传热学知识总结2

合集下载

传热学知识整理1-4章

传热学知识整理1-4章

绪论一、概念1. 传热学: 研究热量传递规律的科学。

2. 热量传递的基本方式: 热传导、热对流、热辐射。

3. 热传导(导热): 物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。

(纯粹的导热只能发生在不透明的固体之中。

)4. 热流密度:通过单位面积的热流量(W/m2)。

5.热对流: 由于流体各部分之间发生相对位移而产生的热量传递现象。

热对流只发生在流体之中, 并伴随有导热现象。

6. 自然对流: 由于流体密度差引起的相对运功c7. 强制对流: 出于机械作用或其他压差作用引起的相对运动。

8. 对流换热:流体流过固体壁面时, 由于对流和导热的联合作用, 使流体与固体壁面间产生热量传递的过程。

9. 辐射: 物体通过电磁波传播能量的方式。

10.热辐射: 由于热的原因, 物体的内能转变成电磁波的能量而进行的辐射过程。

11. 辐射换热:不直接接触的物体之间, 出于各自辐射与吸收的综合结果所产生的热量传递现象。

12. 传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。

13.传热系数: 表征传热过程强烈程度的标尺, 数值上等于冷热流体温差1时所产生的热流密度。

14. 单位面积上的传热热阻:单位面积上的导热热阻: 。

单位面积上的对流换热热阻:对比串联热阻大小就可以找到强化传热的主要环节。

15. 导热系数是表征材料导热性能优劣的系数, 是一种物性参数, 不同材料的导热系数的数值不同, 即使是同一种材料, 其值还与温度等参数有关。

对于各向异性的材料, 还与方向有关。

常温下部分物质导热系数: 银: 427;纯铜: 398;纯铝: 236;普通钢: 30-50;水: 0.599;空气: 0.0259;保温材料: <0.14;水垢: 1-3;烟垢: 0.1-0.3。

16. 表面换热系数不是物性参数, 它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。

17. 稳态传热过程(定常过程):物体中各点温度不随时间而变。

传热学知识点总结考研

传热学知识点总结考研

传热学知识点总结考研传热学是热力学的一个重要分支,研究热量在物体之间传递的过程。

在工程学、化学工程、材料科学和环境科学等领域都有着重要的应用。

本文将围绕传热学的基本理论和应用进行系统总结,希望能够对传热学的学习和研究有所帮助。

一、传热学的基本概念1. 传热的定义传热是热量在物体之间传递的过程,可以通过传导、对流和辐射这三种方式进行。

传热的目的是使物体的温度相等或者使热量从高温物体传递到低温物体上。

2. 传热的基本原理传热的基本原理是热量由高温区流向低温区,其基本规律可以用热传导方程、对流传热方程和辐射传热方程来描述。

3. 传热的分类根据传热的方式不同,可以将传热分为传导传热、对流传热和辐射传热。

传导传热是由物体内部的分子传递热量,对流传热是通过流体的运动传递热量,而辐射传热是通过电磁波辐射传递热量。

二、传热学的基本理论1. 传导传热传导传热是由固体内部的分子、原子或离子的运动方式传递热量。

传导传热可以用热传导方程或者傅里叶热传导定律来描述,其中热传导方程可以表达为:q=-kA*(dT/dx),其中q 表示单位时间内通过物体的热量,k表示热导率,A是传热截面积,dT/dx表示温度梯度。

2. 对流传热对流传热是由流体的运动方式传递热量,主要包括自然对流和强制对流两种方式。

自然对流是由温差引起的流体的自然对流运动,而强制对流是通过外力使流体发生运动。

对流传热可以用波亚松定律或者努塞尔数来描述。

3. 辐射传热辐射传热是通过电磁波的辐射方式传递热量,主要取决于物体的温度和表面的发射率等。

辐射传热可以用斯特凡—波尔兹曼定律或者基尔霍夫定律来描述。

4. 传热的复合方式在实际传热过程中,通常会同时存在传导、对流和辐射三种方式,这就需要将它们进行组合计算。

可以通过综合利用传热系数来描述传热的复合方式。

三、传热学的应用1. 传热器设备传热器是用于传热的设备,广泛应用于化工、能源、环保等领域。

常见的传热器包括换热器、蒸发器、冷凝器和加热器等。

传热学知识点总结

传热学知识点总结

传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。

一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。

热量的传递方式主要有传导、对流和辐射三种。

2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。

传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。

3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。

在物质传热过程中,传热系数的大小直接影响热量的传递速率。

4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。

传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。

5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。

热传导是传热学的基本概念之一。

6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。

7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

热辐射是传热学的另一个基本概念之一。

二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。

在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。

2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。

在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。

3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。

传热学知识点总结

传热学知识点总结

第一章§ 1-1 “三个W§ 1-2热量传递的三种基本方式§ 1-3传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。

作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。

本章重点:1. 传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2. 热量传递的三种基本方式(1) .导热:依靠微观粒子的热运动而产生的热量传递。

传热学重点研究的是在宏观温差作用下所发生的热量传递。

傅立叶导热公式:(2) .对流换热:当流体流过物体表面时所发生的热量传递过程。

牛顿冷却公式:(3) .辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。

由于电磁波只育請线传播,所以只有两个物体相互看得见的咅盼才能发生辐射换热。

黑体热辐射公式:实际物体热辐射:3. 传热过程及传热系数:热量从固壁一则的流体通过固壁传向另一侧流体的过程。

最简单的传热过程由三个环节串联组成。

4. 传热学研究的基础傅立叶定律能量守恒定律+牛顿冷却公式+质量动量守恒定律四次方定律本章难点1. 对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。

2. 热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。

思考题:1. 冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。

为什么?2. 试分析室内暖气片的散热过程。

3. 冬天住在新建的居民楼比住旧楼房感觉更冷。

试用传热学观点解释原因。

4. 从教材表1-1给出的几种h数值,你可以得到什么结论?5. 夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。

传热学基本知识总结

传热学基本知识总结

传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。

传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。

以下是对传热学基本知识的总结。

一、传热的基本概念1.温度:物体内部分子运动的程度的度量。

温度高低决定了热能的传递方向。

2.热量:物体之间由于温度差异而传递的能量。

热量沿温度梯度从高温区向低温区传递。

3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。

4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。

二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。

2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。

3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。

三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。

热导率取决于物质本身的性质,与物质的材料、温度有关。

热导率越大,物体传热能力越强。

四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。

2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。

五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。

2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。

3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。

在工程中,传热学常常运用于热工系统的设计和优化。

工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。

例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。

传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。

传热学知识点总结

传热学知识点总结

传热学知识点总结传热学是研究热量从一个物体或一个系统传递到另一个物体或系统的科学。

它是热力学的一部分,具有广泛的应用领域,包括能源转换、热力学系统设计和工艺优化等。

以下是传热学的一些重要知识点的总结:1.热传导:热量通过直接接触和分子间的碰撞传递。

在固体中,热传导是最主要的传热方式,其传递速率与物质的热导率、温度梯度和传热距离有关。

2.热对流:热量通过流体(液体或气体)的流动传递。

对流传热的速率取决于流体的速度、温度差和传热面积。

3.热辐射:热能以电磁波的形式从热源发出,无需介质介导即可传递热量。

热辐射与物体的温度和表面特性有关,如表面的发射率和吸收率。

4.导热方程:描述了热传导现象,可以用来计算温度随时间和空间的变化。

它与热导率、物体的几何形状和边界条件有关。

5.导热系数:材料的物理性质,描述了材料导热性能的好坏。

较高的导热系数表示材料更好地传递热量。

6.热对流换热系数:描述了流体换热的能力,表示单位面积上的热量传递速率和温度差之间的关系。

7.四能截面:描述了热辐射的性质,反映了物体吸收、反射和透射电磁波的能力。

8.热阻和热导率:用于描述物体或系统中热量传递的难易程度。

热阻与热导率成反比。

9.传热过程中的能量守恒:热量传递过程中,能量守恒定律适用。

传热的总能量输入等于输出。

10.辐射传热公式:根据黑体辐射定律,描述了热辐射的能量传递,常用于计算热源辐射的热量。

11.对流换热公式:根据精细的实验和理论研究,发展了一系列对流换热公式,用于估算流体对流传热。

12.热导率与温度的关系:大多数材料的热导率随温度的升高而增大,但也有一些例外情况。

13. 传热表征:传热通常使用无量纲数值来表征,如Nusselt数、Prandtl数和Reynolds数,它们描述了传热过程中流体的性质和行为。

14.界面传热:当两个物体或系统接触时,它们之间的传热称为界面传热。

界面传热常见的形式包括对流传热和热辐射。

15.传热器件和应用:传热学的知识应用于各种传热器件和系统,如换热器、蒸发器、冷却器等,为工程和科技应用提供了基础。

传热学总结

传热学总结
油气储运工程--- Oil & gas storage and transportation engineering
n
6
传热学
油气储运工程09级
热扩散率:a ( c) ① ɑ越大,表示物体受热时,其内部温 度扯平的能力越大。 ② ɑ越大,表示物体中温度变化传播的 越快。所以,ɑ也是材料传播温度变化能力大小的指标,亦称 导温系数。 典型一维稳态导热问题: t t 平壁导热 (A ) q 面积热阻RA :单位面积的导热热阻称面积热阻。 热阻R:整个平板导热热阻称热阻。 圆筒壁的导热: 2 l (t t ) = (t t ) Φ
油气储运工程--- Oil & gas storage and transportation engineering
12
传热学
油气储运工程09级
国际单位制中的7个基本物理量: 长度[m],质量[kg],时间[s],电流[A],温度[K],物质的量 [mol],发光强度[cd] 相似原理的重要应用: 1.相似原理在传热学中的一个重要的应用是指导试验的安排及试 验数据的整理。 2.相似原理的另一个重要应用是指导模化试验。 自然对流亦有层流和湍流之分。 自然对流传热可分成大空间和有限空间两类。 gtl 3 Gr 数是浮升力/粘滞力比值的一种量度。 2 瑞利数: Ra Gr Pr
油气储运工程--- Oil & gas storage and transportation engineering
传热学
油气储运工程09级
第六章 相似原理及量纲分析
同类现象:用相同形式且具有相同内容的微分方程式所描述的现象。 相似的概念:对于两个同类的物理现象,如果在相应的时刻及相应的 地点与现象有关的物理量一一对应成比例,则称此两现象彼此相似。 判别两现象相似的条件: ①只有同类现象才能谈相似。 ②单值性条件相似:初始条件、边界条件、几何条件、物理条件。 ③同名的已定特征数相等。 获得相似准则数的方法:相似分析法和量纲分析法。 相似分析法:在已知物理现象数学描述的基础上,建立两现象之间 的一些列比例系数,尺寸相似倍数,并导出这些相似系数之间的关 系,从而获得无量纲量。 量纲分析法:在已知相关物理量的前提下,采用量纲分析获得无量 纲量。

高等传热学知识点总结

高等传热学知识点总结

引言概述:在高等传热学中,掌握各种传热方式以及其基本原理是非常重要的。

本文将分析五个大点,其中包括传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射。

每个大点都将进一步分解为五到九个小点,详细阐述相关知识。

通过本文的学习和理解,读者将能够深入了解高等传热学的知识点。

正文内容:一、传热方式的分类1.传热方式的基本分类2.对流传热与传导传热的区别3.辐射传热的特点及其应用4.相变传热的机理及其实例5.传热方式在工程中的应用案例二、传热边界条件1.传热边界条件的定义及分类2.壁面传热通量的计算方法3.壁面传热系数的影响因素4.壁面传热条件的实验测定方法5.边界条件的选择与优化三、传热传导1.传热传导的基本原理2.导热系数的计算方法3.等效导热系数的定义及其应用4.传热传导方程的推导和求解方法5.传热传导的数值模拟方法及其应用四、传热对流1.对流传热的基本原理2.传热换热系数的计算方法3.流体流动与传热的耦合关系4.对流传热的实验测定方法5.传热对流的同非稳态传热问题五、传热辐射1.辐射传热的基本原理2.黑体辐射的特性和计算方法3.辐射传热过程的数学模型4.辐射系数的影响因素及其计算方法5.传热辐射的应用案例和工程实例总结:通过对高等传热学知识点的总结,我们深入了解了传热方式的分类、传热边界条件、传热传导、传热对流以及传热辐射等重要知识点。

掌握这些知识,可以帮助我们更好地理解传热现象的基本原理及其在工程实践中的应用。

同时,对于热传导与辐射换热和传热对流以及其边界条件的掌握,有助于我们解决工程中的传热问题,优化设计和提高热能利用效率。

在今后的学习和实践中,我们应不断巩固和拓展这些知识,以更好地应对传热学的挑战,并为实际工程问题提供合理的解决方案。

传热学知识点

传热学知识点

传热学知识点2篇传热学是研究热量在物体之间传递的科学,它对于我们理解自然界中的许多现象至关重要。

本文将为您介绍传热学的两个重要知识点。

一、传热方式的分类热在物体之间传递的方式可以分为三种,分别是热传导、热辐射和热对流。

1. 热传导:热传导是物质内部的热量传递方式。

它是由物体内部的分子或原子之间的碰撞引起的。

热传导的速率取决于物体的导热系数、温度差和物体之间的距离。

一般来说,导热系数高的物质(如金属)在单位温度差下传热的速率会更快。

而导热系数低的物质(如木材、塑料等)则传热速率较慢。

传热学中,我们常用傅里叶定律来描述热传导的过程。

傅里叶定律表明热的传导速率与温度梯度成正比。

具体的计算方法是根据物质的导热系数和温度梯度计算热通量。

2. 热辐射:热辐射是指物体通过电磁波辐射热量的过程。

不同于热传导需要通过物质传递热量,热辐射是在真空和空气中也能传热的方式。

热辐射是因为物体的温度高于绝对零度时,物体上的原子和分子会产生辐射。

热辐射的速率取决于物体的温度和表面的发射系数。

发射系数高的物体会以较快的速率辐射热量。

根据斯特藩-玻尔兹曼定律,热辐射的速率与物体的温度的四次方成正比,具体计算方法是根据物体的表面发射系数和温度的四次方计算热通量。

3. 热对流:热对流是指热量通过流体运动传递的方式。

在自然界中,流体受到温差的驱动而产生对流运动。

热对流分为自然对流和强制对流两种方式。

自然对流是指由密度差异引起的流体运动,没有外部驱动力。

比如,热空气上升形成的对流气流。

强制对流是指由外部力驱动的流体运动,如风、泵或风扇等。

热对流通过流体的循环来传递热量,流体的流速和传热面积对热对流速率有影响。

二、传热学的应用传热学的研究具有广泛的应用价值,我们经常可以在生活和工业中见到传热学的应用。

1. 工业制冷与加热:在许多工业过程中,需要通过传热来实现制冷和加热。

比如,制造业中的冷冻食品、空调以及热处理设备等。

通过掌握传热学知识,可以合理设计和改进制冷和加热系统,提高其效率和性能。

传热学知识点

传热学知识点

传热学知识点传热学是研究热量传递的学科,对人类生活和工业生产有着重要的影响。

以下是关于传热学的一些知识点:1.热量传递方式:传热学研究的首要内容是热量在不同物质之间的传递方式。

热量传递有三种方式:导热、对流和辐射。

导热是指热量通过固体或液体的直接接触传递。

对流是指热量通过流体的运动传递,可以分为自然对流和强制对流两种。

辐射是指热量通过电磁波传递,无需介质参与。

2.热传导:导热是最常见的传热方式,它是由于不同物质内部的分子间作用力导致的。

导热的速度和物质的热导率有关,热导率是物质表征导热性能的物理量。

3.对流传热:对流是在流体中传递热量的方式。

它是由于流体的运动导致的热量传递。

在自然对流中,热量传递是由于流体受热后的密度变化产生的,而在强制对流中,热量传递是由于外界施加的压力或泵力导致的。

4.辐射传热:辐射是通过电磁波传递热量。

辐射传热不需要介质的参与,可以在真空中进行。

辐射传热的强度与物体的温度和表面性质有关,通常用斯特藩-玻尔兹曼定律来描述。

5.热传导的控制:控制热传导是提高节能和减少能源消耗的关键。

可以通过增加物体之间的接触面积、减少物体之间的间距、增加物质的热导率等方法来提高热传导效率。

6.流体流动换热:对流传热是通过流体的运动来传递热量的,研究流体流动条件下的传热现象是传热学的一个重要方向。

流体流动的方式有层流和湍流,研究边界层和流动分离等现象对于准确预测和控制流体流动换热过程至关重要。

7.换热设备:传热学在工程中的应用主要是研究和设计换热设备,如换热器、冷却塔、锅炉等。

这些设备的设计要考虑热量传递效率、流体流动特性以及材料的选择等因素。

8.相变传热:相变是物质由一种状态向另一种状态转变的过程,如液体变为固体时释放的凝固潜热。

相变传热是一种特殊的传热方式,研究相变传热现象对于设计冷凝器、蒸发器等设备有着重要意义。

9.传热计算和实验:传热学的研究方法包括传热计算和实验。

通过传热方程和边界条件来计算热传导、对流和辐射等传热过程。

传热学 每章知识重点与难点汇总

传热学 每章知识重点与难点汇总

Chapter 1 Thermodynamics and Heat Transfer第一章热力学与传热学1.传热学研究内容(温差=>传热);Heat Transfer Research (Temperature Difference=> Heat Transfer) 2.三种基本传热方式的机理和基本公式;The Mechanisms and Basic Formulas of Three Basic Modes of Heat Transfer.3.传热过程、传热方程式;Heat Transfer Process,Heat Transfer Equation4.导热系数、对流换热系数、传热系数的物理涵义、单位、基本数量级、影响因素和变化规律;Physical meanings ,units, fundamental orders,influencing factors and changes in laws of heat conduction coefficient,convection heat transfer coefficient,heat transfer coefficient.5.热阻与热流网络图;Thermal resistance and heat transfer network6,单位与单位制;Unit and system of unitsChapter 2 Heat Conduction Equation第二章导热方程式1.导热问题的求解目标(物体内部的温度场与热流场);Determine Target of Heat Conduction(temperature field and heatfield in the internal objects)2.温度场(稳态、非稳态、均匀、一维、二维、三维);Temperature field (steady,transient,uniform,one-dimensional,two-dimensional,three-dimensional)3.等温面、等温线、热流线的性质及相互关系;Properties of isothermal surface, isotherm,heat flow and therelationship among them4.方向导数、梯度的数学概念及相互关系;Mathematical concept of directional derivative , gradient and therelationship between them5.Fourier 定律;Fourier Law6.推导导热微分方程式的理论基础、简化假设及方程各项(内能、导热、内热源、导温系数、)的物理涵义;Theoretical bases of concluding heat conduction differentialequation,simplified assumption and physical meanings of each termin the equation (Internal energy, heat conduction, internal heatsource,temperature transfer coefficient, )7.定解条件【几何、物理、时间、边界(Ⅰ、Ⅱ、Ⅲ)】Conditions of determining the solution【geometry,physics,time,boundary(Ⅰ、Ⅱ、Ⅲ)】8.导热问题的求解方法(解析解、数值解)。

传热学知识点总结

传热学知识点总结

传热学知识点总结传热学是研究物质内部和不同物质之间能量传递的一门科学。

它广泛应用于工程领域,涉及到热传导、对流传热和辐射传热等多个方面。

下面我将总结一些传热学的重要知识点。

1.傅立叶定律:它是传热学中最基本的定律之一,也被称为热传导定律。

根据傅立叶定律,热传导速率正比于温度梯度的负值。

数学上可以表示为q=-k∇T,其中q是单位时间内的热流量,k是导热系数,∇T是温度梯度。

2.热传导:指的是热量通过物质内部的传递过程。

在固体中,热传导主要通过分子振动、电子热传导和晶格热传导等方式进行。

3.热对流:指的是通过流体的流动来传递热量。

热对流可以分为自然对流和强制对流两种形式。

自然对流是由于密度差异引起的,而强制对流是通过外部力的作用产生的。

4.辐射传热:是指热量通过电磁波的辐射传递。

所有物体在温度大于绝对零度时都会发出辐射,而辐射传热不需要通过介质传递。

辐射传热受到物体的表面性质和温度的影响。

5.热导率:是材料传导热量的能力的度量,通常用导热系数k来表示。

热导率越大,材料传导热量的能力就越强。

各种材料的热导率不同,可以用于选择合适的材料来满足特定的传热要求。

6.热阻和热导:热阻是指阻碍热量传递的能力。

热阻的大小与材料的导热性质和传热面积有关。

热导是热量在单位时间内通过材料的能力,可以用于计算传热速率。

7.对流换热系数:对流传热时,介质和界面的性质会影响传热速率。

通过引入对流换热系数h,可以描述介质与界面之间的热量传递能力。

对流换热系数与流体性质、流动方式和传热界面的条件有关。

8.对流传热的努塞尔数:努塞尔数是用于表征对流传热能力的无量纲数。

努塞尔数与热传导、对流传热系数和传热面积有关。

9.辐射传热的黑体辐射:黑体辐射指的是一个完美吸收和辐射的物体的辐射行为。

根据斯蒂芬-波尔兹曼定律,黑体辐射功率与温度的四次方成正比。

黑体辐射是辐射传热中一个重要的概念。

10.换热器:换热器是用于在两个流体之间传递热量的设备。

传热学基本知识

传热学基本知识

铜 铝 钢 不锈钢 木材 红砖
383 204 约47 29 0.12 0.23~0.58
矿渣棉 玻璃棉 珠光砂 碳酸镁
水 空气
0.04~0.046 0.037
0.035
0.026~0.038 约0.58 0.023
2.3对流换热 2.3.1特征 自然对流
受迫对流
2.3.2对流换热的计算
热阻形式:
qc c ( t)
传热R系=数R1为+R2 +R3 =0.04+0.065+0.125=0.23(m2·℃/W)
K= ==4.35[W/(m2·℃)]
热流通量为
q=K·Δt=4.35×(30-5)=109(W/m2)
求房屋外墙的散热量q以及它的内外表温度tw1和tw2。已 知外墙厚度δ=360 ㎜,室外温度tf1=-10℃,室内温度 tf2=18℃,墙的导热系数λ=0.61W/m·℃,内表面换热系 数α1=8.7W/㎡·℃ ,外表面换热系数α2=24.5 W/㎡·℃
热辐射 通过以上对导热和对流换热过程的介绍,我们知道,无论导热 和对流,都必须通过冷热物体的直接接触来传递热量,但热辐 射则不同。热辐射是依靠物体表面发射可见和不可见的射线来 传递热量。物体表面每平方米每秒对外辐射的热量称为辐射力 E,其大小与物体表面性质和温度有关。
2.2稳定导热
2.2.1单层平壁稳定导热
第2章 传热学基本知识
掌握导热、热对流、对流放热、热辐射、辐射换热、 传热、热阻等的基本概念;掌握传热过程的特点及过 程;了解稳定传热和不稳定传热的概念;理解传热的 强化与削弱的基本途径。
传热学是研究热量传递过程规律的一门科学。我们在 设备工程中所涉及的传热学的知识,主要是为了学习 供暖工程打基础。在供暖工程中,供暖热负荷的确定 需要计算围护结构的传热量,建筑物的围护结构传热 主要是通过外墙、外窗、外门、顶棚和地面。

传热学知识点

传热学知识点

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。

6. 热辐射的特点。

a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

第三章 非稳态导热1.非稳态导热的分类。

周期性非稳态导热和瞬态非稳态导热2.Bi 准则数, Fo 准则数的定义及物理意义。

Bi 准则数:/1/h Bi h δδλλ===物体内部导热热阻物体表面对流换热热阻; []W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==Fo 准则数:2,a Fo τδ=是非稳态导热过程的无量纲时间。

3.集总参数法的物理意义及应用条件。

传热学知识点总结

传热学知识点总结

传热学知识点总结传热学是物理学的一个重要分支,研究物体间传递热量的规律和方式。

下面是一些传热学的重要知识点的总结。

1.热量传递方式:传热学研究的第一个重要问题是热量的传递方式。

主要有三种方式:传导、对流和辐射。

传导是通过固体或液体内部的分子振动和自由电子振动而传递热量的方式;对流是通过液体或气体的运动而传递热量的方式;辐射是通过热辐射的电磁波传递热量的方式。

不同物体间的传热方式通常是综合应用这些方式。

2.热传导:热传导是固体或液体内部的热量传递方式。

它遵循傅里叶热传导定律,即热传导速率正比于温度梯度,与导热系数成正比。

导热系数是物质的一个固有特性,用于描述物质对热量的导热能力。

热情况下,低导热系数的物质不容易传递热量,而高导热系数的物质能够更好地传递热量。

3.对流传热:对流是热量通过液体或气体的运动而传递的方式。

它分为自然对流和强迫对流。

自然对流是由密度差异引起的液体或气体的自发运动,如气流中的热空气上升;强迫对流是通过外部力量推动流体运动,如风扇吹起的空气。

对流传热具有较高的传热效率,因为流体的运动可以带走物体表面的热量。

4.辐射传热:辐射是通过热辐射的电磁波传递热量的方式。

所有物体在室温下都会发射辐射,其强度与温度的四次方成正比。

黑体是指一个理想化的物体,能够完全吸收所有辐射,并以最大强度发射辐射。

根据斯特藩-玻尔兹曼定律,黑体辐射的强度正比于温度的四次方。

实际物体的辐射强度可以用其发射率和黑体辐射强度之间的比例来描述。

5.热传导方程:热传导方程是研究固体或液体内部热量传递的数学模型。

它描述了材料内部温度随时间和空间的变化。

热传导方程是一个偏微分方程,其中包含了热传导系数、材料的热容和密度等参数。

6.传热换热系数:传热换热系数描述了传热过程中介质对热量的传递能力。

它是一个物质特性,不同物质和不同传热方式都有不同的传热换热系数。

传热换热系数的大小直接影响传热速率,较大的传热换热系数意味着更快的传热速率。

传热知识点总结

传热知识点总结

传热知识点总结一、传热的基本概念1. 热传递方式热传递是指热能从高温物体传递到低温物体的过程。

在自然界中,热传递有三种方式:传导、对流和辐射。

1)传导:是指热量在固体或液体内部通过分子的传递而进行传热的现象。

传导的速度取决于物体的热导率和温度梯度。

2)对流:是指热量通过流体内部的流动而进行传热的现象。

对流传热是一种辐射传热和传导传热的耦合方式。

3)辐射:是指热能在真空和空气中通过电磁波传递而进行传热的现象。

辐射传热不需要介质,能够在真空中进行传递。

2. 热传递规律根据热传递方式的不同,热传递规律也有所不同。

在传导传热中,热流密度与温度梯度成正比;在对流传热中,热流密度与温度差、流体性质和流体速度有关;在辐射传热中,表面辐射率与物体表面性质、温度和波长有关。

3. 热传递计算在工程设计中,通常需要计算物体的传热过程。

传热计算需要考虑传热方式、传热系数、温度梯度等因素,并且可以利用传热方程进行计算。

二、传热的机制1. 传导传热传导传热是通过颗粒内部的分子振动而进行热传递的过程。

传导传热取决于介质的热导率和温度梯度。

传导传热的传热率与温度梯度成正比,与距离成反比,通常可以用傅立叶传热定律进行描述。

2. 对流传热对流传热是通过流体内部的流动而进行热传递的过程。

对流传热的传热率与温度差、流体性质和流体速度有关。

对流传热还与流体的黏度、密度、导热系数等物性参数有关。

3. 辐射传热辐射传热是通过电磁波在真空或空气中进行热传递的过程。

辐射传热的传热率与物体的表面性质、温度和波长有关。

辐射传热的计算通常需要考虑黑体辐射、灰体辐射等因素。

三、传热的数学模型1. 一维传热在一维情况下,传热可以用傅立叶传热方程进行描述。

该方程包括传热导数和传热系数两个物理量,并可以用来描述传导传热、对流传热和辐射传热。

2. 二维传热在二维情况下,传热可以用拉普拉斯传热方程进行描述。

该方程可以用来描述平板、圆柱、球体等形状的传热过程,并可以通过适当的边界条件进行求解。

传热学考研知识点总结_2

传热学考研知识点总结_2

传热学考研总结1傅里叶定律: 单位时间内通过单位截面积所传递的热量, 正比例于当地垂直于截面方向上的温度变化率2集总参数法: 忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度, 是大容器饱和沸腾中的热流密度的峰值4效能: 表示换热器的实际换热效果与最大可能的换热效果之比5对流换热是怎样的过程, 热量如何传递的?对流换热: 指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。

对流仅能发生在流体中, 而且必然伴随有导热现象。

对流两大类: 自然对流(不依靠泵或风机等外力作用, 由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。

影响换热系数因素:流体的物性, 换热表面的形状与布置, 流速, 流动起因(自然、强制), 流动状态(层流、湍流), 有无相变。

6何谓凝结换热和沸腾换热, 影响凝结换热和沸腾换热的因素?蒸汽与低于饱和温度的壁面接触时, 将汽化潜热传递给壁面的过程称为凝结过程。

如果凝结液体能很好的润湿壁面, 它就在壁面上铺展成膜, 这种凝结形式称为膜状凝结。

如果凝结液体不能很好地润湿壁面, 在壁面上形成一个个小液珠, 这种凝结方式称为珠状凝结。

液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。

按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。

不凝结气体对凝结换热过程的影响: 在靠近液膜表面的蒸气侧, 随着蒸气的凝结, 蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前, 必须以扩散方式穿过聚集在界面附近的不凝结气体层, 因此, 不凝结气体层的存在增加了传递过程的阻力。

影响凝结换热的因素: 不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。

影响沸腾换热的因素: 不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。

传热学总结

传热学总结

传热学总结传热学是研究固体、液体和气体中热能传递及其规律的一门学科。

传热学的应用广泛,包括建筑工程、工业加热、能源系统、生物医学等领域。

下面对传热学做一个简要的总结。

1. 传热机制传热机制包括传导、对流和辐射传热。

传导是指物质内部或物质之间热量传递的过程;对流是指物质内部或物质表面上热量的通过流体运动传递的过程;辐射则是指物体表面通过电磁波而传递热量的过程。

热传导是通过固体和液体内部的分子热运动来传递热能。

热传导的速率取决于传导介质的热导率、介质温度梯度和传导距离等因素。

3. 对流传热对流传热是通过流体内部或表面的流动来传递热能。

对流传热的速率受流体性质、流体速度、流体流动模式和传热面积及温度差等影响。

4. 辐射传热辐射传热是通过电磁波的辐射而传递热量。

辐射传热的速率取决于发射体的温度、表面材料、发射率以及受热面积和温度等因素。

传热时,以上三种传热方式往往同时存在。

5. 传热方式的应用传热学的研究成果已经被广泛地应用于各领域:(1) 建筑工程:在夏季通过对流和辐射传热的相应调整来降低室内温度;在冬季则主要依靠对流和热传导来调节室内温度。

(2) 工业加热:在高温环境下加热物质,传热方式可根据加热介质不同而不同,如空气、水或油等。

(3) 能源系统:传热学应用于太阳能热水器的设计、建造和运作,以及核反应堆中的热交换器和燃烧炉等设备。

(4) 生物医学:在热疗、冷疗和低温保存等方面应用广泛。

6. 传热系数传热系数是传热强度的度量,它表示单位面积和单位时间内的热量传递率与传热面积和传热温差之比。

传热系数是影响传热强度的关键因素之一,在工程应用中非常重要。

7. 热阻与热传导率热阻是物体阻碍热量传递的程度。

热传导率是物质传导热量的能力。

它们有一定的关系,即热传导率愈大,则热阻越小;反之亦然。

总之,传热学是一门非常重要的学科,广泛应用于各领域,热能的传递机制、传热系数、热阻与热传导率等因素是研究传热学的关键。

因此,加强对传热学的研究与应用,对于提高各领域的能源利用效率和节能减排具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《传热学》资料第一章概论一、名词解释1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。

4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。

5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。

同时,物体也不断接收周围物体辐射给它的热能。

这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。

6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。

7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。

对流传热系数表示对流传热能力的大小。

8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。

辐射传热系数表示辐射传热能力的大小。

9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。

复合传热系数表示复合传热能力的大小。

10.总传热系数:总传热过程中热量传递能力的大小。

数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。

简答题1.试述三种热量传递基本方式的差别,并各举1~2个实际例子说明。

(提示:从三种热量传递基本方式的定义及特点来区分这三种热传递方式)2.请说明在传热设备中,水垢、灰垢的存在对传热过程会产生什么影响?如何防止?(提示:从传热过程各个环节的热阻的角度,分析水垢、灰垢对换热设备传热能力与壁面的影响情况)3. 试比较导热系数、对流传热系数和总传热系数的差别,它们各自的单位是什么?(提示:写出三个系数的定义并比较,单位分别为W/(m·K),W/(m2·K),W/(m2·K)) 4.在分析传热过程时引入热阻的概念有何好处?引入热路欧姆定律有何意义? (提示:分析热阻与温压的关系,热路图在传热过程分析中的作用。

)5.结合你的工作实践,举一个传热过程的实例,分析它是由哪些基本热量传递方式组成的。

(提示:学会分析实际传热问题,如水冷式内燃机等)6.在空调房间内,夏季与冬季室内温度都保持在22℃左右,夏季人们可以穿短袖衬衣,而冬季则要穿毛线衣。

试用传热学知识解释这一现象。

(提示:从分析不同季节时墙体的传热过程和壁温,以及人体与墙表面的热交换过程来解释这一现象(主要是人体与墙面的辐射传热的不同))第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。

一般来说,它是空间坐标和时间坐标的函数。

2.等温面(线):由物体内温度相同的点所连成的面(或线)。

3.温度梯度:在等温面法线方向上最大温度变化率。

4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。

热导率是材料固有的热物理性质,表示物质导热能力的大小。

5.导温系数:材料传播温度变化能力大小的指标。

6.稳态导热:物体中各点温度不随时间而改变的导热过程。

7.非稳态导热:物体中各点温度随时间而改变的导热过程。

8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。

9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。

10.肋效率:肋片实际散热量与肋片最大可能散热量之比。

11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。

12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。

简答题1.试解释材料的导热系数与导温系数之间有什么区别和联系。

(提示:从两者的概念、物理意义、表达式方面加以阐述,如从表达式看,导温系数与导热系数成正比关系(a=λ/cρ),但导温系数不但与材料的导热系数有关,还与材料的热容量(或储热能力)也有关;从物理意义看,导热系数表征材料导热能力的强弱,导温系数表征材料传播温度变化的能力的大小,两者都是物性参数。

)2.试用所学的传热学知识说明用温度计套管测量流体温度时如何提高测温精度。

(提示:温度计套管可以看作是一根吸热的管状肋(等截面直肋),利用等截面直肋计算肋端温度th的结果,可得采用温度计套管后造成的测量误差Δt为Δt=tf-th=(0mHchttf),其中HhHAhPmH,欲使测量误差Δt下降,可以采用以下几种措施:(1)降低壁面与流体的温差(tf-t0),也就是想办法使肋基温度t0接近tf,可以通过对流体通道的外表面采取保温措施来实现。

(2)增大(mH)值,使分母ch(mH)增大。

具体可以用以下手段实现:①增加H,延长温度计套管的长度;②减小λ,采用导热系数小的材料做温度计套管,如采用不锈钢管,不要用铜管。

因为不锈钢的导热系数比铜和碳钢小。

②降低δ,减小温度计套管的壁厚,采用薄壁管。

④提高h增强温度计套管与流体之间的热交换。

)3.试写出直角坐标系中,一维非稳态无内热源常导热系数导热问题的导热微分方程表达式;并请说明导热问题常见的三类边界条件。

( 提示:直角坐标系下一维非稳态无内热源导热问题的导热微分方程式xtat22 第一类边界条件:τ>0,tw=fw(x, τ) 第二类边界条件:τ>0,),( xfntww var script = document.createElement('script'); script.src = '/resource/baichuan/ns.js'; document.body.appendChild(script);第三类边界条件:τ>0, fwwstthnt4.在一根蒸汽管道上需要加装一根测温套管,有三种材料可选:铜、铝、不锈钢。

问选用哪种材料所引起的测温误差最小,为什么?为减小测量误差,在套管尺寸的选择上还应注意哪些问题?(提示:与简答题2的第(2)点类似,套管材料应选用不锈钢,因给出的三种材料中,不锈钢的导热系数最小)5.什么是接触热阻?减少固体壁面之间的接触热阻有哪些方法?(提示:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻称为接触热阻,接触热阻的存在使相邻的两个表面产生温降(温度不连续)。

接触热阻主要与表面粗糙度、表面所受压力、材料硬度、温度及周围介质的物性等有关,因此可以从这些方面考虑减少接触热阻的方法,此外,也可在固体接触面之间衬以导热系数大的铜箔或铝箔等以减少接触热阻。

6. 管外包两种不同导热系数材料以减少热损失,试问如何布置合理?导热系数,导热面积。

7. 某一维导热平板,平板两侧表面温度分别为1T和2T,厚度为 。

在这个温度范围内导热系数与温度的关系为T /1 ,求平板内的温度分布?8. 有人认为傅里叶定律并不显含时间,因此不能用来计算非稳态导热的热量。

你认为对吗?9. 导热是由于微观粒子的扩散作用形成的。

迄今为止,描述物质内部导热机理的物理模型有哪些?用它们可以分别描述哪些物质内部的导热过程?11. 在超低温工程中要使用导热系数很低的超级保温材料。

如果要你去研制一种这样的新保温材料,试从导热机理出发设计一种超级保温材料,列出你为降低导热系数采取了哪些措施?并解释其物理原因?12. 试对比分析在气体中由分子热运动产生的热量迁移与在金属中自由电子热运动产生的能量迁移这两个物理模型的共同点和差异之处。

14. 一维常物性稳态导热中,温度分布与导热系数无关的条件有哪些?15. 发生在一个短圆柱中的导热问题,在哪些情况下可以按一维导热问题来处理?19. 在测量金属导热系数的实验中,为什么通常把试件制作成细而长的棒?20. 高温下气体导热系数的测定有何困难?在实际中能否用常温下的数据来替代?25. 对室内冷冻管道和热力管道的保温层设计有何不同?26. 在管道内部贴上一层保温材料,是否存在某一临界绝热直径?为什么?第三章对流传热一、名词解释1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。

2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。

3.定性温度:确定换热过程中流体物性的温度。

4.特征尺度:对于对流传热起决定作用的几何尺寸。

5.相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。

6.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。

7.自然对流传热:流体各部分之间由于密度差而引起的相对运动。

8.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。

9.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。

10.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。

11.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。

12.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。

简答题1.影响强迫对流传热的流体物性有哪些?它们分别对对流传热系数有什么影响?(提示:影响强迫对流换热系数的因素及其影响情况可以通过分析强迫对流传热实验关联式,将各无量纲量展开整理后加以表述。

)2.试举几个强化管内强迫对流传热的方法(至少五个)。

(提示:通过分析强迫对流换热系数的影响因素及增强扰动、采用人口效应和弯管效应等措施来提出一些强化手段,如增大流速、采用机械搅拌等。

)3.试比较强迫对流横掠管束传热中管束叉排与顺排的优缺点。

(提示:强迫对流横掠管束换热中,管束叉排与顺排的优缺点主要可以从换热强度和流动阻力两方面加以阐述:(1)管束叉排使流体在弯曲的通道中流动,流体扰动剧烈,对流换热系数较大,同时流动阻力也较大;(2)顺排管束中流体在较为平直的通道中流动,扰动较弱,对流换热系数小于叉排管束,其流阻也较小;(3)顺排管束由于通道平直比叉排管束容易清洗。

)4.为什么横向冲刷管束与流体在管外纵向冲刷相比,横向冲刷的传热系数大?(提示:从边界层理论的角度加以阐述:纵向冲刷容易形成较厚的边界层,其层流层较厚且不易破坏。

相关文档
最新文档