。

练习: 1、(迎春杯初中一年级第八届试题)若______,3,2=++==c b b a b c a b 则2、已知234y x z y x z +++==,且212x y z ++=,求2x y z -+的值。

3、若,a c z c b y b a x -=-=-求x+y+z 的值.例3、(整体代入法)已知a 为有理数,且3210a a a +++=,求2320011...a a a a+++++的值。

练习:1、已知241x x +=,求代数式543267481x x x x x ++--+的值。

2、(北京初二数学竞赛题)如果a 是2310x x -+=的根,试求1825222345+-+-a a a a a 的值.例4、(将条件式变形后代入化简)已知a+b+c=0,求(a+b)(b+c)(c+a)+abc 的值。

练习:当0.2,0.04a b =-=-时,求代数式)(41)16.0(7271)(73722b a b a b a +-++-+值。

练习:一、选择题1.下列各式中,是代数式的是 ( )A.220a b -= B .43> C. a D .520x -≠2.无论a 取什么数,下列算式中有意义的是 ( ) A. 11a - B. 1a C.112a - D .121a - 3.现规定一种新的运算“※”:a ※b =2b ,如3※2328==,则3※12等于 ( ) A. 18 B .8 C.16 D .324.已知-6a 9b 4和5a 4n b 4是同类项,则代数式12n -10的值是 ( ).A . 17B .37C .-17D .985.代数式(xy z 2-4yx -1)+(3xy +z 2yx -3)-(2xy z 2+xy )的值 ( )A .与x 、y 、z 的大小无关B .与x 、y 的大小有关,而与z 的大小无关C .与x 的大小有关,与y 、z 的大小无关D .与x 、y 、z 的大小都有关6.随着计算机技术的迅速发展,电脑价格不断降低,某品牌电脑按原价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原价为 ( )A .4()5n m +元B .5()4n m +元 C .(5m+n)元 D .(5n+m)元7.观察下列图形,则第n 个图形中三角形的个数是( )A. 22n + B .44n + C .44n - D .4n8.代数式()218x y --的最大值是( )A .17B .18C .1000D .无法确定二、填空题1.单项式-2×105πa 2的系数是_________;次数是_________.2. 多项式(m+5)x n y -13x 2y -6是六次三项式,则m_________,n_________. 3.表示图中阴影部分的面积.4.若关于a 、b 的两个单项式2a 2m -5b 4与mab 3n -2的差仍是单项式,则m +n =_______.5.已知xy y x 3=-,则y xy x yxy x ---+2232=_______6.已知代数式6232+-y y 的值等于8,那么代数式=+-1232y y _______ 7.(x-3)5=ax 5+bx 4+cx 3+dx 2+ex+f ,则a+b+c+d+e+f=______, b+c+d+e=_____.三、解答题1.计算题:(1) ()22223x x y y -+- (2) ()()5273410x y x y ---(3)222222111()()()236a b a b a b -+-++ (4)6(2332x a x a ---)2.(1)当12a =,13b =时,分别求代数式①222a ab b -+,②()2a b -的值; (2)当a=5,b=3时,分别求代数式①222a ab b -+,②()2a b -的值;(3)观察(1)(2)中代数式的值,222a ab b -+与()2a b - 2有何关系?(4)利用你发现的规律,求22135.72135.735.735.7-⨯⨯+的值.…… 第1个 第2个 第3个3、代数式c bx ax ++5,当3-=x 时值为8,当0=x 时值为1,求当3=x 时,该代数式的值。

初中数学专题训练——整体代入法综合练习及试题解析

初中数学专题训练——整体代入法综合练习及试题解析

专题03 整体代入法【规律总结】整体代入法,在求代数式值中应用求代数式的值最常用的方法,即把字母所表示的数值直接代入,计算求值。

有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的技法经常用到。

【典例分析】例1、在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD−AB=2时,S2−S1的值为()A. 2aB. 2bC. 2a−2bD. −2b【答案】B【解析】解:S1=(AB−a)⋅a+(CD−b)(AD−a)=(AB−a)⋅a+(AB−b)(AD−a),S2=AB(AD−a)+(a−b)(AB−a),∴S2−S1=AB(AD−a)+(a−b)(AB−a)−(AB−a)⋅a−(AB−b)(AD−a)=(AD−a)(AB−AB+b)+(AB−a)(a−b−a)=b⋅AD−ab−b⋅AB+ab=b(AD−AB)=2b.故选:B.利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.例2、若m是方程2x2−3x−1=0的一个根,则6m2−9m+2015的值为______.【答案】2018【解析】解:由题意可知:2m2−3m−1=0,∴2m2−3m=1∴原式=3(2m2−3m)+2015=2018故答案为:2018根据一元二次方程的解的定义即可求出答案.本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.例3、解下列各题:(1)若n满足(n−2023)(2021−n)=−6,求(n−2023)2+(2021−n)2的值.(2)已知:m2=n+2,n2=m+2(m≠n),求:m3−2mn+n3的值.【答案】解:(1)∵(n−2023)(2021−n)=−6,∴原式=(n−2023+2021−n)2−2(n−2023)(2021−n)=(−2)2−2×(−6)=4+12=16;(2)∵m2=n+2①,n2=m+2(m≠n)②,∴m2−n=2,n2−m=2,∵m≠n,∴m−n≠0,∴①−②得m2−n2=n−m∴(m−n)(m+n)=−(m−n),∵m−n≠0,∴m+n=−1∴原式=m3−mn−mn+n3=m(m2−n)+n(n2−m)=2m +2n =2(m +n) =2×(−1) =−2.【解析】本题主要考查的是代数式求值,完全平方公式,运用了整体代入法的有关知识. (1)将给出的代数式进行变形为(n −2023+2021−n)2−2(n −2023)(2021−n),然后整体代入求值即可;(2)先根据m 2=n +2,n 2=m +2(m ≠n),求出m +n =−1,然后将给出的代数式进行变形,最后整体代入求解即可.【好题演练】一、选择题1. 已知a +b =12,则代数式2a +2b −3的值是( )A. 2B. −2C. −4D. −312【答案】B【解析】解:∵2a +2b −3=2(a +b)−3, ∴将a +b =12代入得:2×12−3=−2 故选:B .注意到2a +2b −3只需变形得2(a +b)−3,再将a +b =12,整体代入即可 此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.2. 若α、β为方程2x 2−5x −1=0的两个实数根,则2α2+3αβ+5β的值为( )A. −13B. 12C. 14D. 15【答案】B 【解析】 【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=ca .也考查了一元二次方程解的定义.根据一元二次方程解的定义得到2α2−5α−1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=−12,然后利用整体代入的方法计算. 【解答】解:∵α为2x 2−5x −1=0的实数根, ∴2α2−5α−1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1, ∵α、β为方程2x 2−5x −1=0的两个实数根, ∴α+β=52,αβ=−12,∴2α2+3αβ+5β=5×52+3×(−12)+1=12.故选B .3. 如果a 2+2a −1=0,那么代数式(a −4a ).a 2a−2的值是( )A. −3B. −1C. 1D. 3【答案】C 【解析】 【分析】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.根据分式的减法和乘法可以化简题目中的式子,然后根据a 2+2a −1=0,可以得到a 2+2a =1,从而可以求得所求式子的值. 【解答】解:(a −4a )⋅a 2a−2=a 2−4a⋅a 2a−2=(a+2)(a−2)a⋅a 2a−2=a 2+2a ,由a 2+2a −1=0得a 2+2a =1,故原式=1. 故选C .4.已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A. −72B. −112C. 92D. 34【答案】D【解析】解:∵1x−1y=3,∴y−xxy=3,∴x−y=−3xy,则原式=2(x−y)+3xy(x−y)−xy=−6xy+3xy−3xy−xy=−3xy−4xy=34,故选:D.由1x −1y=3得出y−xxy=3,即x−y=−3xy,整体代入原式=2(x−y)+3xy(x−y)−xy,计算可得.本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.5.已知x1,x2是方程x2−3x−2=0的两根,则x12+x22的值为()A. 5B. 10C. 11D. 13【答案】D【解析】【分析】本题考查了完全平方公式以及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca,利用根与系数的关系得到x1+x2=3,x1x2=−2,再利用完全平方公式得到x12+x22=(x1+x2)2−2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=−2,所以x12+x22=(x1+x2)2−2x1x2=32−2×(−2)=13.故选:D.6.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元【答案】A【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10−8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y−4,∴y=x+7,∴5x+3y+10−8x=5x+3(x+7)+10−8x=31.故选A.二、填空题7.已知ab=a+b+1,则(a−1)(b−1)=______.【答案】2【解析】【分析】本题考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用,属于基础题.将ab=a+b+1代入原式=ab−a−b+1,合并即可得.【解答】解:当ab=a+b+1时,原式=ab−a−b+1=a+b+1−a−b+1=2,故答案为:2.8.将抛物线y=ax2+bx−1向上平移3个单位长度后,经过点(−2,5),则8a−4b−11的值是______.【答案】−5【解析】解:将抛物线y=ax2+bx−1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(−2,5),代入得:4a−2b=3,则8a−4b−11=2(4a−2b)−11=2×3−11=−5,故答案为:−5.根据二次函数的平移得出平移后的表达式,再将点(−2,5)代入,得到4a−2b=3,最后将8a−4b−11变形求值即可.本题考查了二次函数的平移,二次函数图象上点的坐标特征,解题的关键是得出平移后的表达式.9.若a+b=1,则a2−b2+2b−2=______.【答案】−1【解析】解:∵a+b=1,∴a2−b2+2b−2=(a+b)(a−b)+2b−2=a−b+2b−2=a+b−2=1−2=−1.故答案为:−1.由于a+b=1,将a2−b2+2b−2变形为a+b的形式,整体代入计算即可求解.本题考查了平方差公式,注意整体思想的应用.10.若实数x满足x2−2x−1=0,则2x3−7x2+4x−2017=______.【答案】−2020【解析】【分析】把−7x2分解成−4x2与−3x2相加,然后把所求代数式整理成用x2−2x表示的形式,然后代入数据计算求解即可.本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.【解答】解:∵x2−2x−1=0,∴x2−2x=1,2x3−7x2+4x−2017=2x3−4x2−3x2+4x−2017,=2x(x2−2x)−3x2+4x−2017,=6x−3x2−2017,=−3(x2−2x)−2017=−3−2017=−2020,故答案为−2020.11.已知|x−y+2|+√x+y−2=0,则x2−y2的值为________.【答案】−4【解析】【分析】本题考查了非负数的性质,解题关键是掌握几个非负数的和等于0,那么这几个非负数都等于0.由非负数的性质得出x、y的值,再代入所求代数式求解即可.【解答】解:∵|x−y+2|+√x+y−2=0,∴x−y+2=0,x+y−2=0,即x−y=−2,x+y=2,∴x 2−y 2=(x +y)(x −y)=2×(−2)=−4, 故答案为−4.12. 已知m +n =3mn ,则1m +1n 的值为______.【答案】3 【解析】 【试题解析】 【分析】本题考查了分式的化简求值,利用通分将原式变形为m+nmn 是解题的关键. 原式通分后可得出m+nmn ,代入m +n =3mn 即可求出结论. 【解答】 解:原式=1m +1n =m+n mn ,又∵m +n =3mn , ∴原式=m+n mn=3.故答案为:3.三、解答题13. 已知x =√2+1,y =√2−1,分别求下列代数式的值;(1)x 2+y 2; (2)yx +xy .【答案】解:(1)∵x =2+1=√2−1,y =2−1=√2+1, ∴x −y =−2,xy =2−1=1,∴x 2+y 2=(x −y)2+2xy =(−2)2+2×1=6;(2)∵x 2+y 2=6,xy =1, ∴原式=x 2+y 2xy=61=6.【解析】本题考查二次根式的化简求值,分母有理化,解题的关键是运用完全平方公式以及整体思想,本题属于基础题型.(1)先将x 、y 进行分母有理化,得到x =√2−1,y =√2+1,再求出x −y 与xy 的值,然后根据完全平方公式得出x 2+y 2=(x −y)2+2xy ,再整体代入即可; (2)将所求式子变形为x 2+y 2xy,再整体代入即可.14. 阅读材料,然后解方程组.材料:解方程组{x −y −1=0, ①4(x −y)−y =5. ②由①得x −y③,把③代入②,得4×1−y =5. 解得y =−1.把y =−1代入③,得x =0. ∴{x =0y =−1这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{2x −3y −2=0,①2x−3y+57+2y =9.②.【答案】解:由①得:2x −3y =2③, 将③代入②得:1+2y =9,即y =4, 将y =4代入③得:x =7, 则方程组的解为{x =7y =4.【解析】由第一个方程求出2x −3y 的值,代入第二个方程求出y 的值,进而求出x 的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15. 阅读材料,善于思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5即2(2x +5y)+y =5③ 把方程①代入③得2×3+y =5 ∴y =−1把y =−1代入①得x =4 ∴方程组的解为{x =4y =−1 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组{3x −2y =5 ①9x −4y =19②(2)已知x 、y 满足方程组{5x 2−2xy +20y 2=822x 2−xy +8y 2=32,求x 2+4y 2的值; 【答案】解:(1)由②得:3x +6x −4y =19,即3x +2(3x −2y)=19③, 把①代入③得:3x +10=19,即x =3, 把x =3代入①得:y =2, 则方程组的解为{x =3y =2;(2)由5x 2−2xy +20y 2=82得:5(x 2+4y 2)−2xy =82,即x 2+4y 2=82+2xy5,由2x 2−xy +8y 2=32得:2(x 2+4y 2)−xy =32,即2×82+2xy5−xy =32,整理得:xy =4, ∴x 2+4y 2=82+2xy5=82+85=18.【解析】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组第一个方程变形表示出x 2+4y 2,第二个方程变形后代入求出xy 的值,进而求出x 2+4y 2的值.16. (1)已知x 3⋅x a ⋅x 2a+1=x 31求a 的值;(2)若n 为正整数,且x 2n =4,求(3x 3n )2−4⋅(x 2)2n 的值。

专题训练(二) 求代数式值的技巧

专题训练(二) 求代数式值的技巧

专题训练(二) 求代数式值的技巧 ► 技巧一 直接代入求值1.当a =-2,b =-3时,求代数式2a 2-3ab +b 2的值.► 技巧二 先化简,再代入求值2.先化简,再求值:12x -2⎝⎛⎭⎫x -13y 2+⎝⎛⎭⎫-32x +13y 2,其中x =-2,y =23. 3.已知A =1-x 2,B =x 2-4x -3,C =5x 2+4,求多项式A -2[]A -B -2(B -C )的值,其中x =-1.► 技巧三 先求字母的值,再代入求值4.已知||x -2+()y +12=0,求-2()2x -3y 2+5()x -y 2-1的值.5.已知多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,求多项式3(a 2-ab +b 2)-(3a 2+ab +b 2)的值.► 技巧四 先变形,再整体代入求值6.已知2x -3y =5,求6x -9y -5的值.7.已知当x =2时,多项式ax 3-bx +1的值为-17,那么当x =-2时,多项式ax 3-bx +1的值等于多少?► 技巧五 取特殊值代入求值8.已知()x +13=ax 3+bx 2+cx +d ,求a +b +c 的值. 详解详析1.解:当a =-2,b =-3时,原式=2×(-2)2-3×(-2)×(-3)+(-3)2=2×4-3×2×3+9=8-18+9=-1.[点评] 本题是直接代入求代数式的值,注意代入时负数参加运算需加括号.求代数式的值要注意:①代入求值的书写格式;①求代数式的值体现了一种重要的“代换”思想,但在代入求值时要注意对应着代替原式中的字母,不要代错;①在求值过程中,代数式中的运算符号和顺序都不能改变.2.解:原式=12x -2x +23y 2-32x +13y 2 =-3x +y 2,当x =-2,y =23时, 原式=-3×()-2+⎝⎛⎭⎫232=6+49=649. [点评] 本题需先化简,再将字母的值代入化简后的式子求值,而不是直接代入求值.3.解:A -2[]A -B -2(B -C )=A -2A +2B +4(B -C )=A -2A +2B +4B -4C =-A +6B -4C ,当x =-1时,A =1-x 2=0,B =x 2-4x -3=2,C =5x 2+4=9,①原式=0+12-36=-24.4.解:由条件||x -2+()y +12=0,得x -2=0且y +1=0,所以x =2,y =-1. 原式=-4x +6y 2+5x -5y 2-1=x +y 2-1.当x =2,y =-1时,原式=2+()-12-1=2.[点评] 当已知条件中没有直接给出字母的具体值时,有时可根据已知条件求出字母的具体值,再代入计算.本题先根据“若两个非负数的和等于0,则这两个非负数都为0”这一条件求出x ,y 的值,希望大家注意这一类型的条件.5.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=2x 2+ax -y +6-2bx 2+3x -5y +1 =(2-2b )x 2+(a +3)x -6y +7因为多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,所以2-2b =0,a +3=0,所以b =1,a =-3.所以3(a 2-ab +b 2)-(3a 2+ab +b 2)=3a 2-3ab +3b 2-3a 2-ab -b 2=-4ab +2b 2=-4×()-3×1+2×12=14.[点评] 本题根据隐含条件“多项式的值与字母x 的取值无关,则含x 的项的系数都为0”这一条件首先求出a ,b 的值,再代入化简后的式子求值.6.解:6x -9y -5=3(2x -3y )-5=3×5-5=10.[点评] 当由已知条件无法具体求出字母的值时,要观察已知条件与待求式子之间的关系,有时可以通过整体代入解决问题.整体代入是一种重要的思想方法,在解题中应注意灵活使用.7.解:因为当x =2时,多项式ax 3-bx +1的值为-17,所以8a -2b +1=-17,所以8a -2b =-18.当x =-2时,ax 3-bx +1=-8a +2b +1=-(8a -2b )+1=18+1=19.[点评] 本题先根据条件求出一个多项式的值,再将所求的代数式转化成关于这个多项式的形式,最后整体代入求值.8.解:令x =0,则()0+13=d ,所以d =1.再令x =1,则()1+13=a +b +c +d ,所以a +b +c +d =8.把d =1代入a +b +c +d =8,得a +b +c =8-1=7.[点评] 所求代数式中不含x ,且各项系数符号未变,可采用一般向特殊转化的方法.。

初一数学整体代入法求代数式的值经典例题

初一数学整体代入法求代数式的值经典例题

初一数学整体代入法求代数式的值专项训练1、若m n 、互为相反数,则5m+5n-5的值是2、已知b a 、互为相反数,c d 、互为倒数,则代数式2()3a b cd +-的值为3、已知2x-y=3,则1-4x+2y=例3、 若m 2-2m= 1,求代数式2m 2-4m+2011的值.例4、已知2x-3y-4=0,求代数式(2x-3y )—4x+6y-7的值?5、当13b a +=,则代数式212(1))1b b a a++-+(的值为 例6、已知2135b a +=-,求代数式2(2)333(2)b a a b +---+的值7、已知14a b a b -=+,求代数式2()3()a b a b a b a b -+-+-的值8、当2a b +=时,求代数式2()2()3a b a b +-++的值。

9、当4,1a b ab +==时,求代数式232a ab b ++的值。

例10、若3a b ab -=,求代数式222a b ab a b ab---+的值。

11、当110,5x y xy +=-=时,求7157x xy y -+的值。

12、若2232x y +-的值为6,求28125x y ++的值。

13、已知代数式23x x ++的值为7,求代数式2223x x +-的值 。

例14、若1x =时,代数式34ax bx ++的值为5,则当1x =-时,代数式34ax bx ++的值为多少?15、已知y ax bx =++33,当x =3时y =-7,则求x =-3时,y 的值。

16、若-2x =时,代数式535ax bx cx ++-的值为9,则2x =时,代数式53+7ax bx cx ++的值是多少?。

整体代入法练习题

整体代入法练习题

整体代入法练习题整体代入法是一种问题求解的方法,它通过将问题转化为整体情景,从中寻找解决方案。

这种方法在解决各种问题时都能发挥作用。

本文将从数学、物理和生活等多个领域给出一些整体代入法的练习题,帮助读者更好地理解和运用这种问题求解方法。

一、数学领域1. 求解一元二次方程:已知一元二次方程x^2 + px + q = 0的两个根为α和β,求解这个方程的表达式。

解析:由题意已知两个根α和β,我们可以利用整体代入法来求解。

根据二次方程的性质,如果x是方程的根,则这个方程必定可以写成(x-α)(x-β)=0的形式。

将已知的两个根代入,我们可以得到方程的表达式为(x-α)(x-β)=0。

2. 求证勾股定理:已知直角三角形ABC,其中∠C为直角,AB=c,AC=b,BC=a,求证c^2 = a^2 + b^2。

解析:为了证明勾股定理,我们可以利用整体代入法。

假设直角三角形ABC的边长满足a,b,c三个变量,可以通过构造具体情景来证明。

我们构造一个正方形,边长为a+b,然后在该正方形的对角线上分别构造两个正方形,边长分别为a和b。

通过观察两个小正方形和总正方形,我们可以得出结论:c^2 = a^2 + b^2。

二、物理领域1. 求解自由落体问题:已知自由落体的初速度为v0,求解自由落体的高度h和落地时间t。

解析:通过整体代入法,我们可以将自由落体问题转化成一个垂直上抛运动的问题。

根据运动学的知识,我们可以得到自由落体物体的高度h和时间t的表达式为h = v0*t - (1/2)*g*t^2和t = (2*v0)/g,其中g 为重力加速度。

2. 求解摩擦力问题:已知一个物体在水平面上受到一个恒定的外力F,求解该物体所受到的摩擦力Ff。

解析:通过整体代入法,我们可以将摩擦力问题转化为力的平衡问题。

根据牛顿第二定律,物体受力的合力等于物体的质量乘以加速度。

在水平面上,物体受到外力F和摩擦力Ff,根据整体代入法,我们可以得到物体所受到的摩擦力Ff = F - m*a,其中m为物体的质量,a为物体的加速度。

七年级上册数学整式加减的化简求值(整体代入法)专题练习(解析版)

七年级上册数学整式加减的化简求值(整体代入法)专题练习(解析版)

整式加减的化简求值(整体代入法)专题练习一、选择题1、若a+b=6,则18-2a-2b=().A. 6B. -6C. -24D. 12答案:A解答:∵a+b=6,∴18-2a-2b=18-2(a+b)=18-12=6,选A.2、若代数式2a-b的值为1,则代数式7+4a-2b的值为().A. 7B. 8C. 9D. 10答案:C解答:∵7+4a-2b=7+2(2a-b),把2a-b=1代入上式得:∴原式=7+2=9.选C.3、已知a+b=5,b-c=12,则a+2b-c的值为().A. 17B. 7C. -17D. -7答案:A解答:∵a+b=5,b-c=12,∴a+2b-c=(a+b)+(b-c)=5+12=17.选A.4、已知a-b=5,c+d=2,则(b+c)-(a-d)的值是().A. -3B. 3C. -7D. 7答案:A解答:∵a-b=5,c+d=2,∴原式=b+c-a+d=(a-b)+(c+d)=-5+2=-3,选A.5、代数式x2+x+2的值为0,则代数式2x2+2x-3的值为().A. 6B. 7C. -6D. -7答案:D解答:∵x2+x+2=0,即x2+x=-2,∴原式=2(x2+x)-3=-4-3=-7.选D.6、若m-x=2,n+y=3,则(m+n)-(x-y)=().A. -1B. 1C. 5D. -5答案:C解答:∵m-x=2,n+y=3,∴m-x+n+y=5,∴(m+n)-(x-y)=5.选C.7、若a2+2ab=-10,b2+2ab=16,则多项式a2+4ab+b2与a2-b2的值分别为()A. 6,26B. -6,26C. 6,-26D. -6,-26答案:C解答:∵a2+2ab=-10,b2+2ab=16,∴a2+4ab+b2=(a2+2ab)+(b2+2ab)=-10+16=6;∴a2-b2=(a2+2ab)-(b2+2ab)=-10-16=-26.选C.二、填空题8、已知代数式x+2y的值是3,则代数式2x+4y-1的值是______.答案:5解答:由题意可知:x+2y=3,原式=2(x+2y)-1=6-1=5.9、代数式x2+x+3的值为7,则代数式2x2+2x-3的值为______.答案:5解答:x2+x+3=7,则x2+x=4,2x2+2x-3=2(x2+x)-3=2×4-3=5.10、若a、b互为相反数,c、d互为倒数,则(a+b)-3cd=______.答案:-3解答:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)-3cd=0-3=-3,故答案为:-3.11、已知a-b=3,c+d=2,则(b+c)-(a-d)的值为______.答案:-1解答:原式=b+c-a+d,=c+d-a+b,=(c+d)-(a-b),=2-3=-1.12、若x=y+3,则14(x-y)2-2.3(x-y)+0.75(x-y)2+310(x-y)+7等于______.答案:10解答:∵x=y+3,∴x-y=3,则14(x-y)2-2.3(x-y)+0.75(x-y)2+310(x-y)+7=14×32-2.3×3+0.75×32+310×3+7=2.25-6.9+6.75+0.9+7 =10.故答案为:10.13、若x-2y=4,则2(2y-x)2+2x-4y+1的值是______.答案:41解答:∵x-2y=4,∴2(2y-x)2+2x-4y+1=2×(-4)2+2×4+1=41.故答案为:41.14、若x+y=2017,xy=2016,则整式(x+2y-3xy)-(-2x-y+xy)+2xy-1=______.答案:2018解答:原式=x+2y-3xy+2x+y-xy+2xy-1=3x+3y-2xy-1=3(x+y)-2xy-1当x+y=2017,xy=2016时,原式=3×2017-2×2016-1=6051-4032-1=2018.故答案为2018.15、若m2+mn=-3,n2-3mn=18,则m2+4mn-n2的值为______.答案:-21解答:∵m2+mn=-3,n2-3mn=18,∴将这两个等式的两边相减得:m2+mn-(n2-3mn)=-3-18,∴m2+mn-n2+3mn=-21,∴m2+4mn-n2=-21.16、若3a+2b=4,且2a-b=5,则(a+b)2016的值是______.答案:1解答:3a+2b=4①,且2a-b=5②,由②得:4a-2b=10③,①+③,得:7a=14,解得a=2,把a=2代入②,得:b=-1.(a+b)2016=(2-1)2016=1.故答案为:1.三、解答题17、已知a2+2a+1=0,求2a2+4a-3的值.答案:-5解答:∵a2+2a+1=0,∴2a2+4a-3=2(a2+2a+1)-5=0-5=-5.18、已知a,b互为相反数,c,d互为倒数,x的绝对值为2.求x2-(a+b+cd)x+(-cd)2011的值.答案:1或5.解答:∵a,b互为相反数,c,d互为倒数,x的绝对值为2,∴a+b=0,cd=1,x=±2,当x=2时,原式=22-(0+1)×2+(-1)2011=4-2-1=1;当x=-2时,原式=(-2)2-(0+1)×(-2)+(-1)2011=4+2-1=5.∴x2-(a+b+cd)x+(-cd)2011的值为1或5.19、回答问题:(1)先化简,再求值:2(m2-mn+1)-3(23m2-2mn+4),其中m=12,n=-3.(2)已知2a-b+5=0,求整式6a+b与-2a-3b+27的和的值.答案:(1)原式=-16.(2)原式=17.解答:(1)原式=2m2-2mn+2-2m2+6mn-12=4mn-10.当m=12,n=-3时,原式=4×12×(-3)-10=-16.(2)(6a+b)+(-2a-3b+27)=6a+b-2a-3b+27=4a-2b+27=2(2a-b)+27∵2a-b+5=0∴2a-b=-5原式=2×(-5)+27=17.20、请回答下列各题:(1)化简:5(2x2y+3xy2)-(6xy2-3x2y).(2)化简求值:已知a+b=9,ab=2,求23(-15ab+3ab)+15(2ab-10a)-4(ab+12b)的值.答案:(1)13x2y+9xy2.(2)-2065.解答:(1)原式=10x2y+15xy2-6xy2+3x2y =13x2y+9xy2.(2)原式=-10ab+2ab+25ab-2a-4ab-2b=(-10+2-4+25)ab-2a-2b=-585ab-2(a+b),其中a+b=9,ab=2,∴原式=-585×2-2×9=-18-1165=-2065.20、解答下列问题:(1)若代数式2x2+3x+7的值为8,那么代数式6x2+9y+2013的值为______.(2)若x+y=7,xy=5,则代数式8-2x-2y+xy的值为______.(3)若x4+y4=16,x2y-xy2=5,则(x4-y4)-(3x2y-5xy2)-2(xy2-y4)的值是多少?答案:(1)2016(2)-1(3)1.解答:(1)∵2x2+3x+7=8,∴2x2+3x=1,则原式=3(2x2+3x)+2013=3+2013=2016,故答案为:2016.(2)∵x+y=7,xy=5,∴原式=8-2(x+y)+xy=8-2×7+5=8-14+5=-1,故答案为:-1.(3)(x4-y4)-(3x2y-5xy2)-2(xy2-y4)=x4-y4-3x2y+5xy2-2xy2+2y4=(x4+y4)-3(x2y-xy2),∵x4+y4=16,x2y-xy2=5,∴原式=16-15=1.。

初一:代数式的求值专题

初一:代数式的求值专题

代数式的求值类型一、利用分类讨论方法【例1】已知|[ =7,间=12,求代数式x+y的值.变式练习:1、已知|乂-1|=2,|丫|=3,且乂与丫互为相反数,求3 X 2 7y . 4 y的值2、|x|=4,|y|=6,求代数式|x+y|的值3、已知凶=1,| y = 1,求代数式x 2—2町+ y 2的值;类型二、利用数形结合的思想方法【例】有理数a, b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — | 1 一c] 的值.变式练习:1、有理数a, b, c在数轴上对应点如图所示,化简|b+a| + |a+c| + |c-b|I 111rC B0 A2、已知a, b, c在数轴上的位置如图所示,化简|a| + |c-b| + |a-c| + |b-a|a 0 c b题型三、利用非负数的性质【例 D 已知(a—3)2+|—b+5 | + | c — 2 |=0.计算 2a+b+c 的值.【例2】若实数a、b满足a2b2+a2+b2-4ab+1=0,求b + a之值。

a b变式练习:1、已知:|3x-5| + |2y+8|=0 求x+y2、若205x|2x-7| 与30x| 2y-8 |互为相反数,求xy+x题型四、利用新定义【例1】用“★”定义新运算:对于任意实数a, b,都有a*b=b2+i.例如,7*4 = 42+1 = 17, 那么5*3=;当川为实数时,m*(m*2)=.变式练习:1、定义新运算为a4b =( a + 1 )刊,求的值。

6A ( 3A4 )2、假定m^n表示m的3倍减去n的2倍,即mOn=3m-2n o (2)已知乂。

(4。

1) =7,求x的值。

3、规定a * b = 1 - -, a **b = 2-1, 则(6 * 8)**(8 * 6)的值为; b a题型五、巧用变形降次【例】已知X2 —x—1 = 0,试求代数式一X3+2X+2008的值.变式练习:设m 2 + m — 1 = 0,则U m 3 + 2 m 2 +1997 =题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入,,求代数式的值。

七年级数学上册综合训练代数式求值整体代入一天天练新版新人教版

七年级数学上册综合训练代数式求值整体代入一天天练新版新人教版

小学 +初中 +高中
代数式求值
学生做题前请先答复以下问题
问题 1:整体代入的思考方向
①求值困难,考虑_____________;
②化简 ________________ ,比照确定 ________;
③整体代入,化简.
问题 2:代数式2a2+3b=6,求代数式4a2+6b+8 的值.
①根据 2a2+3b=6 无法求出 a 和 b 的具体值,考虑_____________;
②比照及所求,考虑把________作为整体;
③整体代入,化简,最后结果为______ .
代数式求值〔整体代入一〕〔人教版〕
一、单项选择题 ( 共 13 道,每道 7 分 )
1. 把看成一个整体,合并同类项的结果为 ( )
A. B.
C. D.
2. 把看成一个整体,合并同类项的结果为 ( )
A. B.
C. D.
3. 设,把用含的代数式表示并化简的结果为( )
A. B.
C. D.
4. 设,把用含的代数式表示并化简的结果为( )
A. B.
C. D.
5. 假设,那么代数式的值为()
6. ,那么的值为()
7. 假设,那么代数式的值为()
8. 代数式的值是4,那么的值为()
9. 假设代数式的值为5,那么代数式的值为()
10. 代数式的值为6,那么的值为()
11. 假设,那么的值为()
12. 假设,那么的值为()
13. 假设,那么的值为()。

整体代入法求代数式的值

整体代入法求代数式的值
例3 .当x=2,y=-3时,求代数式x(x-y)的值
解:当x=2,y=-3时 x(x-y) = 2×[2-(-3)] =2 ×5 =10
从这个例题可以看到, (1)代数式中的字母用负数来替代时,负数要添上括 号。并且注意改变原来的括号。 (2)数字与数字相乘,要写“×”号,因此,如果原代 数式中有乘法运算,当其中的字母用数字在替代时, 要恢复“×”号。
(a+b)2+a+6+b=(a+b)2 +(a +b)+6
=32+3+6
=18
当代数式中的字母不能或不容易求出具 体的值时,可以考虑整体代入法求代 数式的值;
观察所求代数式与已知条件之间的内在 联系,有时需对所求代数式或已知条 件做适当的变形,使变形后可以实施 整体代入。
练一练:
若代数式2a2+3a+1的值为5,求代数式4a2+6a+8的值.
(逆用乘法分配律)
32410
(1)、已知:2x-y=3, 那么4x-3-2y=_______ 4x-3-2y= 2(2x-y)-3 =2×3-3 =3
(2)、已知:2x2+3x-5的值是8, 求代数式4x2+6x-15的值。
解: ∵2x2+3x= 13 ∴4x2+6x=26
即 4x2+6x-15= 26-15 =11
(2)如果字母的值是分数,并要计算它的平方、立方,代 入时也要添上括号。
3;b的值.
思路点拨: 本例中字母 a,b的值并不知道,根据 已知a+b=3,求出a,b是不可能的。观察代数式发现, 其中a+b是以整体出现的,所以可将a+b直接代入 原代数式求值。 解: 当 a+b=3时,

专题04 代数式化简求值的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题04 代数式化简求值的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题04代数式化简求值的三种考法类型一、整体代入求值【变式训练3】已知a+b=2ab,那么=()a ab b-+A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e=⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,【变式训练2】若6543210,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∴0=1a ,令x =1,代入等式中得到:65432101①=++++++ a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++ a a a a a a a ,将①式减去②式,得到:65311(3)2()--+=+a a a ,∴536113)3642(-+=+=-a a a ,∴53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∴223x x -=-,∴3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020=x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029故答案为:2029.【分析】根据已知得到2232022x x -=,再将所求式子变形为()()22232320222020x x x x x x =-+---,整体代入计算即可.【详解】解:∵22320220x x --=,∴2232022x x -=,∴32220252020x x x ---322232*********x x x x x =-+---()()22232320222020x x x x x x =-+---2022202220222020x x =+--2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∴2232x x -=∴2695x x --()23235x x =--325=⨯-1=,故答案为:1.【变式训练3】已知21x x +=,求43222023x x x x +--+的值.【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=,∴43222023x x x x +--+()22222023x x x x x =+--+2222023x x x =--+22023x x =--+()22023x x =-++12023=-+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∴230x x x --=,∴32210x x -+-=,∴3221x x -+=,∴3222021120212022x x -++=+=,故答案为:2022.1.已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2【详解】解:()2120x y -++= ,()21020x y -≥+≥,.10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.2.已知23a bc +=,222b bc -=-.则22543a b bc +-的值是()A .23-B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++-,再整体代入计算.【详解】解:∵23a bc +=,222b bc -=-,∴22543a b bc+-225548a bc b bc =+-+()()22254a bc b bc =+-+()5342=⨯+⨯-158=-7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用.3.已知21a a +=,那么3222023a a ++的值是()A .2021B .2022C .2023D .2024【答案】D【分析】先将3a 降次为2a a -+,然后代入代数式,再根据已知条件即可求解.【详解】解:∵21a a +=,∴21a a =-+,则32a a a =-+,∴3222023a a ++2222023a a a =-+++22023a a =++12023=+已知2,【答案】1或-3【详解】∵24a +=,()214b -=,∴a +2=±4,b −1=±2,∴a =2或a =−6,b =3或b =−1;∵0ab <,∴a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。

代数式整体代入求值典型例题

代数式整体代入求值典型例题

代数式整体代入求值典型例题代数式求值这个话题,听上去可能让人觉得有点枯燥,但咱们可以把它想得轻松一些。

想象一下,代数就像一个神秘的盒子,里面藏着各种各样的宝藏。

比如说,咱们今天就来聊聊整体代入这个方法,听上去可能复杂,其实就是把一个大问题拆成小问题,简单得让人忍不住想拍手叫好。

咱们先来看看一个代数式,假设是 (2x + 3y)。

这个式子就像是一道美味的菜,有点简单,但也能调出不少味道。

想要品尝这道菜,咱们需要把 (x) 和 (y) 的值代进去。

就好比做菜之前,得准备好所有的食材,缺一不可。

比如说,给 (x) 代个值,假设 (x = 4),然后给 (y) 代个值,假设 (y = 2)。

这时候,咱们就可以开始计算了。

把值代进去,咱们可以得到 (2(4) + 3(2))。

先算乘法,得出 (8 + 6),最后结果就是 (14)。

说实话,代数式整体代入这个方法,挺像做饭的,先准备好所有材料,然后一步步来。

咱们再举个例子,假如咱们有个式子 (a^2 + b^2),这时候可能要用到 (a) 和 (b) 的值。

假设 (a = 3),(b = 4)。

那就像是准备好牛肉和西红柿,开始下锅啦。

先算 (a^2),也就是 (3^2 = 9),再算 (b^2),也就是 (4^2 = 16)。

把这俩加起来,得出 (9 + 16 = 25)。

哇,结果出来啦,真是美味呀!再来一个稍微复杂一点的,咱们试试 (3x^2 + 2y z)。

假如给定 (x = 2),(y = 5),(z = 1)。

这时候就像在一个大厨的厨房里,各种材料齐全。

先算 (3x^2),把 (x) 代进去,得出 (3(2^2) = 3 times 4 = 12)。

计算 (2y),也就是 (2(5) = 10)。

再把 (z) 的值代进去,得出 (12 + 10 1 = 21)。

嘿,结果又是一个大大的惊喜!看吧,整体代入法其实就是把这些看似复杂的式子变得简单。

就像把一堆零件组装成一辆车,步骤清楚,一步一步来就行。

整体代入与赋值法求值(学生版)

整体代入与赋值法求值(学生版)

整体代入与赋值法求值1.关于x 的代数式,当x 取任意一组相反数m 与m -时,若代数式的值相等,则称之为“偶代数式”;若代数式的值互为相反数,则称之为“奇代数式”.例如代数式2x 是“偶代数式”,3x 是“奇代数式”. (1)以下代数式中,是“偶代数式”的有 ,是“奇代数式”的有 ;(将正确选项的序号填写在横线上)①||1x +;②3x x +;③224x +.(2)对于整式31x x -++,当x 分别取2与2-时,求整式的值分别是多少.(3)对于整式5321x x x x -+++,当x 分别取4-,3-,2-,1-,0,1,2,3,4时,这九个整式的值之和是 .2.已知代数式533ax bx x c +-+,当0x =时,该代数式的值为1-.已知当3x =时,该代数式的值为9,试求当3x =-时该代数式的值为 .3.已知关于x 的二次多项式323(3)5ax b x x x +++-,当2x =时的值是5,求当3x =-时,代数式的值.4.已知535y ax bx cx =++-.当3x =-时,7y =,那么,当3x =时,y = .5.当1x =-时,多项式224mx x nx +++的值等于8,那么当1x =时,求多项式的值.6.已知代数式3ax bx c ++,当0x =时的值为2;当3x =时的值为1;求当3x =-时,代数式的值.7.当2x =时,代数式31ax bx -+的值等于17,那么当1x =-时,求代数式31232ax bx --的值.8.已知代数式533ax bx x c +++,当0x =时,该代数式的值为1-.(1)求c 的值;(2)已知当1x =时,该代数式的值为1-,试求a b c ++的值;(3)已知当3x =时,该代数式的值为9,试求当3x =-时该代数式的值.9.若55432543210(21)x a x a x a x a x a x a -=+++++,试求:(1)当0x =时,有何结论?(2)当1x =时,有何结论?(3)当1x =-时,有何结论?(4)你能求出135a a a ++.10.设如果52345012345(21)x a a x a x a x a x a x -=+++++,求0135a a a a +++的值.11.如果6234560123456(21)x a a x a x a x a x a x a x -=++++++,那么,246a a a ++= .12.如果55432543210(21)x a x a x a x a x a x a -=+++++,则:(1)求0a ;(2)求012345a a a a a a -+-+-的值;(3)求024a a a ++.13.已知261211102121110210(1)x x a x a x a x a x a x a -+=+++⋯+++,求下列代数式的值.(1)0a = ,(2)12a = ,(3)246810a a a a a ++++.(4)01357911a a a a a a a ++++++.14.若55432(21)x ax bx cx dx ex f +=+++++,求:(1)a b c d e f +++++的值,(2)a b c d e f -+-+-的值,(3)f 的值.15.已知55432543210(21)x a x a x a x a x a x a -=+++++对于任意的x 都成立 求(1)0a 的值(2)012345a a a a a a -+-+-的值(3)24a a +的值.16.已知55432543210(21)x a x a x a x a x a x a -=+++++对于任意的x 都成立.求:(1)0a 的值(2)012345a a a a a a -+-+-的值(3)24a a +的值.17.已知5543254321(32)x a x a x a x a x a x a +=+++++,求下列各式的值:(1)求12345a a a a a ++++的值;(2)求12345a a a a a -+-+的值;(3)求135a a a ++的值.18.已知4324(2)ax bx cx dx e x ++++=-.(1)求a b c d e ++++的值;(2)求e 的值;(3)试求a c +的值.。

G3整式加减(整体代入)练习题

G3整式加减(整体代入)练习题

代数式求值(整体代入)练习题1.已知25a b a b -=+,求代数式2(2)3()2a b a b a b a b-+++-的值。

2.已知225x y ++的值是7,求代数式2364x y ++的值。

3.已知2a b =;5c a =,求624a b ca b c+--+的值(0)c ≠4.已知113b a -=,求222a b aba b ab---+的值。

5.当多项式210m m +-=时,求多项式3222006m m ++的值。

6.已知代数式2326y y -+的值为8,求代数式2312y y -+的值。

7.单项式412b a n +-与12+m b a 合并后的结果是 42b a -, 则 2n +m =8.已知多项式222259337y x xy x nxy my +-++-+经合并后,不含有y 的项,求2m n +的值。

9.已知多项式3225a a a -+-与多项式N 的2倍之和是324224a a a -+-,求N ?10.已知210m m +-=,求3222005m m ++的值。

11.已知210x x --=,求321x x -+的值。

12.5544333,4,5a b c ===,比较,,a b c 的大小。

13.若04322=-+a a ,则=--a a 232007212.若单项式-2x 3y n-3是一个关于x ,y 的5次单项式,则n=_________.13.若多项式(m+2)12-m xy 2-3xy 3是五次二项式,则m=___________.14.已知b a m 231--与()1213-n b a π是同类项,且k 是m +n 的相反数,求代数式()()()2222222.023mn n m k n m mn k mn n m --+---的值。

14.个位上数字是a,十位上数字是b,百位上的数字是c 的三位数与把该三位数的个位数字、百位数字对调位置后所得的三位数的差为________.15.实数a 、b 、c 在数轴上的位置如图所示,则代数式的值等于( ).16.有理数a 、b 、c 在数轴上的位置如图所示,则式子 化简结果为( ).17先化简,再求值:﹣2(xy ﹣x 2)﹣[x 2﹣3(xy+y 2)+2xy ],其中x=2,y=﹣1 18先化简,再求值:,其中.19.先化简,再求值.4xy ﹣[2(x 2+xy ﹣2y 2)﹣3(x 2﹣2xy+y 2)],其中x=﹣,y=()1157233 48126824⎛⎫-+-⨯- ⎪⎝⎭、 114 1382⎛⎫⎛⎫-÷--÷- ⎪ ⎪⎝⎭⎝⎭、4 (81)( 2.25)()169-÷-⨯-÷5、 666 (5)(3)3(7)123777-⨯-+⨯--⨯6、31118 38318382427⎛⎫⨯-÷⨯ ⎪⎝⎭7、 111145566778+++⨯⨯⨯⨯8、20.已知单项式4312x y -的次数与多项式21228m a a b a b +++的次数相同,求m 的值。

初中七年级的数学上册的综合训练代数式求值整体代入一天天练新版本新人教版本

初中七年级的数学上册的综合训练代数式求值整体代入一天天练新版本新人教版本

小学 +初中 +高中
代数式求值
学生做题前请先答复以下问题
问题 1:整体代入的思考方向
①求值困难,考虑_____________;
②化简 ________________ ,比照确定 ________;
③整体代入,化简.
问题 2:代数式2a2+3b=6,求代数式4a2+6b+8 的值.
①根据 2a2+3b=6 无法求出 a 和 b 的具体值,考虑_____________;
②比照及所求,考虑把________作为整体;
③整体代入,化简,最后结果为______ .
代数式求值〔整体代入一〕〔人教版〕
一、单项选择题 ( 共 13 道,每道 7 分 )
1. 把看成一个整体,合并同类项的结果为 ( )
A. B.
C. D.
2. 把看成一个整体,合并同类项的结果为 ( )
A. B.
小学 +初中 +高中
C. D.
3. 设,把用含的代数式表示并化简的结果为( )
A. B.
C. D.
4. 设,把用含的代数式表示并化简的结果为( )
A. B.
C. D.
5. 假设,那么代数式的值为()
6. ,那么的值为()
7. 假设,那么代数式的值为()
小学 +初中 +高中
8. 代数式的值是4,那么的值为()
9. 假设代数式的值为5,那么代数式的值为()
10. 代数式的值为6,那么的值为()
11. 假设,那么的值为()
12. 假设,那么的值为()
小学 +初中 +高中
13. 假设,那么的值为()小学 +初中 +高中。

代数式求值(整体代入三)(人教版)(含答案)

代数式求值(整体代入三)(人教版)(含答案)

学生做题前请先回答以下问题问题1:整体代入的思考方向:①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:当时,代数式的值是 2 015;则当时,计算代数式的值.①根据题意可得,化简得,无法求出p和q的具体值,考虑_____________;②所求是,化简得,对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入三)(人教版)一、单选题(共12道,每道8分)1.当x=1时,代数式的值为100,则当x=-1时,这个代数式的值为( )A.-98B.-99C.-100D.98答案:A解题思路:试题难度:三颗星知识点:整体代入2.当x=-3时,代数式的值为7,则当x=3时,这个代数式的值为( )A.-3B.-7C.7D.-17答案:D解题思路:试题难度:三颗星知识点:整体代入3.当x=2时,代数式的值为3,则当x=-2时,代数式的值为( )A.-5B.0C.-3D.-6答案:A解题思路:试题难度:三颗星知识点:整体代入4.当时,代数式的值为6,则当时,代数式的值为( )A.6B.-22C.-14D.-2答案:B解题思路:试题难度:三颗星知识点:整体代入5.当x=1时,代数式的值为3,则当x=-1时,代数式的值为( )A.2B.1C.9D.7答案:C解题思路:试题难度:三颗星知识点:整体代入6.当x=1时,代数式的值为7,则当x=-1时,这个代数式的值为( )A.7B.1C.3D.-7答案:B解题思路:试题难度:三颗星知识点:整体代入7.当x=-1时,代数式的值为5,则当x=1时,代数式的值为( )A.2B.-2C.10D.-10答案:C解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.1B.-1C.5D.-5答案:D解题思路:试题难度:三颗星知识点:整体代入9.若,则的值为( )A.5B.6C.11D.12答案:A解题思路:试题难度:三颗星知识点:整体代入10.若,则的值为( )A. B.1 C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,,则代数式的值为( )A.-3B.C.D.答案:C解题思路:试题难度:三颗星知识点:整体代入12.若,,则代数式的值为( )A.11B.4C.9D.6答案:A解题思路:试题难度:三颗星知识点:整体代入。

七年级数学上册综合训练代数式求值整体代入二天天练新版新人教版

七年级数学上册综合训练代数式求值整体代入二天天练新版新人教版

小学 +初中 +高中
代数式求值
学生做题前请先答复以下问题
问题 1:整体代入的思考方向
①求值困难,考虑_____________;
②化简 ________________ ,比照确定 ________;
③整体代入,化简.
问题 2:代数式2a2+3b=6,求代数式4a2+6b+8 的值.
①根据 2a2+3b=6 无法求出 a 和 b 的具体值,考虑_____________;
②比照及所求,考虑把________作为整体;
③整体代入,化简,最后结果为______ .
一、单项选择题
1. 假设代数式( 共 15
代数式求值〔整体代入二〕〔人教版〕道,每道 6 分 )
的值为 5,那么代数式的值为()
2. ,那么代数式的值为()
3. 假设,那么的值为()
4. 假设,那么的值为()
5. 假设,那么的值为()
6. 假设代数式的值为9,那么的值为()
7. 如果多项式的值为8,那么多项式的值为()
8. 假设,那么的值为()
9. 如果多项式的值为7,那么多项式的值为()
10. 如果多项式的值为18,那么多项式的值为()
11. 假设代数式的值为7,那么的值为()
12. 假设代数式的值为8,那么的值为()
13. 假设,那么的值为()
A. B.
C. D.
14. 假设,那么代数式的值为()
15. 假设,那么的值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学整体代入法求代数式的值专项训练
1、若m n 、互为相反数,则5m+5n-5的值是
2、已知b a 、互为相反数,c d 、互为倒数,则代数式2()3a b cd +-的值为
3、已知2x-y=3,则1-4x+2y=
3、 若m 2-2m= 1,求代数式2m 2-4m+2011的值.
4、已知2x-3y-4=0,求代数式(2x-3y )—4x+6y-7的值?
5、当1
3b a +=,则代数式212(1)
)1b b a a ++-+(的值为
6、已知2135b a +=-,求代数式2(
2)
3
33(2)b a a b +---+的值
7、已知14a b a b -=+,求代数式2()3()a b a b
a b a b -+-+-的值
8、当2a b +=时,求代数式2()2()3a b a b +-++的值。

9、当4,1a b ab +==时,求代数式232a ab b ++的值。

10、若3a b ab -=,求代数式222a b ab
a b ab ---+的值。

11、当110,5
x y xy +=-=
时,求7157x xy y -+的值。

12、若2232x y +-的值为6,求28125x y ++的值。

13、已知代数式23x x ++的值为7,求代数式2223x x +-的值 。

例14、若1x =时,代数式34ax bx ++的值为5,则当1x =-时,代数式34ax bx ++的值为
多少?
15、已知y ax bx =++3
3,当x =3时y =-7,则求x =-3时,y 的值。

16、若-2x =时,代数式535ax bx cx ++-的值为9,则2x =时,代数式53+7
ax bx cx ++的值是多少?。

相关文档
最新文档