飞机的低速空气动力PPT课件

合集下载

第五章机翼低速气动特性(3)PPT课件

第五章机翼低速气动特性(3)PPT课件
动图画。在不考虑粘性时,展向分速 V t 是
个常量,而法向分速 V n 不断地改变,所以
流线就会左右偏斜,其形状呈“S”形, 如 右图所示。
后掠翼的绕流图画
后掠翼的绕流图画
这是因为气流从远前方流向机翼前缘时,其 法向分速 V n 受到阻滞而越来越慢,致使气流的合 速越来越向左偏斜。
后掠翼的绕流图画
右图给出了后掠角对剖面升力
系数 CL z 沿展向分布的影响
的例子。
后掠翼的气动特性
后掠翼的升力特性,可用升力面理论来计算。
后掠翼的诱导阻力系数仍可按下式计算:
CDi
CL2 (1)
6 小展弦比机翼的低速气动特性
小展弦比机翼的低速气动特性
通常把<3的机翼称为小展弦比机翼。由 于超声速飞行时小展弦比机翼具有较低的 阻力,所以这种机翼常用于战术导弹和超 声速飞机。
大展弦比直机翼的失速特性
所以,对于椭圆形的机翼,
随着α的增大,整个展向各翼
剖面同时出现分离,同时达
到CLmax∞(翼型的最大升力系
数), 同时发生失速,失速
i
特性良好,如右图所示。
大展弦比直机翼的失速特性
矩形机翼(=1)的诱
导下洗速度从翼根向翼尖增
大,翼根翼剖面的有效迎角
将比翼尖大,剖面升力系数
大迎角下的CLmax也小,但 翼根区先分离不会引起副翼
特性的恶化,并可给驾驶员
i
一个快要失速的警告,一般
还是可以接受的。
大展弦比直机翼的失速特性
梯形机翼由于中小迎角下 的升阻特性接近椭圆翼,结构 重量也较轻,使用甚为广泛。 但是,分离首先发生在翼尖附 近,使翼尖先失速,所以就失 i 速特性来说,上述三种机翼中, 梯形直机翼最差。

飞机的低速空气动力

飞机的低速空气动力

●分离区的特点二
分离区内压强几乎相等,并且等于分离点处的压强。 P分离点 = P1 = P2 = P3 = P4
P分离点
P1
P2
P3
P4
●分离区的特点三
附面层分离的内因是空气的粘性,外因是因物体表面弯曲而 出现的逆压梯度。
PA PB PC
B C A
●分离点与最小压力点的位置
最小压力点
分离点
●展弦比对诱导阻力的影响
诱导阻力系数减少的百分比
升力系数不变
机翼展弦比倒数
●高展弦比飞机
●空速大小对诱导阻力大小的影响
空速小,下洗角 大,诱导阻力大
阻力 诱导阻力
空速
空速大,下洗角 小,诱导阻力小
●翼梢小翼
●翼梢小翼可以减小诱导阻力
●翼梢小翼可以减小诱导阻力 翼梢小翼改变了机翼沿展向分布的翼载荷。
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
●干扰阻力的消除
飞机各部件之间的平滑过渡和整流包皮,可以有效 地减小干扰阻力的大小。
干扰阻力在飞机总阻力中所占比例较小。
④ 诱导阻力
由于翼尖涡的诱导,导致气流下洗,在平行于相对气流方向出 现阻碍飞机前进的力,这就是诱导阻力。
●下洗角
下洗速度的存在,改变了翼型的气流方向,使流过翼型的气流向 下倾斜,这个向下倾斜的气流称为下洗流,下洗流与相对气流之间 的夹角称为下洗角ε。
●下洗速度沿翼展分布
不同平面形状的机翼,沿展向下洗速度的分布是不一样的。
III.诱导阻力的产生
有限展长机翼与无限展长机翼相比,由于前者存在翼尖涡和下洗 速度场,导致前者的总空气动力较后者更加后斜,即前者总空气动 力沿飞行速度方向(即远前方相对气流方向)的分量较后者更大。 这一增加的阻力即为诱导阻力。

飞行原理课件:02.4_低速空气动力特性

飞行原理课件:02.4_低速空气动力特性
第二章 第 39 页
地效飞机是介于船和普通飞机之间的新型水上快速交 通工具 。地效飞机在民用方面使用前景也十分广阔,如可 用于海上和内河快速运输,海情侦察,水上救生等。
第二章 第 40 页
第二章 第 41 页
我国科学家也早已关注到地效飞行器的研制,发起人 便是原国家科委常务副主任、航天专家李绪鄂。1995年, 他领导的中国科技开发院联合湖北水上飞机研究所、北京 空气动力学研究所成立了中国地效飞行器开发中心,经过4 年的努力,第一架中国的地效飞行器诞生了。
展弦比低
第二章 第 18 页
平直机翼的最大升力系数更大,升力系数曲线 斜率越大,临界迎角越小。
平直机翼 后掠翼
第二章 第 19 页
翼型前缘越光滑,最大升力系数越高,临 界迎角越大。
光滑 粗糙
第二章 第 20 页
① 阻力系数的变化规律
CD min
第二章 第 21 页
lj
➢ ➢ ➢
第二章 第 22 页
飞机脱离地 面效应区
第二章 第 37 页
飞机处于地 面效应区

①上下翼面压差增加,从而使升力系数增加。 ②地面阻碍使下洗流减小,使诱导阻力减小,阻力系数减小。 ③下洗角减小,使平尾迎角减小,出现附加下俯力矩(低头
力矩)。
第二章 第 38 页

飞机距地面高度在一个翼展以内,地面效 应对飞机有影响,距地面越近地面效应越强。
C
L
第二章 第 14 页
CL max
第二章 第 15 页
lj
相对厚度增加,最大升力系数增加,临界 迎角减小。
相对厚度增加
第二章 第 16 页
*相对厚度较小时,升力线斜率与翼型无关
前缘半径增加,临界迎角增加。

空气动力学课件-第1章 翼型资料

空气动力学课件-第1章 翼型资料
yf f 2 [( 1 2 p ) 2 px x ] 2 (1 p)
x p
x p
式中,p为弧线最高点的弦向位置。中弧线最高点的高度 f(即弯度)和该点的弦向位置都是人为规定的。给f和p 及厚度c以一系列的值便得翼型族。
§1.1 翼型的几何参数及其发展
其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十 分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一 个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族 的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24%
CL (C pl C pu ) cosdx
0
1
C pu
Pu P Pl P , C pl 1 1 2 V V 2 2 2
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
(1)在升力系数随迎角的变化曲线中,CL在一定迎角范围 内是直线,这条直线的斜率记为
随时间的发展翼面上边界层形成下翼面气流绕过后缘时将形成很大的速度压力很低从后缘点到后驻点存在大的逆压梯度造成边界层分离从而产生一个逆时针的环量称为起动1414儒可夫斯基后缘条件及环量的确定儒可夫斯基后缘条件及环量的确定3起动涡离开翼缘随气流流向下游封闭流体线也随气流运动但始终包围翼型和起动涡根据涡量保持定律必然绕翼型存在一个反时针的速度环量使得绕封闭流体线的总环量为零
在飞机的各种飞行状态下,机翼是飞机承受升力的主要 部件,而立尾和平尾是飞机保持安定性和操纵性的气动 部件。一般飞机都有对称面,如果平行于对称面在机翼 展向任意位置切一刀,切下来的机翼剖面称作为翼剖面 或翼型。翼型是机翼和尾翼成形重要组成部分,其直接 影响到飞机的气动性能和飞行品质。

飞机原理与构造第三讲低速空气动力学基础(2)

飞机原理与构造第三讲低速空气动力学基础(2)
2011-12-8
25
翼型的升力和阻力
相对厚度对升力特性的影响: 相对厚度对升力特性的影响:
相对厚度增加,最大升力系数增加,临界迎角减小。 相对厚度增加,最大升力系数增加,临界迎角减小。
相对厚度增加
2011-12-8
26
翼型的升力和阻力
翼型前缘半径对升力特性的影响: 翼型前缘半径对升力特性的影响:
前缘半径增加,临界迎角增加。 前缘半径增加,临界迎角增加。
半径小
半径大
2011-12-8
27
翼型的升力和阻力
展弦比对升力特性的影响: 展弦比对升力特性的影响:
展弦比越高,最大升力系数越大,临界迎角越小 展弦比越高,最大升力系数越大,临界迎角越小。
展弦比高 展弦比低
2011-12-8
28
翼型的升力和阻力
L
主要有两条途径: 主要有两条途径: ——增大上缘(上弧线)曲率; ——增大上缘(上弧线)曲率; 增大上缘 ——飞机以一定的迎角飞行 飞机以一定的迎角飞行。 ——飞机以一定的迎角飞行。
ps1 ps2
V1
S1
S2
V2
2011-12-8
5
翼型的升力和阻力
飞机的升力 迎角: 定义为气流速度矢量 翼弦之间的夹角 迎角: 定义为气流速度矢量与翼弦之间的夹角,当气 气流速度矢量与 之间的夹角,
33
2011-12-8
翼型的升力和阻力
层流和紊( 层流和紊(湍)流:
层流:液体质点互不干扰, 层流:液体质点互不干扰,液体的 流动呈线性或层状, 流动呈线性或层状,且平行于管道 轴线; 轴线;
紊流:液体质点的运动杂乱无章, 紊流:液体质点的运动杂乱无章, 除了平行于管道轴线的运动以外, 除了平行于管道轴线的运动以外, 还存在着剧烈的横向运动。 还存在着剧烈的横向运动。

《空气动力学与飞行原理》空气动力学 ppt课件

《空气动力学与飞行原理》空气动力学  ppt课件

f
g对称翼型,常用于尾翼 h i超音速菱形翼型
j超音速双弧形翼型
ppt课件
17
2.机翼平面形状和参数
机翼平面形状
机翼平面形状是飞机处于 水平状态时,机翼在水平 面上的投影形状
(a)矩形;(b)梯形; (c)椭圆形;
(d)后掠翼; (e)(f)和(g)为三角
形和双三角形。
ppt课件
加大安装角叫“内洗” (Wash in) ,通过调整外撑轩的长 度减小安装角叫“ 外洗” (Wash out) 上反角ψ、下反角-ψ 机翼底面与垂直机体立轴平面之间的夹角
ppt课件
21
纵向上反角 机翼安装角与水平尾翼安装角缘下偏。
ppt课件
22
称为流管。流线间隔缩小,表明流管收缩;反之,表明流管 扩张。
ppt课件
7
体积流量
Q Av
质量流量
qm Av
ppt课件
8
2.2 流体流动的基本规律
2.2.1 连续方程
连续方程是质量守恒定律在流体定常流动中的应用。 连续方程:
1 A1v1 2 A2v2 3 A3v3 ...
当气流流过机翼表面时,由于气流的方向和机翼所采用的翼 型,在机翼表面形成的流管就像图2 - 5 中所示的那样变细或 变粗,流体中的压力能和功能之间发生转变,在机翼表面形 成不同的压力分布,从而产生升力。
ppt课件
13
2.3 机体几何外形和参数
2. 3.1 机翼的几何外形和参数
机翼翼型 机翼平面形状 机翼相对机身的安装位置
定常流
如果流体微团流过时的流动参数——速度、压力、温度、密 度等不随时间变化,这种流动就称为定常流,这种流场被称 为定常流场。

空气动力学与飞行原理课件:机翼空气动力学

空气动力学与飞行原理课件:机翼空气动力学

2mg v
S CL
它表明在相同翼型下,翼载荷越大,则定直平飞速度越快。从另一个方面来看
vmin
2mg
S CL max
即,最小平飞速度为机翼接近失速迎角飞行。在翼型失速迎角一定的情况下,翼载荷越 大,最小平飞速度也越大。
5
壹 翼面负载
下面是典型的无人机的翼面负载。
无人机机型 全球鹰 长空-1 捕食者 徘徊者
贰 目录
一、
翼面负载
二、
展弦比
三、
后掠角
四、
根梢比
7
贰 展弦比 展弦比λ定义为翼展L除以平均翼弦b(λ=L/b)。 展弦比对机翼升力的影响为:当机翼产生升力时,下表面压强向上,上表面压强向下,且下表面压强值 大于上表面。则在翼尖处,下表面的高压气流流向上表面,减小了翼尖附近的升力。同时,如上节所述,有 限展长机翼也是诱导阻力产生的重要来源。 因此,展弦比越大,则翼尖效应对机翼升力的影响越小。理想情况是和翼型升阻特性一样。对于低速和 亚声速无人机,机翼展弦比越大,则升力线斜率和升阻比都较大。 展弦比的另外一个特性是翼尖涡减小了翼尖处的有效迎角,增大了翼尖处的失速迎角。因此,在机翼展 向各翼型扭转角相同的情况下,翼根比翼尖较易失速,这也是要设计机翼扭转的作用。一般翼尖剖面翼型与 翼根剖面翼型的扭转角在±3度左右。另外,相同情况下,展弦比越大则机翼滚转方向转动惯量越大,滚转机 动性越差。
这对无人机结构设计产生一定影响。即后掠 翼无人机翼梢处气动力增大,需要适当加强梢部 结构强度。
后掠机翼升力分布
15
肆 目录
第一章
翼面负载
第二章
展弦比
第三章
后掠角
第四章
根梢比
16
肆 根梢比

飞机的飞行原理--空气动力学基本知识 ppt课件

飞机的飞行原理--空气动力学基本知识  ppt课件
PPT课件 21
4、电离层(暖层、热层)






电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16



对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

《飞行原理空气动力》课件

《飞行原理空气动力》课件

04
飞行器阻力来源与减小方法
飞行器阻力来源
01
压差阻力
由于飞行器表面压
力分布不均匀所产
02
生的阻力。
摩擦阻力
由于空气与飞行器 表面之间的摩擦力 所产生的阻力。
04
干扰阻力
由于飞行器各部件
03
之间的相互干扰所
产生的阻力。
诱导阻力
由于升力产生时所 伴随的阻力。
减小飞行器阻力的方法
优化飞行器外形设计
1 2
3
密度和压力
空气的密度和压力随高度和温度的变化而变化,对飞行器的 性能和稳定性产生影响。
粘性和摩擦力
空气的粘性对飞行器表面的气流产生摩擦力,影响飞行器的 升力和阻力。
压缩性和膨胀性
空气在压缩和膨胀时会产生温度变化,对飞行器的推进系统 和发动机性能产生影响。
流体静力学基础
流体静压力
流体静压力与重力方向相反,对飞行器产生下压力,保持飞行器的稳定。
横向稳定性
保持飞行器偏航平衡的能力,通过调 节方向舵来实现。
纵向稳定性
保持飞行器俯仰平衡的能力,通过调 节升降舵来实现。
方向稳定性
保持飞行器滚转平衡的能力,通过调 节副翼来实现。
飞行器控制原理
飞行器控制系统组成
执行机构
包括传感器、控制器和执行 机构等部分。
01
02
接收控制指令并驱动飞行器 的操纵面,以改变飞行器的
优化螺旋桨的设计和制造工艺、提高转速 、合理选择桨叶角度等都是提高螺旋桨效 率的有效途径。
火箭升力的产生
火箭推进原理
火箭升力的特点
火箭与飞机升力的比较
火箭升力的局限性
火箭通过燃烧燃料产生高速气 体,高速气体从尾部喷出产生 反作用力,推动火箭向前运动 。同时,喷出的气体也产生一 定的升力使火箭离地升空。

模块2 飞机的低速空气动力《飞行原理》教学课件

模块2 飞机的低速空气动力《飞行原理》教学课件
升力与来流动压成正比。
2.3 飞行阻力
2.3.1 低速附面层
1 . 附面层的形成 附面层:就是指在紧贴物体表面,气流速度从物面速度为零处逐渐增大到 99%主
流 速度的很薄的空气流动层。沿物面法向的速度分布称为附面层的速度型。
平板表面的附面层
2.3.1 低速附面层
2. 附面层的特点 (1)附面层内沿物面法线方向压强不变且等于法
《飞行原理》
✩精品课件合集
第 2章
飞机的低速空气动力
目录
CONTENTS
01 2.1空气流动的描述 02 2.2升力 03 2.3飞行阻力 04 2.4飞机的低速空气动力性能 05 2.5增升装置的增升原理
2.1 空气流动的描述
2.1.1 流体模型化
1.理想流体 忽略流体黏性作用的流体,称为理想流体。空气流过飞机时,一般只在贴近飞机
附面 层的厚度
2.3.1 低速附面层
3. 层流附面层和紊流附面层 所谓层流,就是气体微团沿物面法向分层流动,互不混淆。 所谓紊流,就是气体微团除了沿物面流动外,还有明显地沿物面法向上下乱动的现象,
使各层之间有强烈的混合,形成紊乱的流动。 气流沿物面流动时,在物面的前段一 般是层流,后段是紊流,层流与紊流之间的过渡区,
附面层的速度梯度
2.3.2 阻力的产生
1. 摩擦阻力 由附面层理论可知,空气流过机翼时,紧贴机翼表面的一层空气,其速度恒等
表面的地方(附面层)考虑空气黏性的影响,其他地方则按理想流体处理。 2.不可压流体
忽略流体密度的变化,认为其密度为常量的流体,称为不可压流体。空气流过飞 机时,密度要发生变化,其变化量的大小取决于 M 的大小。 3.绝热流体
不考虑热传导性的流体,称为绝热流体。

第9章 飞机的空气动力

第9章  飞机的空气动力

44
• 理想流体绕翼型低速流动的压力分布
坐标表示法
压力系数CP
CP
PP 1 2 v 2
45
理想流体绕翼型低速流动的压力分布
上下翼面压力分布与 翼型形状和攻角的大小 有关 攻角增大使负压峰 值增大;逆压梯度增大; 升力增大。 理想流体绕流时,作用 在翼型上的气动力的合力垂 直于无穷远来流速度,即只 产生升力,没有阻力。
51
9.4 低速、亚音速的升力特性
• 升力特性是指研究升力系数与各种影响因素,如攻角α、 M、Re、飞机构形等的关系。 • 知道了升力系数,就可以计算升力:
1 2 L v sCL 2
52
一.CL与攻角α的关系
翼型在不同迎角下的压强分布
0

53
一.CL与攻角α的关系
54
一.CL与攻角α的关系
A点,称为驻点,是正压最大的点,位于机翼前缘附近,该处 气流流速为零。 B点,称为最低压力点,在最大速度点,压强最小,吸力最大, 是机翼上表面负压最大的点
43
– 理想流体绕翼型低速流动的压力分布
• 向量表示法
从前驻点到最小压力点(速度最大点),静压减小,速度增大, 称为顺压流动,该段称为顺压区 从最小压力点到后驻点,沿流动方向,静压增大,速度减小,则 称为逆压流动,该段称为逆压区
• 向量表示法
– 剩余压力:翼面各点静压P与大气压P∞之差(△P=P- P∞ ) 称为剩余压力 – 正压:如果翼面上的某点的P> P∞ ,则△P为正值,叫正 压 – 吸力:如果翼面上的某点的P< P∞ ,则△P为负值,叫吸 力(负压)。
42
用矢量来表示压力或吸力,矢量线段长度表示吸力或正压力 的大小。方向与翼面垂直,箭头由翼面指向外表示吸力;箭头指 向翼面表示正压。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 附面层的形成
附面层,是气流速度从物面处速度为零逐渐增加到 99%主流速度的很薄的空气流动层。
速度 不受干扰的主流
附面层边界
物体表面
●附面层厚度较薄
●无粘ห้องสมุดไป่ตู้动和粘性流动
附面层的形成是受到粘性的影响。
无粘流动 沿物面法线方向速度一致
“附面层”
粘性流动 沿物面法线方向速度不一致
② 附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强。
●分离区的特点二
分离区内压强几乎相等,并且等于分离点处的压强。 P分离点 = P1 = P2 = P3 = P4
P分离点
P1
P2 P3 P4
●分离区的特点三
附面层分离的内因是空气的粘性,外因是因物体表面弯曲而 出现的逆压梯度。
PA PB PC
B C
A
●分离点与最小压力点的位置 最小压力点 B
A
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静 压,它使理想流体的结论有了现实意义。
II. 附面层厚度随气流流经物面的距离增长而增厚。
l
l
II. 附面层厚度随气流流经物面的距离增长而增厚。
l
l
III. 附面层的特点三
附面层分为层流附面层和紊流附面层,层流在前, 紊流在后。层流与紊流之间的过渡区称为转捩点。
➢ 紊流附面层的摩擦阻力比层流附面层的大。 ➢ 飞机的表面积越大,摩擦阻力越大。 ➢ 飞机表面越粗糙,摩擦阻力越大。
●摩擦阻力在飞机总阻力构成中占的比例较大
摩擦阻力占总阻力的比例
超音速战斗机
25-30%
大型运输机
40%
小型公务机
50%
水下物体
70%
船舶
90%
② 压差阻力
压差阻力是由处于流动空气中的物体的前后的压 力差,导致气流附面层分离,从而产生的阻力。
飞机的低速空气动力
2.1 空气流动的描述 2.2 升力 2.3 阻力 2.4 飞机的低速空气动力特性 2.5 增升装置的增升原理
2.3 阻力
阻力是与飞机运动轨迹平行,与飞行速度方向相反 的力。阻力阻碍飞机的飞行,但没有阻力飞机又无法 稳定飞行。
升力 Lift
拉力 Pull
重力 Weight
阻力 Drag
这样形成的漩涡流称为翼尖涡。(注意旋转方向)
I. 翼尖涡的形成
正常飞行时,下翼面的压强比上翼面高,在上下翼面压强差的作用 下,下翼面的气流就会绕过翼尖流向上翼面,就使下翼面的流线由机 翼的翼根向翼尖倾斜,上翼面反之。
I. 翼尖涡的形成
由于上、下翼面气流在后 缘处具有不同的流向,于是 就形成旋涡,并在翼尖卷成 翼尖涡,翼尖涡向后流即形 成翼尖涡流。
●分离点位置与压差阻力大小的关系
➢分离点靠前,压差阻力大。 ➢分离点靠后,压差阻力小。
PB PC' PC
B C’ C
A
●影响压差阻力的因素
总的来说,飞机压差阻力与迎风面积、形状和迎角有关。迎风面 积大,压差阻力大。迎角越大,压差阻力也越大。
压差阻力在飞机总阻力构成中所占比例较小。
③ 干扰阻力
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
●翼尖涡形成的进一步分析 注意旋转方向
●翼尖涡的立体形态
●翼尖涡的形态
II. 下洗流(DownWash)和下洗角
由于两个翼尖涡的存在,会导致在翼展范围内出现一个向下的诱 导速度场,称为下洗。在亚音速范围内,这下洗速度场会覆盖整个 飞机所处空间范围。
●下洗角
下洗速度的存在,改变了翼型的气流方向,使流过翼型的气流向 下倾斜,这个向下倾斜的气流称为下洗流,下洗流与相对气流之间 的夹角称为下洗角ε。
分离点 C
●分离点与转捩点的区别
➢层流变为紊流(转捩),顺流变为倒流(分离)。 ➢分离可以发生在层流区,也可发生在紊流区。 ➢转捩和分离的物理含义完全不同。
III. 压差阻力的产生
气流流过机翼后,在机翼的后缘部分产生附面层分离形成涡 流区,压强降低;而在机翼前缘部分,气流受阻压强增大,这样 机翼前后缘就产生了压力差,从而使机翼产生压差阻力。
●干扰阻力的消除
飞机各部件之间的平滑过渡和整流包皮,可以有效 地减小干扰阻力的大小。
干扰阻力在飞机总阻力中所占比例较小。
④ 诱导阻力
由于翼尖涡的诱导,导致气流下洗,在平行于相对气流方向出 现阻碍飞机前进的力,这就是诱导阻力。
I. 翼尖涡的形成
正常飞行时,下翼面的压强比上翼面高,在上下翼面压强差的作用 下,下翼面的气流就会绕过翼尖流向上翼面。
I. 顺压梯度与逆压梯度
顺压:A到B,沿流向压力逐渐减小,如机翼上表面前段。 逆压:B到C,沿流向压力逐渐增加,如机翼上表面后段。
B C
A
II. 附面层分离
在逆压梯度作用下,附面层底层出现倒流,与上层顺流 相 互作用,形成漩涡脱离物体表面的现象。
分离点
●分离区的特点一
分离区内漩涡是一个个单独产生的,它导致机翼的振动。
•诱导阻力(Induced Drag)
废阻力 (Parasite Drag)
升力
粘性
① 摩擦阻力
由于紧贴飞机表面的空气受到阻碍作用而流速降低到零,根据 作用力与反作用力定律,飞机必然受到空气的反作用。这个反作 用力与飞行方向相反,称为摩擦阻力。
●影响摩擦阻力的因素
摩擦阻力的大小与附面层的类型密切相关,此外还取决于空 气与飞机的接触面积和飞机的表面状况。
层流附 面层
转捩点
紊流附面层
●层流的不稳定性
AI AII
1
vI vII
2
a
AI vI PI
b
AII vII PII
c
PI PII
3
●层流附面层和紊流附面层的速度型
2.3.2 阻力的产生
•摩擦阻力(Skin Friction Drag) •压差阻力(Form Drag) •干扰阻力(Interference Drag)
●阻力的分类
对于低速飞机,根据阻力的形成原因,可将阻力 分为:
•摩擦阻力(Skin Friction Drag) •压差阻力(Form Drag) •干扰阻力(Interference Drag)
废阻力 (Parasite Drag)
•诱导阻力(Induced Drag)
升力
粘性
2.3.1 低速附面层
●下洗速度沿翼展分布
不同平面形状的机翼,沿展向下洗速度的分布是不一样的。
III.诱导阻力的产生
有限展长机翼与无限展长机翼相比,由于前者存在翼尖涡和下洗速 度场,导致前者的总空气动力较后者更加后斜,即前者总空气动力沿 飞行速度方向(即远前方相对气流方向)的分量较后者更大。这一增 加的阻力即为诱导阻力。
相关文档
最新文档