萤火虫算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年,Krishnanand, K.N. 和 Ghose, D. 给出了萤火虫群优化算法应用于多
2009年,Krishnanand, K.N.和 Ghose, D. 用萤火虫群优化算法来优化多极值函
数,并捕获多极值函数的多个局部最优值。此Krishnanand, K.N. 和 Ghose, D. 还用基于多种群的萤火虫群优化算法来检测环境中普遍存在的危险之源。
萤火虫算法简介
主要内容
1.算法产生背景; 2.算法原理; 3.算法实现 4.适用领域
算法产生背景
人工萤火虫群优化(Glowworm Swarm Optimization,GSO)算法是 印度学K.N.Krishnanand 和 D. Ghose 于 2005 年提出的一种新型群智能 优化算法。 算法思想源于模拟自然界中萤火虫在晚上群聚活动的自然现象而 提出的,在萤火虫的群聚活动中,各只萤火虫通过散发荧光素与同伴 进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫 其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的 萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的 仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视 为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中, 然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。 通过每一代的移动,最终使得萤火虫聚集到较好的萤火虫周围,也即 是找到多个极值点,从而达到种群寻优的目的。
算法原理

在基本人工萤火虫群优化算法中,每一只人工萤火虫都被随机 的分布在目标函数的定义空间内,这些萤火虫拥有各自的荧光素, 并且每一个萤火虫都有自己的视野范围,我们称之为决策域半径 (local-decision range)。每个萤火虫荧光素的亮度和自己所在位置对 应的目标函数的适应度值有关。荧光越亮的萤火虫表示它所在的 位置就越好,即它所对应的目标函数值也更优。萤火虫的移动方 式是:每个萤火虫在各自的视野范围内寻找邻域,在邻域中找到 发出荧光较亮的萤火虫从而向其移动。每次移动的方向会因为挑 选的邻域不同而改变。另外,萤火虫的决策域半径也会根据邻域 中萤火虫数量的不同而受影响,当邻域中萤火虫数目过少时,萤 火虫会加大自己的决策半径以便需找更多的萤火虫;反之,就会 减小自己的决策半径。最终,使得大部分萤火虫聚集在较优的位 置上。
但在国内,对人工萤火虫群优化算法的研究还刚起步,可参考文献少。
蚁群算法原理
觅食路线
无障碍时:
觅食路线 无障碍时:
算法实现
算法流程图
适用领域
Krishnanand, K.N. 和 Ghose, D. 已将该算法成功应用于多信号源探测和多模
态函数优化领域。
2006年,Krishnanand, K.N. 等人将萤火虫群优化算法应用于集体机器人、多
信号源定位和探测多辐射源领域,并给出了带有动态局部决策范围的萤火 虫群优化算法寻找多个源位置的理论推导。

2007年,Krishnanand, K.N. 等人将萤火虫群优化算法应用于追踪多个移动 信号源位置领域和寻找多个气味源位置的网络机器人系统领域。 定位领域的理论基础,并用萤Baidu Nhomakorabea虫群优化算法捕获多极值函数的多个局部 最优值,此外,还将基于多机器人系统的萤火虫群优化算法应用于信号源 定位领域。
相关文档
最新文档