信号与系统实验5

合集下载

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
全响应:
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析

信号与线性系统-5

信号与线性系统-5

信号与线性系统-5(总分:102.04,做题时间:90分钟)一、计算题(总题数:17,分数:102.00)标出下列信号对应于s平面中的复频率。

(分数:5.00)(1).e 2t;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于s 1 =2。

(2).te -t;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于s 1,2 =-1。

(3).cos2t;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于,所以s 1,2=±j2。

(4).e -t sin(-5t)(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于s 1,2 =-1±j5。

写出下列复频率对应的时间函数模式。

(分数:5.00)(1).-1;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Ae -tε(t)2;__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Ae 2tε(t)(3).-1±j2;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Ae -t cos(2t+θ)ε(t)(4).±j4(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Acos(4t+θ)ε(t)求下列函数的拉普拉斯变换,并注明收敛区。

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析

信号与系统实验报告

信号与系统实验报告

电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。

二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。

信号可以分为周期信号和非周期信号两种。

普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。

目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。

2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。

⑵用示波器测量信号,读取信号的幅值与频率。

三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)
设 zi 为 F s 的零点,则有 N zi 0 ,从而 N zi 0 。因此, zi 与 zi 均为 F s 的 零点,即 F s 的零点关于原点对称。 同理可证 F s 的极点也关于原点对称。 题 5.10 解: 由拉普拉斯变换对
1 L , 1 f1 t et u (t ) s 1
j t
dt
不存在 使上式积分收敛,故信号 f (t ) e 2t 的拉普拉斯变换不存在。 (f)由拉普拉斯变换的定义式
F s
题 5.3 解: (a)有拉普拉斯变换对


2δ t δ t 2 e
j t
5
s 2
2
25

s 2 j 30 s 2 j 30 s 2 4 s 34 , 2 2 s 4s 29 s 2 j5 s 2 j5
158



第5章
习题解答
信号与系统
何子述
高等教育出版社
零极点图如图 J5.3.2 所示。 (c)有拉普拉斯变换对
零极点图如图 J5.3.1 所示。 (b)有拉普拉斯变换对 L e2t sin 5t u t
L δ t 1,
5
s 2
2
25
, 2

由拉普拉斯变换的线性,信号 f t 的拉普拉斯变换为
L f t 1
F s e2t sin 3t u t e
-

dt
e2t
0

e j3t e j3t t jt e e dt 2j

信号与系统实验

信号与系统实验

实验一 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。

二、实验原理1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。

抽样信号 Fs (t )=F (t )·S (t )。

其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。

Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。

F (t )、S (t )、Fs (t )波形如图1-1。

t-4T S -T S 0T S 4T S8T S 12T S tt02/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图1-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图1-2所示。

2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--∙=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按ST A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。

因此,抽样信号占有的频带比原信号频带宽得多。

以三角波被矩形脉冲抽样为例。

三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图1-3所示。

图1-2 信号抽样实验原理图)(2(212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--∙∙∑∞-∞=-∞=111112ττπω==f 或(b) 抽样信号频谙图1-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统第5章习题答案

信号与系统第5章习题答案

第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。

证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。

可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。

如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。

因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。

5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。

m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。

sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。

sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统实验报告5

信号与系统实验报告5

信号与系统实验报告5信号与系统实验报告5引言信号与系统是电子工程领域中的重要学科,它研究信号的产生、传输和处理过程,以及系统对信号的响应和影响。

在本次实验中,我们将探索信号与系统的一些基本概念和实际应用。

一、信号的分类与特性信号是信息的载体,可以是连续的或离散的。

根据信号的性质,我们可以将其分为模拟信号和数字信号。

模拟信号是连续变化的,可以用连续函数表示;而数字信号是离散的,以数字的形式表示。

在实验中,我们使用了示波器观察了不同类型的信号。

通过观察信号的波形、频谱和功率谱密度等特性,我们能够了解信号的频率、幅度和相位等信息。

二、系统的响应与特性系统是对信号进行处理或传输的装置或环境。

系统可以是线性的或非线性的,可以是时不变的或时变的。

在实验中,我们使用了滤波器作为系统模型来研究系统的响应和特性。

通过改变滤波器的截止频率,我们观察到不同频率的信号在系统中的响应差异。

我们还通过调整系统参数,如增益和相位延迟,来研究系统的线性性质和时不变性质。

三、信号与系统的应用信号与系统在现实生活中有着广泛的应用。

在通信领域,我们可以利用信号与系统的知识来设计和优化无线电、光纤通信和卫星通信等系统。

在音频处理领域,我们可以利用信号与系统的方法来实现音频的降噪、音效增强和语音识别等功能。

此外,信号与系统在图像处理、生物医学工程和控制系统等领域也有着重要的应用。

通过对信号的采集、处理和分析,我们能够从中提取有用的信息,并对系统进行建模和控制。

结论通过本次实验,我们深入了解了信号与系统的基本概念和实际应用。

我们学习了信号的分类与特性,系统的响应与特性,以及信号与系统在各个领域的应用。

这些知识不仅对我们理解和应用电子工程学科具有重要意义,也为我们今后的学习和研究提供了坚实的基础。

信号与系统是一门复杂而又有趣的学科,它涉及了数学、物理和工程等多个领域的知识。

通过不断学习和实践,我们能够更好地理解和应用信号与系统的理论,为解决实际问题提供有效的方法和工具。

信号与系统实验五(docX页)

信号与系统实验五(docX页)

实验五 低通滤波系统的频率特性分析实验报告一、实验名称低通滤波系统的频率特性分析二、实验目的(1)观察理想低通滤波器的单位冲击响应与频谱图;(2)观察RC 低通网络的单位冲击响应与频谱图。

三、实验原理RC 低通滤波电路如图其系统函数为()()()()12211tan 11j RC RC H RC H RC RC ωωωωωω-==∠-∠∂++式中()()2211RC H RC ωω=+称为幅频特性; ()()1tan RC H ωωω-∂=- 称为相频特性。

当0ω=,()()1,;H ωω=∂当11RC ωτ==时,()12H ω=,()45ω︒∂=-;当ω→+∞时,()0H ω→,()90ω︒∂→-。

电路的幅频特性表明,对于同样大小的输入信号,频率越高,输出信号衰减越大;频率越低,输出信号衰减越小或者可以认为无衰减。

也就是说,对该电路而言,低频信号比较容易通过,而高频信号则不容易通过,因此这个电路称为低通滤波器。

(1)理想低通的单位冲击响应为()0Sa t t - 函数,幅频特性在通带内为常数,阻带内为零。

在截止频率点存在阶越性跳变。

相频特性为通过原点斜率为 0t ω- 的直线。

(2)实际物理可实现的RC 低通网络通带阻带存在过渡时间,与RC 时间常数有关,通带阻带也不在完全是常数。

相频特性为通过原点的曲线(在原点附近近似为直线)。

四、实验步骤(1)打开MA TLAB 软件,建立一个M 文件。

(2)MA TLAB 所在目录的\work 子目录下建立一个名为heaviside 的M 文件,创建子程序函数。

(3)建立一个新的M 文件,编写主程序并保存。

(4)运行主程序,观察理想低通滤波器及实际RC 低通滤波电路的单位冲击响应与频谱图并记录试验结果。

五、实验结果(1)实验程序1.子程序(定义阶越函数)function f=heaviside(t)f=(t>0);2.主程序%理想低通滤波器的单位冲击响应、幅频特性、相频特性syms t f w;figure(1)f=sin(t-1)/(t-1); Fw=fourier(f); %傅里叶变换x=[-20:0.05:20]; fx=subs(f,t,x);subplot(2,1,1);plot(x,fx); %波形图grid;W=[-4:0.01:4];FW=subs(Fw,w,W);subplot(2,2,3);plot(W,abs(FW)); %幅频特性grid;xlabel('频率');ylabel('幅值');subplot(2,2,4);plot(W,angle(FW)); %相频特性grid;xlabel('频率');ylabel('相位');%RC低通网络的单位冲击响应、幅频特性、相频特性figure(2)f=exp(-2*t)*sym('heaviside(t)');Fw=fourier(f); %傅里叶变换x=[-4:0.02:4]; fx=subs(f,t,x);subplot(2,1,1);plot(x,fx); %波形图grid;W=[-4:0.02:4];FW=subs(Fw,w,W);subplot(2,2,3);plot(W,abs(FW)); %幅频特性grid;xlabel('频率');ylabel('幅值');subplot(2,2,4);plot(W,angle(FW)); %相频特性grid;xlabel('频率');ylabel('相位');(2)运行结果理想低通滤波器的单位冲击响应及频率特性RC低通滤波电路的单位冲击响应及频率特性六、思考题(1)理想低通滤波电路的幅频曲线和相频曲线有什么特点?(2)实际RC低通与理想低通滤波器的频谱有何不同?为什么?(3)在实验中的低通网络RC时间常数是多少?对低通滤波器有何影响?。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

信号与系统 实验四、五 实验报告

信号与系统 实验四、五 实验报告

实验五:基于Matlab的连续信号生成及时频域分析一、实验要求1、通过这次实验,学生应能掌握Matlab软件信号表示与系统分析的常用方法。

2、通过实验,学生应能够对连续信号与系统的时频域分析方法有更全面的认识。

二、实验内容一周期连续信号1)正弦信号:产生一个幅度为2,频率为4Hz,相位为π/6的正弦信号;2)周期方波:产生一个幅度为1,基频为3Hz,占空比为20%的周期方波。

非周期连续信号3)阶跃信号;4)指数信号:产生一个时间常数为10的指数信号;5)矩形脉冲信号:产生一个高度为1、宽度为3、延时为2s的矩形脉冲信号。

三、实验过程一1)t=0:0.001:1;ft1=2*sin(8*pi*t+pi/6);plot(t,ft1);2)t=0:0.001:2;ft1=square(6*pi*t,20);plot(t,ft1),axis([0,2,-1.5,1.5]);3)t=-2:0.001:2;y=(t>0);ft1=y;plot(t,ft1),axis([-2,2,-1,2]);4)t=0:0.001:30;ft1=exp(-1/10*t);plot(t,ft1),axis([0,30,0,1]);5)t=-2:0.001:6;ft1=rectpuls(t-2,3);plot(t,ft1),axis([-2,6,-0.5,1.5]);四、实验内容二1)信号的尺度变换、翻转、时移(平移)已知三角波f(t),用MATLAB画信号f(t)、f(2t)和f(2-2t) 波形,三角波波形自定。

2)信号的相加与相乘相加用算术运算符“+”实现,相乘用数组运算符“.*”实现。

已知信号x(t)=exp(-0.4*t),y(t)=2cos(2pi*t),画出信号x(t)+y(t)、x(t)*y(t)的波形。

3)离散序列的差分与求和、连续信号的微分与积分已知三角波f(t),画出其微分与积分的波形,三角波波形自定。

信号与系统实验五 连续线性时不变系统分析

信号与系统实验五 连续线性时不变系统分析

信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。

2.掌握连续LTI系统的频域分析方法。

3.掌握连续LTI系统的复频域分析方法。

4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。

二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。

(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。

一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。

Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。

(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。

(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。

其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。

信号与系统教案第5章

信号与系统教案第5章

长春工程学院电子信息教研室
时域:信号分解为冲激信号的线性组合 连续信号 频域:信号分解为不同频率正弦信号的线性组合
信 号 分 析
复频域:信号分解为不同频率复指数的线性组合 抽样 时域:信号分解为单位脉冲序列的线性组合 离散信号 频域:信号分解为不同频率正弦序列的线性组合 复频域:信号分解为不同频率复指数的线性组合
1 1 f 1 (t ) F1 ( s ) s3 s2 1 1 f 2 (t ) F2 ( s ) s3 s2 1 1 f 3 (t ) F3 ( s ) s3 s2
Re[s]= > – 2
Re[s]= < – 3 –3<<–2
可见,象函数唯一地对应原函数。单边拉氏变换可以 省略收敛域。
F(j)=F(s) s=j F(j)=1/( j+2)

如f(t)=e-2t(t) ←→F(s)=1/(s+2) , >-2;
长春工程学院电子信息教研室
信号与系统 电子教案
5.2
拉普拉斯变换性质
5.2 拉普拉斯变换性质 一、线性性质
若f1(t)←→F1(s) Re[s]>1 , f2(t)←→F2(s) Re[s]>2 则 a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s) Re[s]>max(1,2)
m 0
s
n 1
n 1 m
f
( m)
(0 )
若f(t)为因果信号,则f(n)(t) ←→ snF(s)
例1:(n)(t) ←→?
例2: d [cos 2t (t )] ?
1 1 f 1 (t ) F1 ( s ) s3 s2 1 1 f 2 (t ) F2 ( s ) s3 s2 1 1 f 3 (t ) F3 ( s ) s3 s2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验(五)
班级:通信5班姓名:刘贺洋学号:11081515
班级:通信5班姓名:章仕波学号:11081522
1.符号函数的傅里叶变换
(1)下面参考程序和运行结果是信号||2
f-
t
=的傅里叶变换,分析程序,判
e
)
(t
断运行结果正确与否。

syms t; %时间符号
f=exp(-2*abs(t)); %符号函数
F=fourier(exp(-2*abs(t)));
subplot(1,2,1);
ezplot(f);
subplot(1,2,2);
ezplot(F);
1(1)图
(2)参考上述程序试画出信号)(32
)(3t u e t f t -=的波形及其幅频特性曲线。

1(2)源程序:
syms t ; %时间符号 f=2/3*exp(-3*t)*heaviside(t); %符号函数 F=fourier(f);
subplot(1,2,1);
ezplot(f);
subplot(1,2,2);
ezplot(abs(F));
1(2)图:
2.符号函数的傅里叶变换
(1)下面参考程序是求信号211)(ωω+=j F 的逆傅里叶变换,分析程
序,比较运行结果。

源程序2(1)
syms t w;
F=1/(1+w^2);
f=ifourier(F,t);
subplot(1,2,1);
ezplot(F);
subplot(1,2,2);
ezplot(f);
2(1)图:
(2)求信号ωωωsin 2)(=j F 的逆傅里叶变换,并用程序验证。

源程序2(2)
syms t w;
F=2*sin(w)/w;
f=ifourier(F,t);
subplot(1,2,1);
ezplot(F);
subplot(1,2,2);
ezplot(f);
图2(2):。

相关文档
最新文档