勾股定理面积问题课件
合集下载
探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》复习课件ppt
答案5
根据勾股定理和相似三角形的性质,BD² = AB² - AD² = AC² + BC² - (AC + CD)² = 4² + 6² - (4 + 2)² = 20。 所以 BD = √20 = 2√5。
THANKS
感谢您的观看
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两条直角边,c是斜边。
勾股定理的证明方法
欧几里得证明法
利用相似三角形的性质和比例关系, 通过一系列的逻辑推理证明勾股定理 。
毕达哥拉斯证明法
利用正方形的性质和勾股定理的关系 ,通过构造两个正方形证明勾股定理 。
勾股定理的应用场景
实际问题求解
要点一
勾股定理在三维空间的应用
要点二
勾股定理在三维空间的应用示例
勾股定理不仅适用于平面图形,还可以应用于三维空间中 的几何体。
在解决三维几何问题时,可以使用勾股定理来计算空间几 何体的边长或体积。
04
勾股定理的解题技
巧和策略
利用勾股定理求边长
总结词
勾股定理是解决直角三角形问题的重要工具 ,通过已知两边长,可以求出第三边长。
详细描述
勾股定理公式为$c^2 = a^2 + b^2$,其中 $c$为斜边长,$a$和$b$为直角边长。已知 $a$、$b$和$angle C = 90^circ$,可以通
过勾股定理求出第三边长$c$。
利用勾股定理证明三角形为直角三角形
总结词
勾股定理也可以用来证明一个三角形是否为直角三角形。
详细描述
勾股定理复习课件理的回顾 • 勾股定理的常见题型解析 • 勾股定理的变式和推广 • 勾股定理的解题技巧和策略 • 勾股定理的练习题和答案解析
勾股定理ppt课件14588
初中数学
勾股定理
北京师范大学 田开兰
【重点难点 考点】
学习目标 1.理解勾股定理的内容,已知直角三角形的
两边,会运用勾股定理求第三边. 2.勾股定理的应用. 3.会运用勾股定理的逆定理,判断直角三角
形. 重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用.
【知识架构】
一)勾股定理的逆定理(直角三角形的判定 ):
如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形.
◆符号语言:
在△ABC中,若a2 + b2 = c2,则△ABC
是直角三角形。
★注意:
【考点二】勾股定理的逆定理
★二)勾股数组: 定义:能够成为直角三角形三条边长的三个
则CD的长为多少?
C
一)11:如图: CD AB于D,AC 9,BC 12,: AB 15,
你能求出 ABC的面积吗?
【考点三】勾AB股C 定理的应用
A
二)勾股定理在特殊三角形中的应用
例12:如图:一工厂的房顶为等腰
,
AB=AC,AD=5米,AB=13米,求跨度BC的长.
正整数,称为勾股数组. 常见勾股数组: (1)a=3,b=4,c=_____ (2)a=9,b=____c=15
【考点二】勾股定理的逆定理
三)解题技巧: 在中考中,很多问题常常要证明
两条直线互相垂直,当题中给出线段的长度 要证明它们互相垂直时,往往用到勾股定理 的逆定理通过计算得到证明.
【考点一】勾股定理
例3:如图2,一个3米长的梯子AB,A斜着靠 在竖直的墙AO上,这时AAO的距离为2.5米.
①求梯子的底端B 距墙角CO多少米?O B ②如果梯的顶端A沿墙下滑0.5米至CC.
勾股定理
北京师范大学 田开兰
【重点难点 考点】
学习目标 1.理解勾股定理的内容,已知直角三角形的
两边,会运用勾股定理求第三边. 2.勾股定理的应用. 3.会运用勾股定理的逆定理,判断直角三角
形. 重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用.
【知识架构】
一)勾股定理的逆定理(直角三角形的判定 ):
如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形.
◆符号语言:
在△ABC中,若a2 + b2 = c2,则△ABC
是直角三角形。
★注意:
【考点二】勾股定理的逆定理
★二)勾股数组: 定义:能够成为直角三角形三条边长的三个
则CD的长为多少?
C
一)11:如图: CD AB于D,AC 9,BC 12,: AB 15,
你能求出 ABC的面积吗?
【考点三】勾AB股C 定理的应用
A
二)勾股定理在特殊三角形中的应用
例12:如图:一工厂的房顶为等腰
,
AB=AC,AD=5米,AB=13米,求跨度BC的长.
正整数,称为勾股数组. 常见勾股数组: (1)a=3,b=4,c=_____ (2)a=9,b=____c=15
【考点二】勾股定理的逆定理
三)解题技巧: 在中考中,很多问题常常要证明
两条直线互相垂直,当题中给出线段的长度 要证明它们互相垂直时,往往用到勾股定理 的逆定理通过计算得到证明.
【考点一】勾股定理
例3:如图2,一个3米长的梯子AB,A斜着靠 在竖直的墙AO上,这时AAO的距离为2.5米.
①求梯子的底端B 距墙角CO多少米?O B ②如果梯的顶端A沿墙下滑0.5米至CC.
北师大版八年级数学上册《勾股定理》课件(共18张PPT)
知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.
《勾股定理》PPT精品课件(第1课时)
解:本题斜边不确定,需分类讨论: B 4
当AB为斜边时,如图
BC2 AB2 AC2 16 9 7,
3 C 图
B
4 AA 3 C
图
BC 7.
方法点拨:已知直角三角形的两边求
当BC为斜边时,如图
第三边,关键是先明确所求的边是直
BC2 AB2 AC2 16 9 25, 角边还是斜边,再应用勾股定理. BC 5.
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
c2 4 1 ab b a 2 a2 b2.
2
cb a b-a
赵爽弦图
知识讲解
右图是四个全等的直角三角形拼成的.请你根据此图, 利用它们之间的面积关系推导出: a2 b2 c2
∵S大正方形=(a+b)2=a2+b2+2ab,
知识讲解
猜想直角三角形的三边关系
B
C A
图中每个小方格子都是 边长为1的小正方形.
问题1
1、 BC=_3__, AC=_4__, AB=__5_ 2、 S黄 =_9__, S蓝 =1_6__, S红 =2_5__
3、S黄、S蓝与S红的关系是S_黄__+_S_蓝_=__S_红_.
4、能不能用直角三角形ABC的三边表 示S黄、S蓝、S红的等量关系?
S大正方形=4S直角三角形+ S小正方形 =4× 1 ab+c2
2
=c2+2ab, ∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
a b
ac b
b ca
cb a
知识讲解
勾股定理
勾股定理(动画课件)
例1 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的 对边分别是a,b,c. (1)已知a=b=6,求c; (2)已知c=3,b=2,求a; (3)已知a∶b=2∶1,c=5,求b.
导引:分清斜边和直角边.因为在Rt△ABC中,a,b, c是三边,所以可以用勾股定理解决问题.
解:(1)∵∠C=90°,a=b=6, ∴由勾股定理,得 c a2 b2 62 62 6 2.
斜边长为c,则下列关于a,b,c的关系式中不正
确的是( C )
A.b2=c2-a2
B.a2=c2-b2
C.b2=a2-c2
D.c2=a2+b2
4 【中考·东营】在△ABC中,AB=10,AC=
2 10 ,BC边上的高AD=6,则另一边BC等
于( C )
A.10
B.8
C.6或10
D.8或10
5 【 中考·陕西】如图,将两个大小、形状完全相同 的△ABC和△A′B′C′拼在一起,其中点A′与点A重 合,点C′落在边AB上,连接B′C. 若∠ACB= ∠AC′B′=90°,AC=BC=3,则B′C的长为( A ) A.3 3 B.6 C.3 2 D.
(3)你能发现图2-1中三个正方 形A,B,C的面积之间有 什么关系吗?
SA+SB=SC
即:两条直角边上 的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现?
A a
Bb c
C
Sa+Sb=Sc
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
6 【中考·漳州】如图,在△ABC中,AB=AC=5, BC=8,D是线段BC上的动点(不含端点B,C),若 线段AD长为正整数,则点D的个数共有( C ) A.5个 B.4个 C.3个 D.2个
勾股定理的应用-课件
02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
勾股定理 PPT课件 10 人教版
练习: 1、求下列图中字母所表示的正方形的面积
A =625
225
400
81
B =144
225
2、求出下列直角三角形中未知边的长度
x 6
8
x
5 13
解:由勾股定理得:
x2=62+82 x2 =36+64 x2 =100 ∵x>0 ∴ x=10
∵ x2+52=132 ∴ x2=132-52
x2 =169-25 x2 =144 ∵x>0
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
相传二千多年前,希腊的毕达哥拉斯学派首先证明了
勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯 定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了 一枚纪念邮票。
试
我们用下面方法来说明勾股定理是正确的
一
c
c
c
c
试
a
a
a
a
b
b
b
b
(a+b)2= 4 ab C2 2
c2 = a2+ b2
•
36、每临大事,心必静心,静则神明,豁然冰释。
•
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
•
38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
•
39、人的价值,在遭受诱惑的一瞬间被决定。
•
40、事虽微,不为不成;道虽迩,不行不至。
•
41、好好扮演自己的角色,做自己该做的事。
•
2、从善如登,从恶如崩。
•
3、现在决定未来,知识改变命运。
1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
3.1勾股定理 课件(共32张PPT) 苏科版八年级数学上册
C A
S正方形c
B C
图2-1
A
B 图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
1 62 2
18(单位面积)
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B B′
C
D
A
E
练习1
36
如图,正方形 ABCD 的边长为 6,则图中两个
阴影部分的正方形面积之和为__________.
图放大
第4题
练习2
在△ABC 中,∠B=90°,AB=c, BC=a,AC =b.
(1)已知 a=6,b=10,求 c 的长; 解:∵∠B=90°,a=6,b=10, ∴c2=b2-a2=102-62=64,∴c=8.
接 CE,若 AE=3,BE=5,则边 AC 的长为( )
A.3
B.4
C.6
D.8
图放大
第6题
3或5
练习4
在 Rt△ABC 中,两条边的长分别为 a=1,b=2, 则 c2=________.
第8题
练习5
12
如图,在等腰三角形 ABC 中,AB=AC=10,D 为 BC 中点,AD=8,则 BC=________.
3.1 勾股定理(1)
3.1 勾股定理(1)
想一想
如图,一块长约 60m、宽 约 80m 的长方形草坪,被一 些人沿对角线踏出了一条 “捷径”,请问同学们:
1.走“捷径”的客观原因 是什么?为什么?
《勾股定理》数学教学PPT课件(10篇)
= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
《勾股定理解决图形面积问题》课件PPT
那么a2 b2 c2 .
B
ac
C bA
练习
1.如图,分别以Rt △ABC三边为边
向外作三个正方形,其面积分别用
S1,S2,S3表示,容易得出S1,S2,S3
之间的关系为 S1 S2 S3 .
C S2 S3
A
B
S1
2.求出下列直角三角形中未知的边.
B
Байду номын сангаас
A
6 10
C
A
8 C
B
2
C
C
回答:
30° A
八年级数学人教版
17.1 勾股定理(第二课时)
利用勾股定理解决平面几何问题
教学目标
1.会用勾股定理解决平面几何问题,树立数形 结合的思想;
2.能经历探究勾股定理解决平面几何问题的过 程,体会勾股定理的应用价值.
勾股定理:直角三角形两直角边长的 平方和等于斜边长的平方.
如果在Rt△ ABC中,∠C=90°,
B
45° A
2
在解决上述问题时,每个直角三角形需知道几个条件?
3.一个零件的形状如图所示,已知 AC=3cm,AB=4cm,BD=12cm,求CD的长
D C
A
B
4.一直角三角形纸片直角边AC=6,BC=8, 现将直角边AC沿AD折叠,使C与E重合, 求CD的长。
A
E
CD
B
5.折叠长方形的一边AD,使点D落 在点F处,已知AB=8cm,BC=10cm,求 EC.
A
D
E
F
B
C
本节课我们主要学习了利用勾股定理解决平面 几何问题。解题关键是选择合适的直角三角形, 利用勾股定理,解决问题。
B
ac
C bA
练习
1.如图,分别以Rt △ABC三边为边
向外作三个正方形,其面积分别用
S1,S2,S3表示,容易得出S1,S2,S3
之间的关系为 S1 S2 S3 .
C S2 S3
A
B
S1
2.求出下列直角三角形中未知的边.
B
Байду номын сангаас
A
6 10
C
A
8 C
B
2
C
C
回答:
30° A
八年级数学人教版
17.1 勾股定理(第二课时)
利用勾股定理解决平面几何问题
教学目标
1.会用勾股定理解决平面几何问题,树立数形 结合的思想;
2.能经历探究勾股定理解决平面几何问题的过 程,体会勾股定理的应用价值.
勾股定理:直角三角形两直角边长的 平方和等于斜边长的平方.
如果在Rt△ ABC中,∠C=90°,
B
45° A
2
在解决上述问题时,每个直角三角形需知道几个条件?
3.一个零件的形状如图所示,已知 AC=3cm,AB=4cm,BD=12cm,求CD的长
D C
A
B
4.一直角三角形纸片直角边AC=6,BC=8, 现将直角边AC沿AD折叠,使C与E重合, 求CD的长。
A
E
CD
B
5.折叠长方形的一边AD,使点D落 在点F处,已知AB=8cm,BC=10cm,求 EC.
A
D
E
F
B
C
本节课我们主要学习了利用勾股定理解决平面 几何问题。解题关键是选择合适的直角三角形, 利用勾股定理,解决问题。
人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)
探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2
S3
1 2
a 2
2
1 2
b 2
2
1 a2 1 b2
8
8
S1
1 2
c 2
2
1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
=196-100 =96
A
bC
12、已知:在四边形ABCD中,AB=3cm, BC=5cm,
CD= 2 3 cm, AD=2cm, AC⊥AB。
=3.00 cm
= 4.11 cm 求:S四边形ABCD
= 5.08 cm
= 2.03 cm = 3.52 cm
D A
62 3
B
C
面积问题
2.如图,在四边形ABCD中,∠B=900 AB=BC=4,CD=6,AD=2,求四边形ABCD的 面积。
c2
S1
S2
1
4
a2
b2
∵ a²+b² =c² S S S ∴ 3= 2+ 1
正方形面积与勾股定理中的a2、b2、c2的相互转化
在直线l上依次摆放着七个正方形,已知斜
放置的三个正方形的面积分别是1,2,3,正放
置的四个的正方形的面积依次是S1、S2、S3、
S4,则S1+S2+S3+S4=
(2)求腰AC上的高。
A
17 15
17
88
B
D
C
16
SUCCESS
THANK YOU
2019/9/2
2 、 如 图 6 , 在 △ ABC 中 , AD⊥BC , AB=15,AD=12,AC=13,求△ABC的 周长和面积。
A
15 12 13 B 9 D5 C
等腰三角形底边上的高为8,周长为32,则
4
。
3
1
2
S1
S2
S3
S4
在 ABC中, ∠C=90°,若 AC=6,CB=8,则ABC面积为_____, 斜边上的高为______.
◆已知等边三角形的边长为6,求它的
面积.
A
⑴求它的高. ⑵求它的面积.
6 30° 6
33
B
D
C
6
1、如图,在△ABC中,AB=AC=17, BC=16,求△ABC的面积。
CD=3m,∠ADC=90°,AB=13m,
BC=12m。求这块地的面积。
B
24平方米
12
C
3
D
13
4
A
一、分类思想
分类思想
1.直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。
2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。
系是 S1 S2 S3
,请说理。
若变为作其它任意正
C
S
2
多边形,情形会怎样?
S
3b
a
B
S3
S1
c
A
B
S
1
C
A
S2
四变:(教材71页 11题)
如图,分别以直角△ABC三边为直径向 外作三个半圆,其面积分别用S1、S2、S3 表示,则S1、S2、S3有什么关系?
不难证明S1=S2+S3 .
C S2
D 2
A
4
6
B4 C
如图,在等腰梯形ABCD中,AB=2,BC=4, ∠B= 450 求梯形的面积。
如图,在直角梯形ABCD中,AD=6,BC=11, AB=13,求梯形的周长。
已知:如图,四边形
ABCD中,∠B=900,AB=3,BC=4
,CD=12,AD=13,求四边形ABCD
的面积?
解 在直角三角形ABC中
三角形的面积为( B
)
A、56 B、48 C、40 A D、32
x2&16-x 8
S
ABC
1
12
8
B
48
2
x
Dx
C
综合运用
4、在三角形ABC中, AB=15 , BC=14 , AC=13, 求三角形ABC的面积.
A
15
13
B
C
X
D 14-X
14
18.1勾股定理 ----实际应用面积问题:
A的面积+B的面积=C的面积
C A
B
CD B
A
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少?
规律:
3 2
S2+S3+S4+S5= S1
4
5
1
二.y复=0习面积法证明勾股定理
已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值
2′
3
2
4
1
二变:如图,分别以Rt △ABC三边为
斜边向外作三个等腰直角三角形,其面
积分别用S1、S2、S3表示,则S1、S2、S3
之间的关系是 S1 S2 S3
,
请说理。
C
S
S3
b
a2
A
c
B
S
1
三变:如图,分别以Rt △ABC三边为
边向外作三个正三角形,其面积分别用
S1、S2、S3表示,则S1、S2、S3之间的关
4
S C
四边形A1B2 CD=36
B
AC2=32+42=25
5
D
∴AC=5 ∵AC2+CD2=52+122=169
3
A
13
AD2=132=169
∴AC2+BC2=AD2
∴△ACD是直角三角形
1
1
S SABC SACD 2 3 4 2 512 36
如图,有一块地,已知,AD=4m,
S影阴=SAC+SBC+S△ABC-SAB
1 2
42
1 2
32
S ABC
1 2
52
8
9 2
S ABC
25 2
8 8 SABC SABC
2、探究下面三个圆面积之间的关系
S3
S2
cb
a
S1
S1
1 4
a 2
S2
1 4
b2
S3
1 4
△ABC中,周长是24,∠C=90°,且 AB=9,则三角形的面积是多少?
解:由题意可知,
B
a b 24 9 15 c a
a2 b2 81 A b C
2ab (a b)2 (a2 b2 ) 225 81 144
S ABC 1 ab 144 1 36
S2 S1 S5
S3
S4
S6
S7
结论:
S1+S2+S3+S4 =S5+S6 =S7
如图,是一种“羊头”形图案,其作法是: 从正方形1开始,以它的一边为斜边,向外 作等腰直角三角形,然后再以其直角边为边, 分别向外作正方形2和2′,……依此类推, 若正方形1的边长为64,则正方形7的边长 为8
3′
4′
2
4
已知Rt△ABC中,∠C=90°,若a+b=14cm, c=10cm,则Rt△ABC的面积是( A ) A.24cm2 B.36cm2 C.48cm2 D.60cm2
c=10
a2+b2=102=100
1
a+b=14
S ABC
(a+b)2=142=196
ab 2
96 4
c
24
B
2ab=(a+b)2-(a2+b2)
S1 a b
B
c
A
S3
五变: 直角三角形ABC的面积为20cm2 ,在 AB的同侧分别以AB、BC、CA为直径做三个半 圆,求阴影部分的面积。
C
b
a
A
c
B
S阴=S较大半圆 +S小半圆 +S△ S大半圆
如图6,Rt△ABC中,AC=8,BC=6,∠C=90°,分别以AB、 BC、AC为直径作三个半圆,那么阴影部分的面积为