能带图分析
Bandstructure
MS计算能带图分析能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors 这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。
这些是我看书的体会,不一定准确,大家多多批评啊!摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
能带与态密度图分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
MS计算能带图分析
能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma 选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS 结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。
这些是我看书的体会,不一定准确,大家多多批评啊!摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
能带结构分析、态密度和电荷密度的分析
电荷密度图、能带结构、态密度的分析能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
成键前后电荷转移的电荷密度差。
此时电荷密度差定义为:delta_RHO = RHO_sc - RHO_atom其中RHO_sc 为自洽的面电荷密度,而RHO_atom 为相应的非自洽的面电荷密度,是由理想的原子周围电荷分布堆彻得到的,即为原子电荷密度的叠加(a superposition of atomic charge densities)。
【免费下载】MS计算能带图分析
能带图的横坐标是在模型对称性基础上取的 K 点。为什么要取 K 点呢?因为晶体的周期性 使得薛定谔方程的解也具有了周期性。按照对称性取 K 点,可以保证以最小的计算量获得 最全的能量特征解。能带图横坐标是 K 点,其实就是倒格空间中的几何点。其中最重要也 最简单的就是 gamma 那个点,因为这个点在任何几何结构中都具有对称性,所以在 castep 里,有个最简单的 K 点选择,就是那个 gamma 选项。纵坐标是能量。那么能带图应该就 是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该 就是整个体系各个点能量的加和。
2) 从 DOS 图也可分析能隙特性:若费米能级处于 DOS 值为零的区间中,说明该体系是 半导体或绝缘体;若有分波 DOS 跨过费米能级,则该体系是金属。此外,可以画出分波 (PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。
3) 从 DOS 图中还可引入“赝能隙”(pseudogap)的概念。也即在费米能级两侧分别有两 个尖峰。而两个尖峰之间的 DOS 并不为零。赝能隙直接反映了该体系成键的共价性的强弱: 越宽,说明共价性越强。如果分析的是局域态密度(LDOS),那么赝能隙反映的则是相邻 两个原子成键的强弱:赝能隙越宽,说明两个原子成键越强。上述分析的理论基础可从紧 束缚理论出发得到解释:实际上,可以认为赝能隙的宽度直接和 Hamiltonian 矩阵的非对角
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。 通过能带图,能把价带和导带看出来。在 castep 里,分析能带结构的时候给定 scissors 这 个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出 来。
DOS 叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从 DOS 图也可以清 晰地看出带隙、价带、导带的位置。要理解 DOS,需要将能带图和 DOS 结合起来。分析 的时候,如果选择了 full,就会把体系的总态密度显示出来,如果选择了 PDOS,就可以分 别把体系的 s、p、d、f 状态的态密度分别显示出来。还有一点要注意的是,如果在分析的 时候你选择了单个原子,那么显示出来的就是这个原子的态密度。否则显示的就是整个体 系原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
能带结构和态函数图的绘制及初步分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
能带,态密度图分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
能带结构分析、态密度和电荷密度的分析
电荷密度图、能带结构、态密度的分析能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
成键前后电荷转移的电荷密度差。
此时电荷密度差定义为:delta_RHO = RHO_sc - RHO_atom其中RHO_sc 为自洽的面电荷密度,而RHO_atom 为相应的非自洽的面电荷密度,是由理想的原子周围电荷分布堆彻得到的,即为原子电荷密度的叠加(a superposition of atomic charge densities)。
能带_态密度图分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
能带结构和态密度图的绘制及初步分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
dos处理及能带做图说明分析
处理:DOS在计算文件夹中直接使用命令处理得到DOS0DOS1split_dosdos分别对应总态密度,各个原子的态密度(一一对DOS3……DOS2应原子顺序)。
处理后的,等文件的能量值DOS1….DOS0POSCAR 是以费米能级作为能量参考点,的第一列数据是能量值,单DOS0位为第二列数据是总态密度的值,单位为是第electrons.,DOS1eV 一个原子的分波态密度值,其中第一列数据是能量值,单位为。
eV 第二三四列分别对应态的分波态密度值,单位为d,s,p,其他文件类似DOS1.State/eV.atom,使用说明:Sum_dos(sum_dos_np)使用于自旋计算,对应非自旋计算。
他们是把Sum_dos sum_dos_np同一类原子的对应态密度值加起来!以计算为例,若计算GaN dos结果里有个个(对应里原子顺序为个在前,N N44Ga4 POSCAR,那么在计算出来处理后会出现个在后)split_dos Ga DOS04dos ——,其中——对应的是个原子态密4DOS1NDOS4DOS1DOS8度,——对应是个态密度。
若为自旋计算,利用4GaDOS5DOS8命令处理得到DOS.SUM.1.to.4;104DOS.SUM.5.to.8sum_dos态各自相加后的总值两个文件,分别为个()的sGa4N pd(里面每一列对应个态的和,个态的和,个态的和及p4d s44。
非自旋计算利用同样方式可得。
和)总s+p+d sum_dos_np (以为例)画图处理:BAND GaN布里渊区路径选择为如图所示:G-K-M-G计算过程中两高对称点间插入个点,首先测出各段距G-K-M-G30离:在中选定一个线段左侧就能给出此线段距离如图所示:MS选择段后此线段变为黄色,左侧显示出长度同理可得0.206490.G-K 到各段长度分为,。
0.1790040.103245M-G K-M然后新建文件(此过程相当于把三段长度分别扩大:倍)30EXCLE如图所示:,然后左键点击不放松下拉到0.206490选定,行,变为,然后鼠标放到此黑框右下角位置21(鼠标变为细黑体十字)点击下拉行如图:30第行与行同一个数如图:。
MS计算能带图分析[转]
MS计算能带图分析[转]能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors 这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。
这些是我看书的体会,不一定准确,大家多多批评啊!摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
能带图分析
能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma 选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。
如何分析能带图及第一性原理的计算
分析能带图能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别.能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示:如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。
一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间.因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电.能带用来定性地阐明了晶体中电子运动的普遍特点.价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。
在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电场加速而形成电流.对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。
对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。
费米能级(fermi level)是绝对零度下的最高能级。
根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。
“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5.海平面即是费米能级。
一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。
成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。
能量色散(dispersion of energy)。
同一个能带内之所以会有不同能量的量子态,原因是能带的电子具有不同波向量(wave vector),或是k-向量.在量子力学中,k-向量即为粒子的动量,不同的材料会有不同的能量—动量关系(E—K relationship)。
电荷密度图、能带结构、态密度的分析
能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation chargedensity)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d 轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
成键前后电荷转移的电荷密度差。
此时电荷密度差定义为:delta_RHO = RHO_sc - RHO_atom其中RHO_sc为自洽的面电荷密度,而RHO_atom为相应的非自洽的面电荷密度,是由理想的原子周围电荷分布堆彻得到的,即为原子电荷密度的叠加(a superposition of atomic charge densities)。
能带结构和态密度图的绘制及初步分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
[小学]materialsstudio计算分析
能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。
这些是我看书的体会,不一定准确,大家多多批评啊!摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。