数值分析第三章 解线性方程组的直接方法 ppt课件

合集下载

第3章线性方程组的直接解法1PPT课件

第3章线性方程组的直接解法1PPT课件

(3.5)
u x n1,n1 n1 un1,nxn bn1
unnxn bn
n
u iixi b i (u i,i 1 xi 1 u inxn) b i u ijxj
j i 1
xnbn/unn,
xi bijn i1uijxj/uii8,in1,n2,
返回LU
,2,1. 返回(3.20)
3.2.2 消去法的基本思想
(3.4)
返回式3.19
i1
liixi bi (li1x1li2x2 li,i1xi1)bi lijxj j1
i1
xi bi lijxj /lii, i 1,2, ,n.
j1
7
三、上三角方程组(返回Gauss)
u11x1 u12x2 u13x3 u1nxn b1
uiixi ui,i1xi1 uinxn bi
x3
78 26
3
x2 -28 10x3 -28 10(3)
x 1
16
(x2
2
4x 3 )
2
10
16
2 2
4(3)
1
3.2.3 高斯消元过程(即初等行变换) 记方程组(3.1)为
返回矩阵的三角分解
aa12((1111))xx11
a1(12)x2 a2(12)x2
an(11)x1an(12)x2
2
3.1 引 言
自然科学和工程计算中的很多问题的解决常常 归结为求解线性方程组。如三次样条插值函数问 题、用最小二乘原理确定拟合曲线、求解微分方 程的数值解等,最终都要转化为求解线性方程组。
求解线性方程组可采用:
1、直接法——经有限步算术运算可求得方 程组的精确解的方法(若计算过程无舍入误差)。

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

线性方程组解PPT课件

线性方程组解PPT课件

VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词

数值分析-线性方程组的直接解法

数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0

数值分析课件 11.线性方程组的直接解法-迭代

数值分析课件 11.线性方程组的直接解法-迭代

例:求解方程组
84xx11
3x2 23x2 12x3 36
Ax b
x* 3, 2,1T
x1 x2
1 8
3x2
2 x3
20
1 11
4x1
x3
33
x3
1 12
6 x1
3x2
36
x Bx f
0
B
4 11
3 8
0
2 8
1
11
0
an,n1 ann
a1,n a11
a2,n a22
an1,n an1,n1
0
f
b1 a11
,
b2 a22
,,
bn ann
T
Jacobi 迭代法-算法
x x0 x
TOL
最常用的是 范数
Gauss-Seidel 迭代
x1(
k
1)
b1 a12 x2(k ) a13 x3(k ) a1n xn(k )
;
f
20
8 33
11
6 12
3 12
0
36 12
迭代法的基本思想
x1 2.5, 3, 3T
xk x1k , x2k , x3k T
x1 x2
1 8
3x2
2
x3
20
1 11
4
x1
x3
33
x3
1 12
6 x1
3x2
36
10 0.000187
xk1 Bxk f
0
存在某算子范数
B 1
,使得
定理:若存在算子范数 || · ||,使得 ||B|| = q <1,则

理学解线性方程组的直接法

理学解线性方程组的直接法

对一般线性方程组: A x = b, 其中
a11 A a21
a12 a22
a1n
a2
n
b1
b
b2
an1 an2
ann
bn
x1
x
x2
M
xn
由以前所学内容知,当且仅当矩阵A行列式不为0 时,即A非奇异时,方程组存在唯一解,可根据 Cramer法则求解。
《计算方法》 第三章 解线性方程组的直接法 数学科学学院 房秀芬
计算2个数:[m32 m42]T = [a32(1) a42(1)]T / a22(1) 用-m32乘矩阵第二行后加到矩阵第三行; 用-m42乘矩阵第二行后加到矩阵第四行; 其系数增广矩阵变为:
a11 a12 a13 a14
A(2)
a a (1) (1) 22 23 a(2) 33
a (1) 24
第三章 解线性方程组的直接法
引言 Gauss消元法 列主元素消元法 矩阵三角分解法 向量和矩阵的范数 误差分析
《计算方法》 第三章 解线性方程组的直接法 数学科学学院 房秀芬
3.1 引言
小行星轨道问题:
天文学家要确定一小行星的轨道,在轨道平面建 立以太阳为原点的直角坐标系。在坐标轴上取天文测 量单位(一天文单位为地球到太阳的平均距离:9300万 英里,约1.5亿千米),对小行星作5次观察,测得轨道 上5个点的坐标数据如下: x 5.7640 6.2860 6.7590 7.1680 7.4800
方程组的解。
《计算方法》 第三章 解线性方程组的直接法 数学科学学院 房秀芬
Gauss消元的目的:
原始方程组
a11x1 a12 x2 L a1n xn b1 La21Lx1 a22 x2 L a2n xn b2 an1x1 an2 x2 L ann xn bn

数值分析 第三章解线性方程组的直接法

数值分析 第三章解线性方程组的直接法

T T A LDU 0 , AT U 0 DT LT , A AT U 0 L A LDLT
由于A是正定矩阵,所以D中的元素都大于零,可以把D也再分解
14
d11 d11 1 1 1 d 22 D2 D2 , D2 D d nn
lii 1,lik 0 k i , ukj 0 k j
11
ai1 由此得算法: u1 j a1 j , j 1, 2,, n; li1 a ,i 1, 2,, n 11
uij aij lik ukj , j i, i 1,, n; lij
还可以进一步用标度化的选主元(相对最大)
6
第三节 矩阵的三角分解
消元法求解方程组是通过行初等变换把系数矩阵化为对角阵,由 线性代数知识可知,左乘一个初等矩阵,就相当于做一次行变换.
1 a 21 a11 a 记 L = 31 1 a11 an1 ห้องสมุดไป่ตู้ 11
第三章 解线性方程组的直接法
第一节 引言
解线性方程组的方法可分为两大类:直接法和迭代法. 直接法的基本原理就是高斯消元法,再根据数值计算的特点 做一些适当的处理而得到的一类算法.直接法的特点是没有 截断误差,只有计算误差(舍入误差). 迭代法是类似于上一章单个方程那样,以某种方式构造一 个向量序列,使得这个向量序列收敛到解向量.因此迭代 法既有截断误差又有舍入误差.
0.01000 0.01200 0 0.100 103 0 0 .
8.010 44.41 1175 105 6517 105 x3 5.546; x2 100.0; x1 104.0 0.1670 0.6781

数值分析讲义——线性方程组的解法

数值分析讲义——线性方程组的解法

数值分析讲义第三章线性方程组的解法§3.0 引言§3.1 雅可比(Jacobi)迭代法§3.2 高斯-塞德尔(Gauss-Seidel)迭代法§3.3 超松驰迭代法§3.7 三角分解法§3.4 迭代法的收敛性§3.8 追赶法§3.5 高斯消去法§3.9 其它应用§3.6 高斯主元素消去法§3.10 误差分析§3 作业讲评3 §3.11 总结§3.0 引言重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题.分类:线性方程组的解法可分为直接法和迭代法两种方法.(a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高.(b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.§3.1 雅可比Jacobi 迭代法 (AX =b )1基本思想:与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2问题:(a) 如何建立迭代格式?(b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析:考虑解方程组⎪⎩⎪⎨⎧=+--=-+-=--2.453.82102.7210321321321x x x x x x x x x (1)其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式:⎪⎩⎪⎨⎧++=++=++=84.02.01.083.02.01.072.02.01.0213312321x x x x x x x x x (2) 据此建立迭代公式:⎪⎩⎪⎨⎧++=++=++=+++84.02.01.083.02.01.072.02.01.0)(2)(1)1(3)(3)(1)1(23)(2)1(1k k k k k k kk k x x x x x x x x x (3) 取迭代初值0)0(3)0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp迭代次数 x1 x2 x30 0 0 01 0.72 0.83 0.842 0.971 1.07 1.153 1.057 1.1571 1.24824 1.08535 1.18534 1.282825 1.095098 1.195099 1.2941386 1.098338 1.198337 1.2980397 1.099442 1.199442 1.2993358 1.099811 1.199811 1.2997779 1.099936 1.199936 1.29992410 1.099979 1.199979 1.29997511 1.099993 1.199993 1.29999112 1.099998 1.199998 1.29999713 1.099999 1.199999 1.29999914 1.1 1.2 1.315 1.1 1.2 1.34Jocobi迭代公式:设方程组AX=b, 通过分离变量的过程建立Jocobi迭代公式,即),,2,1()(1),,2,1(0,11n i x a b a x n i a b x a n ij j j ij i iii ii ni i j ij =∑-==≠∑=≠== 由此我们可以得到Jacobi 迭代公式:),,2,1()(11)1(n i x a b a xn ij j k i ij i iik i=∑-=≠=+[Jacobi 迭代公式的算法] 1: 初始化. n , (a ij ), (b j ), (x 1) , M . 2: 执行k =1直到M 为止. ① 执行i =1直到n 为止.ii nij j j ij i i a x a b u /)(1∑-←≠= ;② 执行i =1直到n 为止.i i u x ← ;③输出k , (x i ).另外,我们也可以建立Jacobi 迭代公式的矩阵形式. 设方程组AX =b ,其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T将系数阵A 分解为: A =U +D +L ,U 为上三角矩阵,D 为对角矩阵,L 为下三角矩阵.于是AX =b 可改写为 (U +D +L )X =b⇔ X =D -1b -D -1(U +L )X由此可得矩阵形式的Jocobi 迭代公式: X k +1=BX (k )+f □§3.2 高斯-塞德尔Gauss-Seidel 迭代法注意到利用Jocobi 迭代公式计算)1(+k ix 时,已经计算好)(1)(2)(1,,,k i k k x x x - 的值,而Jocobi 迭代公式并不利用这些最新的近似值计算,仍用)(1)(2)(1,,,k i k k x x x - .这启发我们可以对其加以改进,即在每个分量的计算中尽量利用最新的迭代值,得到),,2,1()(1111)1()1(n i x a x a b a xn i j k jij i j k j ij i iik i=∑-∑-=+=-=++上式称为Gauss-Seidel 迭代法. 其矩阵形式是X =-(D +L )-1UX +(D +L )-1b , X k +1=BX (k )+f .迭代次数 x1 x2 x3 0 0 0 0 1 0.72 0.902 1.1644 2 1.04308 1.167188 1.282054 3 1.09313 1.195724 1.2977714 1.099126 1.199467 1.2997195 1.09989 1.199933 1.2999656 1.099986 1.199992 1.2999967 1.099998 1.199999 1.2999998 1.1 1.2 1.3§3.3 超松驰迭代法SOR 方法1基本思想:逐次超松弛迭代法(Successive Over Relaxation Method,简写为SOR)可以看作带参数ω的高斯-塞德尔迭代法,是G-S 方法的一种修正或加速.是求解大型稀疏矩阵方程组的有效方法之一. 2 SOR 算法的构造:设方程组AX =b , 其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T . 假设已算出x (k ),),,2,1()(1111)1()1(n i x a x a b a xn i j k j ij i j k j ij i iik i=∑-∑-=+=-=++ (1)相当于用高斯-塞德尔方法计算一个分量的公式. 若对某个参数ω,作)1(+k ix与)(k i x 加权的平均,即)()1()()1()()1()(1k i k ik i k ik ik ix xx xxx-+=+-=+++ωωω (2)其中,ω称为松弛因子.用(1)式代入(2)式,就得到解方程组AX =b 的逐次超松弛迭代公式:⎪⎩⎪⎨⎧=∑-∑-=∆∆+==-=++),,2,1()()(11)1()()1(n i x a x a b a x x x x n ij k j ij i j k j ij i iii i k i k i ω (3) 显然,当取ω=1时,式(3)就是高斯-塞德尔迭代公式. 3 例题分析:利用SOR 方法解方程组⎪⎩⎪⎨⎧=+---=-+-=--3322242024321321321x x x x x x x x x (1) 其准确解为X *={1, 1, 2}. 建立与式(1)相等价的形式:⎪⎪⎩⎪⎪⎨⎧++=-+=+=132315.05.05.025.05.021*******x x x x x x x x x (2) 据此建立迭代公式:⎪⎪⎩⎪⎪⎨⎧++=-+=+=+++132315.05.05.025.05.0)(2)(1)1(3)(3)(1)1(23)(2)1(1k k k k k k kk k x x x x x x x x x (3)利用SOR 算法,取迭代初值1)0(3)0(2)0(1===x x x ,ω=1.5,迭代结果如下表.逐次超松弛迭代法次数 x1 x2 x3 1 0.625000 0.062500 1.750000 2 0.390625 0.882813 1.468750 3 1.017578 0.516602 1.8085944 0.556885 0.880981 1.7104495 1.023712 0.743423 1.8681036 0.746250 0.908419 1.8387377 0.997715 0.860264 1.9138948 0.864050 0.936742 1.9086059 0.986259 0.922225 1.94552310 0.928110 0.958649 1.94749311 0.985242 0.955944 1.96619812 0.961661 0.973818 1.96952113 0.988103 0.974699 1.97928914 0.979206 0.983746 1.98217215 0.991521 0.985318 1.98741616 0.988509 0.990038 1.98951317 0.994341 0.991414 1.99239718 0.993538 0.993946 1.99380619 0.996367 0.994950 1.99542420 0.996313 0.996342 1.99633121 0.997724 0.997018 1.99725422 0.997871 0.997798 1.99782223 0.998596 0.998234 1.998355GS迭代法须迭代85次得到准确值X*={1, 1, 2};而SOR方法只须55次即得准确值.由此可见,适当地选择松弛因子ω,SOR法具有明显的加速收敛效果. □§3.4 迭代法的收敛性1. 向量和矩阵范数 (a) 向量范数R n 空间的向量范数 || · || ,对任意n R y x ∈,, 满足下列条件:00||||;0||||)1(=⇔=≥x x x (正定性)||||||||||)2(x x⋅=αα (齐次性)||||||||||||)3(y x y x+≤+ (三角不等式)常见的向量范数有: (1) 列范数:(2) 谱范数:(欧几里德范数或向量的长度,模)(3) 行范数:(4) p 范数:上述范数的几何意义是:∞||||x =max(|x 2-x 1|,|y 2-y 1|) ; 1||||x =|x 2-x 1|+|y 2-y 1| ;2122122)()(||||y y x x x -+-=.向量序列}{)(k x依坐标收敛于向量x * 的充要条件是向量序列}{)(k x 依范数收敛于向量x *,即0||||lim *)(=-∞→x x k k .(b) 矩阵范数n m R ⨯空间的向量范数 || ·|| ,对任意 n m R B A ⨯∈,, 满足下列条件:|||||||| || AB || (4)||||||||||||)3(||||||||||)2(00||||;0||||)1(B A B A B A A A A A A ≤+≤+⋅==⇔=≥αα常见的矩阵范数有:∑==∞≤≤nj ij a A ni 1||max ||||1 (行和范数)∑==≤≤ni ij a A nj 11||max ||||1 (列和范数))(||||max 2A A A T λ= (谱范数)若A 对称,则有)()(2max max A A A T λλ=.矩阵A 的谱半径记为)(||||2A A ρ=,ρ(A ) =||max1i ni λ≤≤,其中λi 为A 的特征根。

数值分析(09)用矩阵分解法解线性代数方程组ppt课件

数值分析(09)用矩阵分解法解线性代数方程组ppt课件

l31
l32
1
j1
1
ln1 ln2 ln,n1 1 yn bn
数值分析 2
数值分析
第 二 步: 求 解 上 三 角 方 程 组Ux Y ,向 后 回 代 求 出x
xn yn unn
n
xk ( yk ukj x j ) ukk j k 1
(k n 1, n 2, ,1)
x(i)=(y(i)-LU(i,i+1:n)*x(i+1:n)')/LU(i,i); end
数值分析10
数值分析
三、用全主元的三角分解PAQT LU求解Ax b Ax b PAQT (Qx) Pb LU(Qx) Pb
lupqdsv.m
%功能:调用全主元三角分解函数[LU,p,q]=lupqd(A)
1 2 0
1
2 7
1
1 2 17 0 1
数值分析 6
数值分析
P为排列阵,在计算机中用向量表示
例 P (1 2 3 4)T , P1 (3 2 1 4)T ,
P2 (3 4 1 2)T ,
P (3 4 1 2)T
Ax b, PA LU ,
PAx Pb,
LUx Pb f
f (i) b(P(i))
1
2
0
1
数值分析 8
数值分析
lupdsv.m %功能:调用列主元三角分解函数 [LU,p]=lupd(A) % 求解线性方程组Ax=b。 %解法:PA=LU, Ax=b←→PAx=Pb % LUx=Pb, y=Ux % Ly=f=Pb, f(i)=b(p(i)) %输入:方阵A,右端项b(行或列向量均可) %输出:解x(行向量)
y1

数值分析-线性方程组直接解法1

数值分析-线性方程组直接解法1

找乘数 l43

a ( 3) 43
a ( 3) 33
,以第四个方程减去第三个方程乘l43得:
a1(11)


x1

a (1) 12
x2
a(2) 22
x2

a(1) 13
x3

a(1) 14
x4

b1(1)

a(2) 23
x3

a(2) 24
x4

b2(2)
a(3) 33
x3

a(3) 34
li1a1(1j)
bi(2) bi(1) li1b1(1)
完成第一次消元之后
i, j 2,3,4 的方程组记为: A(2) x = b (2)
Gauss消元法的基本步骤3(4阶)
第二步: 消x2 ,首先找到乘数 li2

a(2) i2
a(2) 22
,i
3,4
以方程组中第i个方程减去第二个方程乘li2 (i = 3,4),完
小数,即不可避免地存在着舍入误差的影响, 因而即使是准确解法,也只能求到近似解。
直接法在求解中小型线性方程组(≤100个), 特别是系数矩阵为稠密型时,是常用的、非常好的方法
§1 Gauss消元法
Gauss消元法是最基本的一种方法,下例说明其基本思想:
例1
解线性方程组:1x21
x1
x2
i, j 2,3,,n



a(2) n2
x2

a(2) nn
xn

b(2) n
将上方程组中第i个方程减去第2 个方程乘以li2 (i=3,…,n),完成

数值分析线性代数方程组的直接解法公开课一等奖优质课大赛微课获奖课件

数值分析线性代数方程组的直接解法公开课一等奖优质课大赛微课获奖课件
ln1 ln2 ln3
Step2 Step4 Step6
u1n Step1 u2n Step3 u3n Step5
unn Step2n-1
Step2(n-1)
对方程组求解,只要得到了系数矩阵三角分解形式,再利 用前代算法和回代算法解两个三角方程组即得.
第22页
例1:用Gauss消去 6 x1 2 x2 x3 x4 6
a (1) 11
0
A(1)
a (1) 11
c1
r1T A1
高斯变换
a (1) 11 0
r1T
第15页
取 L1 I l1e1T l1 (0, l21, , ln1 )T
其中
li1
a (1) i1
a (1) 11
i 2,3,
,n
记 A(2) L11 A(1)
1
A( 2 )
c1
a (1) 11
L11 I l1e1T
0
a (1) 11
r1T
I
n1
c1
A1
第16页
A( 2 )
a1(11) 0
A1
r1T c1r1T
a (1) 11
(ai(j2)
)
a(2) ij
a (1) ij
a a (1) (1) i1 1 j
a (1) 11
i, j 2,3,
,n
第12页
三、 三角分解计算
➢ Gauss消去法
设给定矩阵
1 4 7
A 2 5
8
取Gauss变换矩阵 3 6 10
1 0 0 L1 2 1 0
3 0 1
1 4 7
则有 L1A 0
3
6

数值分析第三章线性方程组的迭代法课件

数值分析第三章线性方程组的迭代法课件

§ 3.3.2 Gauss—Seidel 迭代法的矩阵表示
将A分裂成A =D+L+U,则Ax b 等价于
(D+L+U )x = b
于是,则高斯—塞德尔迭代过程
Dx(k1) Lx(k1) Ux(k) b
因为 D 0 ,所以 D L D 0

(D L)x(k1) Ux(k) b
x(k1) (D L)1Ux(k) (D L)1b
e(k) x(k) x* Gx(k1) d (Gx* d) G(x(k1) x* ) Ge(k1)
于是 e(k) Ge(k1) G 2e(k2) Gk e(0)
由于 e (0)可以是任意向量,故 e(k) 收敛于0当且仅
故 (D L)x(k1) (1)D U x(k) b
显然对任何一个ω值,(D+ωL)非奇异, (因为假设 aii 0,i 1,2,, n )于是超松弛迭代公式为
x(k1) (D L)1 (1)D U x(k) (D L)1b
令 L (D L)1 (1)D U
f (D L)1b
则超松弛迭代 公式可写成
称为雅可比迭代公式, B称为雅可比迭代矩阵
雅可比迭代矩阵表示法,主要是用来讨论其收敛 性,实际计算中,要用雅可比迭代法公式的分量 形式。即
x1(k 1)
1 a11
(a12 x2(k )
a13 x3(k )
a1n xn(k )
b1 )
x2(k 1)
1 a 22
(a21 x1(k )
a23 x3(k )
§ 3.4.2超松弛迭代法的矩阵表示 设线性方程组 Ax=b 的系数矩阵A非奇异,且主对角
元素 aii 0(i 1,2,, n) , 则将A分裂成

南大数值分析课件第三章 解线性方程组的直接法

南大数值分析课件第三章  解线性方程组的直接法

(k ) (k ) (k ) a kk 0,计算因子 m ik a ik / a kk Step k:设
( ( ( a ijk 1 ) a ijk ) m ik a kjk ) ( k 1) (k ) (k ) bi b i m ik b k
( i k 1, ..., n )

x2 1 ,
x1 1

注:列主元法没有全主元法稳定。 例:1 1
10 1
9 9 10 2

1 0
10
9 9
10
9 10 10
9
x2 1 ,
x1 0

标度化列主元消去法 /* Scaled Partial Pivoting */
max | a ij | 。为省时间,si 只在初始时计 对每一行计算 s i 注意:这两个方程组 1 j n 在数学上严格等价。 a a kk 算一次。以后每一步考虑子列 .. 中 最大的 aik 为主元。

用Gaussian Elimination计算:
m 21 a 21 / a 11 10 8个 9 9 9 a 22 1 m 21 1 0 .0 ... 01 10 10 10
9
b 2 2 m 21 1 10
10 9 0
(1 ) (1 ) a 1 n x 1 b1 (2) (2) a2n x2 b 2 . . . . . . . . . (n) (n) a nn x n b n
a 12
(1 )
高斯-若当消去法 /* Gauss-Jordan Method */
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对算每一一次行。计以算后每s注i一意数步m 1:学考j这上a虑n两|严x子a个格i列j |方等。 a程价为...kk 组。省中在时as间iki 最,s大i 只的在ai初k 为始主时元计。
a nk
注:稳定性介于列主元法和全主元法之间。
§2 三角分解法 /* Matrix Factorization */
A(2) b(2)
其中
a(2) ij
b(2) i
a(1) ij
b(1) i
mi
a(1)
1 1j
mi1b1(1)
(i, j 2, ...,n)
Step
k:设
a(k) kk
, 0计算因子
m ik a i(k k )/a k (k )k(i k 1 ,..n ) .,
且计算
a(k1) ij
➢ 高斯消元法的矩阵形式 /* Matrix Form of G.E. */:
Step 1: m i1a i1/a 11(a 1 10 )
1
记 L1 =
m 21 ...
1
m n1
a1(1)1...a1(1n) b1(1)
A b ,则 L 1 [A (1 ) b (1 )]
(2) (2)
1
Step n 1:
Ln1Ln2 ...L1
Ab
a1(11)
a(1) 12
a(2) 22
...
a(1) 1n
...
a(2) 2n
... ...
bb12((12))
...
其中 Lk =
1
a(n) nn
bn(n)
1
m k 1,k ...
m n ,k
1
1
Lk1
1
m k 1,k ...
m n ,k
§2 Matrix Factorization – Matrix Form of G.E.
b(k1) i
a(k ij
)
b(k) i
mi
a(k
k kj
)
mi
b(k)
kk
(i, j k 1, ...,n)
共进行 n? 步1
a1(11)
a(1) 12
a(2) 22
... ... ...
a(1) 1n
a(2) 2n ...
a(n) nn
x1
x2
x...n
bb12((12))
s若ubAm的at所ric有eWWtsshas顺mheshk*o(ii/oaaa)lN序fku均iltltN-nolutteiiio主hdfft0o不suioanautrs,n子onni为n(iua(iiennniqwnic)e)xtq式u0hdexiuwesg,ikiest0i0ne/stt*?hrt则s.??ed.ktreh高ctehei斯ariwm-ntih消gitnhea元nt无of需le换adi行ng即可
1
1 1 1 2
1 1 2
1 1 2
109 1 1 0 1 1
x 2 1, x 1 1✓
注:列主元法没有全主元法稳定。
例:11
109 1
109
2
1 109 109
0 109 109 x21, x 10
标度化列主元消去法 /* Scaled Partial Pivoting */
Ch5 解线性方程组的直接方法
求解
Axb
➢ 高斯消元法:
思 首先将A化为上三角阵 /* upper-triangular matrix */, 路 再回代求解 /* backward substitution */。
=
消元

A(1) A(ai(1 j))nn, b ( 1 )
b
b1( 1 ...
1
m L11 L21..L .n11
1
i, j
记为 L
1
1
a (1) 11
记U=
ALU a (1) 12
a (2) 22
seHo...nd......lesdFsovCfiyyfooWasebu/foU s*aaracelphmgIuvthtn12((tr(...ueewaenn12x hnhne oleea)))vndcsmaornnthteiin irvhfyttzsreisiya’exoeeyctaiory Am,uL GtydfsbAwuoop..aypEbl单y irlohfscktyelemihegwatohnra 位esmv?iueostaevmtre??ewr,eob i下foa-!?itnrtfxnhnoiWeroate三ilmegsrayndhnunedh角ylgaaurv阵leartomatrix
列主元消去法 /* Partial Pivoting, or maximal column pivoting */ 省去换列的步骤,每次仅选一列中最大的元。
|aik,k|m kin|a aix k|0
§1 Gaussian Elimination – Pivoting Strategies
例:
109
109 1
1
0
109 109
小主元 /* Small pivot element */ 可能导致计
算失败。
x 21 , x 10
全主元消去法 /* Complete Pivoting */ 每一步选绝对值最大的元素为主元素,保证 | mik |。1 Step k: ① 选取 |aikjk|k m i,jna |aix j|0; ② If ik k then 交换第 k 行与第 ik 行; If jk k then 交换第 k 列与第 jk 列; ③ 消元 注:列交换改变了 xi 的顺序,须记录交换次序,解完后再 换回来。
)
b
(1 n
)
Step 1:设a1(11) ,0计算因子
m i1 a i(1 1 )/a 1 (1 )1(i 2 ,..n .),
将增广矩阵/* augmented matrix */ 第 i 行 mi1 第1行,
得到
a 1 (1 )1a 1 (1 )2..a .1 (1 n ) b 1 (1 )
进行到底,得到唯r一ow解. 。
注:消事元实及上行,交只换要d,eAt将(A非i 方)奇程异a.1.组.1,化即......为Aa.三1.i.1 角存形在方,程则组可,通求过出逐唯次
一解。
ai1 ... aii
➢ 选主元消去法
例:单精度解方程组 109x1 x2 1
x1 x2 2
/*
精确解为
...
bn(n)
§1 Gaussian Elimination – The Method
回代
xn bn(n) /an(nn)
n
bi(i) ai(ij)xjxi ji1a(i) ii
(in1,...1,)
定理
principal
TWhheantwifewmeucsatnf’itnd the
x111 1 09 1.0 80 .个 .0.10..0和.
8个
x22x10.99 ..9.89..9*./
用Gaussian Elimination计算:
m 21a21 /a1119 08个 a 2 2 1 m 2 1 1 0 .0 .0 .1 .19 0 19 0 190
b 2 2 m 2 1 1 190
相关文档
最新文档