第四章课后习题答案

合集下载

形式逻辑(第5版)课后练习参考答案第4章

形式逻辑(第5版)课后练习参考答案第4章

《形式逻辑》课后习题参考答案第四章简单命题及其推理(下)一、指出下列三段论的格和式,并指出其中的大项、中项和小项,以及大前提、小前提和结论。

1.第一格AAA式。

大项:一定要胜利的;中项:正义的事业;小项:我们的事业。

大前提:一切正义的事业都是一定要胜利的;小前提:我们的事业是正义的事业;结论:我们的事业是一定要胜利的。

2.第三格AAI式。

大项:能导电;中项:石墨;小项:非金属。

大前提:石墨能导电;小前提:石墨是非金属;结论:有的非金属能导电。

3.第二格AEE式。

大项:文学作品;中项:需要创造艺术形象;小项:学术论文。

大前提:一切文学作品都需要创造艺术形象;小前提:学术论文不需要创造艺术形象;结论:学术论文不是文学作品。

4.第二格AEE式。

大项:鱼;中项:用鳃呼吸;小项:鲸。

大前提:鱼都是用鳃呼吸的;小前提:鲸不是用鳃呼吸的;结论:鲸不是鱼。

二、下列三段论是否正确?如果不正确,违反了什么规则?1.不正确。

大项扩张(大项“青年”在前提中不周延,但在结论中周延。

注:按照对当关系,并非所有的青年工人都是共青团员=有的青年不是共青团员)。

2.不正确。

中项两次不周延。

3.不正确。

四概念错误(大小前提中的两个“物质”不是一个概念)4.不正确。

两前提都是特称命题,或者中项两次不周延。

5.不正确。

中项两次不周延(不是快车是不带邮件的=带邮件的是快车)带邮件的是快车)6.不正确。

中项两次不周延。

不正确。

中项两次不周延。

三、在下列括号内填入适当的符号,构成一个正确的三段论,并写出解题过程。

1.它的限制条件少,很多三段论都满足要求,第一格的有AAA, AAI, AII,,第四格的有AAI, 第二格的有AEE, AEO, AOO,第三格的有AAI, AII,第四格的有AEE。

例如,对于第一格的AAA式,即MAP, SAM/SAP,假设结论为SAP,那么S在结论中是周延的。

根据三段论规则3,S在前提中也必须周延。

按照规则4,前提不能出现否定。

混凝土结构(第四版)第四章习题 答案

混凝土结构(第四版)第四章习题 答案

斜截面受剪承载力计算例题4-1解:1)剪力图见书,支座剪力为V =01170 3.6522ql =××=124.6kN2)复合截面尺寸h w =h 0=h -c -25/2=500-30-12.5=457.5 457.52.34200w h b ==<00.250.25 1.09.6200457.5219.6124.6c c f bh kN V kN β=××××=>=满足。

3)验算是否按计算配置腹筋00.70.7 1.1200457.570.5124.6t f bh kN V kN =×××=<=应按计算配置腹筋4)计算腹筋数量①只配箍筋由 000.7 1.25svt yvA V f bh f h s≤+ 得: 3312000.7124.61070.5100.4511.25 1.25210457.5sv t yv nA V f bh s f h −×−×≥==××mm 2/mm 选双肢φ8箍筋 1250.3223.10.4510.451sv nA s mm ×≤== 取 s=200mm验算最小配箍率1,min 250.3 1.10.00250.240.240.0013200200210sv t sv sv yv nA f bs f ρρ×===>==×=× 满足仅配箍筋时的用量为双肢φ8@200②即配箍筋又配弯筋a. 先选弯筋,再算箍筋根据已配的2 25+1 22纵向钢筋,将1 22的纵筋以45°角弯起,则弯筋承担的剪力:0.8sin 0.8380.130064.52sb y sb s V f A kN α==×××= 3330100.70.8sin 124.61070.51064.5101.25 1.25210457.5t y sb s sv yv V f bh f A nA s f h α−−×−×−×≥==××负值 按构造要求配置箍筋并满足最小配箍率要求选双肢φ6@200的箍筋,1,min 228.3 1.10.001420.240.240.0013200200210sv t sv sv yv nA f bs f ρρ×===>==×=× b. 先选箍筋,再算弯筋先按构造要求选双肢φ6@200的箍筋,1,min 228.3 1.10.001420.240.240.0013200200210sv t sv sv yv nA f bs f ρρ×===>==×=× 满足要求。

曼昆微观经济学第四章课后答案

曼昆微观经济学第四章课后答案
的图形。供给曲线是供给表的图形表示,供给表是供给曲线上点的坐标的数字
排列。
因为在其他因素不变时,价格上
升,供给量上升,所以供给曲线向右上方倾斜。
8
.生产者技术的变动引起了沿着供给曲线的变动,还是供给曲线的移动?价格的变化引起了沿着供给曲线
17
5
.考虑DVD
、电视和电影院门票市场。
A
.对每一对物品,确定它们是互补品还是替代品
·DVD
和电视
·DVD
和电影票
·电视和电影票
答:DVD 和电视机是互补品,因为不可能在没有电视的情况下看DVD。DVD 和电影票是替代品,因为一
部电影即可以在电影院看,也可以在家看。电视和电影
的变动,还是供给曲线的移动?
答:生产者技术的变动引起了供给曲线的移动,价格变化引起了沿着供给曲线的变动。
9
.给市场均衡下定义,描述使市场向均衡变动的力量。
答:当供给与需求达到了平衡的状态,即需求曲线与供给曲线相交于一点时,这一点叫做市场的均衡。使市
场达到均衡的力量是价格。当价格低于均衡价格时,市场上求大于供,供给者发现提高价格也不会减少销售量,
20
图4—16 自由体操着装的规定对运动衫市场的影响
D
.发明了新织布机。
答:新织布机的发明使运动衫
生产的技术水平提高,使运动衫的供给曲线向右下方移动,运动衫的价格下降,
均衡数量增加。
图4—17 新织布机的发明对运动衫市场影响
8
.调查表明,年轻人吸食的毒品增加了。在随后的争论中,
C
.工程师开发出用于家用旅行车生产的新的自动化机器。
答:决定供给的技术因素受影响,生产技术提高,会使家用旅行车的供给增加。

有机化学课后习题答案第四章

有机化学课后习题答案第四章

4章思考题4.1 付-克烷基化反应的特点是什么?4.2 解释什么叫定位基,并说明有哪三类定位基。

4.3 解释定位效应。

4.4 共振论对于共振结构式有何规定?4.5 试说明芳香亲电取代反应的机理。

4.6 甲苯和对二甲苯相比哪个对游离基卤代反应更活泼?试说明理由。

4.7 用KMnO4或K2CrO7+H+使PhCH3氧化成PhCOOH的反应产率很差,而由p-O2N-C6H4CH3氧化成p-O2NC6H4COOH,同样的氧化反应却有较好的产率。

如何解释。

4.8 回答下列问题。

(1)(1)环丁二烯只在较低温度下才能存在,高于35K即(如分子间发生双烯合成)转变为二聚体,已知它的衍生物二苯基环丁二烯有三种异构体。

上述现象说明什么?写出二苯基环丁二烯三种异构体的构造式。

(2)(2)1,3,5,7-环辛四烯能使冷的高锰酸钾水溶液迅速褪色,和溴的四氯化碳溶液作用得到C8H8Br8a 、它应具有什么样的结构?b、b、金属钾和环辛四烯作用即得到一个稳定的化合物2K+C8H82-(环辛四烯二负离子)。

这种盐的形成说明了什么?预期环辛四烯二负离子将有怎样的结构?解答4.1 答:(1)因烷基正离子容易重排,易形成烷基异构化产物;(2)烷基可活化苯环,易使烷基化反应产物为多元取代产物;(3)烷基化反应是可逆反应,使得产物可能复杂化。

4.2 答:苯环上已有一个取代基后,再进行亲电取代反应时,新进入的基团进入苯环的位置由环上原有取代基的性质决定,这个原有的取代基叫定位基。

定位基可分为三类,即(1)邻、对位定位基,如—OH、—NH2、—NHCOCH3、—CH3等,这类基团使苯环活化,并且使新引入的取代基在定位基的邻位和对位。

(2)间位定位基,如—NO2、—CN、—COCH3、—COOH、—SO3H等,这类基团使苯环钝化,并使新引入的取代基在它的间位。

(3)卤素是一类特殊的定位基,它使苯环钝化,但都是邻、对定位基。

4.3 答:邻、对位定位基的推电子作用是苯环活化的原因,这又可分为两种情况:①在与苯环成键的原子上有一对未共享电子,这对电子可以通过大π键离域到苯环上;②虽无未共享电子对,但能通过诱导效应或超共轭效应起推电子作用的基团,如甲基或其他烷基。

有机化学课后第四章习题答案

有机化学课后第四章习题答案
第四章
一、写出下列化合物的构造式或命名:
1、对二乙烯苯 2、对叔丁基甲苯 3、3-氯-4-硝基甲苯
CH2CH CH2
4、
5、
NO2CH2Br 6、 NhomakorabeaCH2CH CH2
O CH3
Cl
二、完成下列反应
CH2CH2 CH3
H3C CH CH3
1、
+

COOH
2、Cl2/光照; AlCl3 +
3、H2SO4/0~80℃; 165℃
CH3 Cl
NO2
CH3
Br2
CH3
3、
FeBr3
Br
Br
Br
4、
Br2
ClCOCH3
FeBr3
AlCl3
COCH3
CH3 KMnO4
7、
H+,△
COOH
HNO3 H2SO4 O2N
COOH NO2
八、指出下列化合物硝化时,导入的硝基在环上的位置:
CH3 CH3
CH3 OCH3
CH3
OH
SO3H
Cl
1、

NO2
NO2


NO2
OH
2、

COCH3 NO2


五、由苯或甲苯开始合成下列化合物:
CH3 HNO3
2、
H2SO4
CH3
Cl2
FeCl3
NO2
CH3 Cl
NO2
或:
CH3 浓H2SO4 100℃
CH3
Cl2
FeCl3
SO3H
CH3 Cl
H3O+ 150℃

自动控制原理第二版第四章课后答案

自动控制原理第二版第四章课后答案

自动控制原理第二版第四章课后答案【篇一:《自动控制原理》第四章习题答案】4-1 系统的开环传递函数为g(s)h(s)?k*(s?1)(s?2)(s?4) 试证明点s1??1?j3在根轨迹上,并求出相应的根轨迹增益k*和开环增益k。

解若点s1在根轨迹上,则点s1应满足相角条件?g(s)h(s)??(2k?1)?,如图解4-1所示。

对于s1= -1+j3,由相角条件?g(s1)h(s1)?0??(?1?j3?1)??(?1?j3?2)??(?1?j3?4)? 0??2??3??6???满足相角条件,因此s1= -1+j3在根轨迹上。

将s1代入幅值条件: g(s1)h(s1?k*?1?1?j3?1??1?j3?2??1?j3?4k8*解出: k=12 ,k=*?324-2 已知开环零、极点如图4-2 所示,试绘制相应的根轨迹。

解根轨如图解4-2所示:4-3 单位反馈系统的开环传递函数如下,试概略绘出系统根轨迹。

⑴ g(s)?ks(0.2s?1)(0.5s?1)k(s?5)s(s?2)(s?3)* ⑵ g(s)?⑶ g(s)?k(s?1)s(2s?1)解⑴ g(s)?ks(0.2s?1)(0.5s?1)=10ks(s?5)(s?2)系统有三个开环极点:p1?0,p2= -2,p3 = -5①实轴上的根轨迹:???,?5?, ??2,0?0?2?57?????a??33②渐近线: ????(2k?1)????,?a?33?③分离点:1d?1d?5?1d?2?0解之得:d1??0.88,d2?3.7863(舍去)。

④与虚轴的交点:特征方程为 d(s)=s3?7s2?10s?10k?0?re[d(j?)]??7?2?10k?0令 ? 3im[d(j?)]????10??0?解得?????k?7。

根轨迹如图解4-3(a)所j)与虚轴的交点(0,?示。

⑵根轨迹绘制如下:①实轴上的根轨迹:??5,?3?, ??2,0?0?2?3?(?5)????0a??2②渐近线: ????(2k?1)????a?22?③分离点: 1d?1d?2?1d?3?1d?5用试探法可得 d??0.886。

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。

第四章 课后习题及答案

第四章 课后习题及答案

第四章中学生学习心理课后习题及答案一、理论测试题(一)单项选择题1.当人从黑暗走入亮处后,视网膜的光感受阈限会迅速提高,这个过程是()。

A.适应B.对比C. 明适应D.暗适应2.人的视觉、听觉、味觉等都属于( )。

A.外部感觉B.内部感觉C.本体感觉D.机体感觉3.在热闹的聚会上或逛自由市场时,如果你与朋友聊天,朋友说话时的某个字可能被周围的噪音覆盖,但你还是知道你的朋友在说什么,这是知觉的()在起作用。

A、选择性B、整体性C、恒常性D、理解性4. 知觉的条件在一定范围改变时,知觉映像却保持相对稳定,这是知觉的()。

A.选择性B.整体性C.恒常性D.理解性5.大教室上课,教师借用扩音设备让全体学生清晰感知,这依据感知规律的()。

A.差异率B.强度率C.活动率D.组合率6.“万绿丛中一点红”容易引起人们的无意注意,这主要是由于刺激物具有()。

A.强度的特点B.新异性的特点C.变化的特点D.对比的特点7.小学低年级学生注意了写字的间架结构,就忽略了字的笔画,注意了写字而忘了正确的坐姿,原因是这个年龄阶段的学生()发展水平较低。

A.注意的广度B.注意的稳定性C.注意的分配D.注意的转移8.“视而不见,听而不闻”的现象,典型地表现了()。

A.注意的指向性B.注意的集中性C.注意的稳定性D.注意的分配性9.一种记忆特点是信息的保存是形象的,保存的时间短、保存量大,编码是以事物的物理特性直接编码,这种记忆是()。

A.短时记忆B.感觉记忆C.长时记忆D.动作记忆10.我们常常有这样的经验,明明知道对方的名字,但想不起来,这印证了遗忘的()。

A.干扰说B.消退说C.提取失败说D.压抑说11.学习后立即睡觉,保持的效果往往比学习后继续活动保持的效果要好,这是由于()。

A.过度学习B.记忆的恢复现象C.无倒摄抑制的影响D.无前摄抑制的影响12.遇见小时候的同伴,虽然叫不出他(她)的姓名,但确定是认识的,此时的心理活动是()。

统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案

统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案
解: (1)
62.75
2 33.9375
82 64
(2) 可能的样本个数:
(3)由题可得所有样本的样本均值如下表:
第(3)小题图表
(4)利用SPSS软件得到Q-Q图:
(5)
x i 1

xi 64
m
62.75
33.9375 x 4.1193 2 n
0 4
(2) P(X≤2 )=
4.3 求标准正态分布的概率: (1)P ( 0 ≤ Z ≤ 1.2) ; (2)P ( -0.48 ≤ Z ≤ 0); (3)P (Z > 1.33)。
解: (1)P ( 0 ≤ Z ≤ 1.2) = P ( 1.2) -P ( 0 )= 0.3849 (2)P ( -0.48 ≤ Z ≤ 0 ) = P ( 0) -P (-0.48)= 0.1844 (3)P (Z > 1.33) = P ( -1.33) = 0.0918
(1 )
500 0.4 0.6 0.0219089 500
(2)
(3)由中心极限定理可知 p的分布近似正态分布
4.7 假设一个总体共有8个数值: 54,55,59,63,64,68,69,70.从该总体 中按重复抽样方式抽取n=2的随机样本。
(1)计算总体的均值和方差。 (2)一共有多少个可能的样本? (3)抽出所有可能的样本,并计算出每个样本的均值。 (4)画出样本均值的正态概率图,判断样本均值是否服从正态分布。 (5)计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行对比得 到的结论是什么?
E ( x ) 200

n 50 5 100
(2 ) x
(3) 由中心极限定理可知 X 的概率分布近似服从正态分布

经典偏微分方程课后习题答案

经典偏微分方程课后习题答案

第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。

取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。

u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。

概率论与数理统计第四章习题参考答案

概率论与数理统计第四章习题参考答案

=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi

⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i

nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)

nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95

故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a

x

b

⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )

n
D(

《宏观经济学》课后练习题参考答案4

《宏观经济学》课后练习题参考答案4

第四章货币与通货膨胀一、选择题二、名词解释1、M1与M2:都是美联储计算货币存量的指标,M1是指通货加活期存款、旅行支票和其它支票性存款,被称为狭义的货币;M2是指加货币市场基金余额、储蓄存款以及小额定期存款,被称为广义的货币。

M1具有完全的流动性,但没有利息。

M2有利息但不具有完全的流动性。

M1与经济关联性强,而M2与货币政策关联性强。

2、货币需求函数:(1)货币需求函数是为了分析货币需求量的决定因素及其变动规律而建立的一种函数关系。

通常将决定和影响货币需求的各种因素作为自变量,而将货币需求本身作为因变量。

(2)比较典型的货币需求函数有:①传统货币数量论的交易方程式:PV=MY,其中M为货币数量,V为货币流通速度,P为一般物价水平,Y为实际国民收入;②剑桥方程式:M= kPY,其中M为货币数量,k为以货币形式持有的国民收入的比例,P为一般物价水平,Y为实际国民收入;③凯恩斯的货币需求函数:L=L1(Y)+L2(i)。

其中由交易动机和预防动机而产生的货币需求用L1表示,是收入Y的递增函数,即L1=L1(Y);投机性货币需求L2则与利率有关,是利率的递减函数,即L2=L2(i);④弗里德曼的货币需求函数:M=f{P,r b,r c,1/P·dP/dt,w,y,u},其中,M表示名义货币量,P表示价格水平,r b表示债券的预期收益率,r c表示股票的预期收益率,1/P·dP/dt表示物价的预期变动率,w表示人力财富与非人力财富的比率,y表示货币收入,u为其他随机因素。

3、数量方程式:数量方程式是用来表示交易量与货币之间的关系的方程。

它有以下表示形式:MV=PT式中,M为流通中的货币数量,V为货币的流通速度,P为一般物价水平,T为社会总交易额。

交易方程式直观地表示了流通中的货币数量与一般物价水平之间的关系。

如果用Y代表实际GDP,P是GDP平减指数,而PY是名义GDP,数量方程式变为MV=PY。

计算机组成与设计第三版 第四章课后答案

计算机组成与设计第三版 第四章课后答案

4.6 运算器内的乘商寄存器的移位操作与通用寄存器的移 位操作之间应有什么样的关联关系吗?为什么会是这样?
பைடு நூலகம்

乘除寄存器的移位操作与通用寄存器的移位操作是联合 移位,没有乘除寄存器单独移位功能。当通用寄存器本 身移位时,乘除寄存器不受影响。
4.8.以教学计算机为例,说明应如何控制与操作运算器完成指定的数据运算、 传送功能,为什么必须在Am2901芯片之外解决向运算器提供最低位的进位信 号,最低、最高位的移位输入信号,以及状态位的接受与记忆问题。设计完 成如下操作功能的操作步骤和必须提供的信号:把100送入R0,R0的内容送入 R1,完成R0-R1并存入R0,R1的内容减1,R1的内容送入Q,R1和Q与C联合 右移一位。


4.8.以教学计算机为例,说明应如何控制与操作运算器完成指定的数据运算、 传送功能,为什么必须在Am2901芯片之外解决向运算器提供最低位的进位信 号,最低、最高位的移位输入信号,以及状态位的接受与记忆问题。设计完 成如下操作功能的操作步骤和必须提供的信号:把100送入R0,R0的内容送入 R1,完成R0-R1并存入R0,R1的内容减1,R1的内容送入Q,R1和Q与C联合 右移一位。

4.13.假定X=0.0110011*211,Y=0.1101101*2-10(此处的数均为二进制)。 (1)浮点数阶码用4位移码、尾数用8位原码表示(含符号位),写出 该浮点数能表示的绝对值最大、最小的(正数和负数)数值; (2)写出X、Y正确的浮点数表示(注意,此处预设了个小陷阱); (3)计算X+Y; (4)计算X*Y。 4)计算X*Y A:阶码相加:[X+Y]移=[X]移+[Y]补=01 011+11 110=01 001 (符号位10第1位为0,不溢出;00时上溢,01时下溢) B:尾数相乘结果:0 1010110 110111 C:已满足规格化要求,不需左规,尾数不变,阶码仍为001 D:舍入处理:按0舍1入规则,尾数之后的6位110111舍去,尾数 +1=0 1010111 所以,X*Y最终浮点数格式的结果: 1 001 0 1010111,即 0.1010111*21

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案

x 轴正方向运动,代表此简谐振动的旋转矢量图为
()
[答案:B]
(2)两个同周期简谐振动曲线如图所示,振动曲线 1 的相位比振动曲线 2
的相位 (

(A)落后
2
(B)超前
2
(C)落后
(D)超前
[答案: B]
习题 4.1(2)图
(3)一质点作简谐振动的周期是 T,当由平衡位置向 x 轴正方向运动时,从
E
1 2
mvm2
3.16 102 J
E p E k 1 E 1.58102 J 2
当 Ek E p 时,有 E 2E p ,

1 kx 2 1 ( 1 kA2 )
2
22

x 2 A 2m
2
20
(3)
(t2 t1 ) 8 (5 1) 32
4.4 一个沿 x 轴作简谐振动的弹簧振子,振幅为 A ,周期为T ,其振动 方程用余弦函数表示.如果 t 0 时质点的状态分别是:
的单位是 s,则 (A)波长为 5m
向传播 [答案:C]
(B)波速为 10ms-1
(C)周期为 1 s 3
(D)波沿 x 正方
(8)如图所示,两列波长为 的相干波在 p 点相遇。波在 S1 点的振动初相是 1 ,点 S1 到点 p 的距离是 r1。波在 S2 点的振动初相是2 ,点 S2 到点 p 的距离是
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置

国际金融第四章课后作业答案

国际金融第四章课后作业答案

第四章课后习题答案一、判断题1. X。

补贴政策、关税政策和汇率政策都属于支出转换型政策。

2. X。

外部均衡是内部均衡基础上的外部平衡,具体而言,反映为内部均衡实现条件下的国际收支平衡,它不能脱离内部均衡的条件。

3. X。

丁伯根原则的含义是,要实现N个独立的政策目标,至少需要相互独立的N个有效的政策工具。

将货币政策和财政政策分别应用于影响力相对较大的目标,以求得内外平衡是蒙代尔提出的政策指派原则的要求。

4. X .“蒙代尔分配法则”认为,财政政策解决内部均衡问题更为有效,货币政策解决外部平衡问题更为有效。

6. X。

应使用紧缩的财政政策来压缩国内需求,紧缩的货币政策来改善国际收支。

7.√。

二、不定项选择题1. B2. D3. BC4. BD5. A6. BD7. CDE(说明:一般而言,汇率变动会通过影响自发性贸易余额而引起BP曲线移动,但是,在资本完全流动的情况下,国际收支完全由资本流动决定,贸易收支的变动能够被资本流动无限抵销,此时的BP曲线反映为一条水平线,仅仅与国际利率水平有关)8. ABD 9. CD三、简答题1.按照斯旺模型,当国际收支顺差和国内经济过热时,应当采取怎样的政策搭配?答:斯旺模型用支出转换与支出增减政策搭配来解决内外均衡的冲突问题。

政府的支出增减型政策(譬如财政政策)可以直接改变国内支出总水平,主要用来解决内部均衡问题。

政府的支出转换型政策(譬如实际汇率水平的调节)可以改变对本国产品和进口产品的相对需求,主要用来解决外部平衡问题。

当出现国际收支顺差和国内经济过热时,应当一方面缩减国内支出,一方面促进本币升值,从而使进口增加,并使国内支出中由国内供给满足的部分进一步减少,从而降低国际收支顺差和国内收人水平。

2.在斯旺的内外均衡分析框架中,当内外均衡时,国内的产出水平、就业水平是唯一的吗?答:在斯旺模型中,内部均衡意味着本国生产的产品被全部销售掉,并且国内支出得到满足。

当国内产出一定时,如果国内支出扩大,为了满足国内支出,就需要本币升值以减少出口或增加进口。

大学生安全教育-本科版第四章习题答案

大学生安全教育-本科版第四章习题答案

第四章文内讨论题你有过被抢劫的经历吗?你是如何应对的?为了安全起见,先把被抢物品交给歹徒,不做强性抵抗,记住歹徒相貌特征及其他特征,寻找机会逃跑。

在到达安全地带后,打电话报警,跟警务人员冷静、详细叙述被抢情况及犯罪分子的特征。

课后习题1.大学盗窃案件有哪些特点?大学生要如何预防盗窃?高校盗窃案的特点(1)盗窃目标的准确性盗窃目标的准确性是指大学盗窃的成功率比较高,窃贼得手的机会较大。

大学人员出入频繁,宽松的门卫管理制度使不法之徒可以轻松地出入校园。

作案者往往对盗窃环境比较熟悉,对学生的作息规律把握得很好,致使作案屡屡得手。

大学中很多盗窃案件都属于内盗性质,作案者甚至就是本班、本宿舍的同学。

(2)作案时间的规律性作案时间的规律性是指大学盗窃案件的发生时间相对比较集中。

高校有自己独特的学习、活动和生活规律,这些规律直接影响和制约着行为人某种行为的具体实施。

一般来说,作案分子主要选择以下时间:师生员工上班、上课、晚自修时间;校内举办各种大型活动期间;新生入学期间;期末复习考试期间。

(3)作案手段的多样性作案分子在校园内作案通常采用事先侦察、顺手牵羊、推销作案、撬锁入室等手段。

(4)技术上的智能性技术上的智能性是指大学生盗窃案件的行窃手段高明,技术含量相对较高。

大学盗窃的作案主体多是高学历、高智商的人,甚至有的本身就是大学生。

这类盗窃分子在作案前一般都经过周密的策划和精心的准备,以选择适当的犯罪时机。

(5)作案上的连续性作案分子第一次作案成功后,“首战告捷”往往会使其产生侥幸心理,加之报案的滞后和破案的延迟,作案分子极易屡屡作案而形成一定的连续性破坏。

(6)内外勾结内外结伙盗窃,就是校内居住人员勾结校外人员在校园里盗窃。

作案主体主要是家属子弟与社会无业人员。

他们往往利用熟悉校园环境和住户情况的便利条件进行盗窃。

防盗策略(1)宿舍内的防盗策略不要随手将手机、钱包、数码相机等贵重且容易拿走的物品放在桌面上或床上,尽量放在比较隐蔽的地方,或者锁在抽屉里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-8 一个半径为r =1m ,转速为1500r/min 的飞轮,受到制动,均匀减速,经时间t =50s 后静止,求:(1)飞轮的角加速度和飞轮的角速度随时间的关系;(2)飞轮到静止这段时间内转过的转数;(3)t =25s 时飞轮边缘上一点的线速率和加速度的大小。

解 (1)由于均匀减速,所以角加速度不变为2015000.5/6050rr s s sβ-==-⨯由角速度和角加速度的关系得25/0tr sd dt ωωβ=⎰⎰得 250.5(/)t r s ω=- (2) d d d d dt dt d d ωωθωωβθθ===25/r sd d θβθωω=⎰⎰解得 625r θ= 所以转数为625(3)由于250.5(/)t r s ω=-所以t=25s 时 12.5/25(/)r s rad s ωπ== 所以线速率为 25(/)v r m s ωπ== 角加速度大小不变4-9 某电机的转速随时间的关系为ω=ω0(1-e-t/τ),式中,ω0=s ,τ=,求:(1)t =时的转速;(2)角加速度随时间变化的规律;(3)启动6s 后转过的圈数。

解 (1)t=60s 代入得39(1)(/)8.6/e rad s rad s ω-=-=(2)由d dtωβ=得 24.5t e β-=(3)由6d dt θθω=⎰⎰33618e θ-=+ [/2][5.87]5n θπ===4-10 一个圆盘绕穿过质心的轴转动,其角坐标随时间的关系为θ(t )=γt+βt 3,其初始转速为零,求其转速随时间变化的规律。

解 由d dtθω=得 23t ωγβ=+由于初始时刻转速为零,γ=023t ωβ=4-11 求半径为R ,高为h ,质量为m 的圆柱体绕其对称轴转动时的转动惯量。

解 建立柱坐标,取圆柱体上的一个体元,其对转轴的转动惯量为2222m mdJ dV d d dz R h R hρρρρθππ== 积分求得232200012R h m J d d dz mR R h πρρθπ==⎰⎰⎰ 4-12一个半径为R ,密度为ρ的薄板圆盘上开了一个半径为R/2的圆孔,圆孔与盘边缘相切。

求该圆盘对通过圆盘中心而与圆盘垂直的轴的转动惯量。

解:把圆孔补上,取圆盘上一面元dS ,到转轴的距离为r ,则其转动惯量为22dJ r dS r rdrd ρρθ==积分得绕轴转动惯量为2341012RJ r drd R πρθπρ==⎰⎰圆孔部分的绕轴转动惯量可由平行轴定理得4422213()()()222232R R R R J πρπρρπ=+=总的转动惯量为4121332R J J J πρ=-=4-13电风扇在开启电源后,经过t 1时间达到额定转速ω,当关闭电源后,经过t 2时间后停止转动,已知风扇转子的转动惯量为J ,并假定摩擦力矩和电动机的电磁力矩均为常量,求电动机的电磁力矩。

解:由转动定理得1e f M M J J t ωβ-==20f M J Jt ωβ--== 解得,电磁力矩为12()e M J t t ωω=+4-14质量为m A 的物体A 静止在光滑水平面上,它和一质量不计的绳子相连接,此绳跨过一半径为R ,质量为m 的圆柱形滑轮C ,并系在另一个质量为m B 的物体上,B 竖直悬挂,圆柱形滑轮可绕其几何中心转动。

当滑轮转动时,它与绳子间没有相对滑动,且滑轮和轴承间的摩擦了可忽略,求(1)这两个物体的加速度为多少水平和竖直两段绳子的张力各为多少(2)物体B 从静止下落距离为y 时,其速率为多少 解:设水平方向物体受到的拉力大小为F A ,竖直方向 物体受到的拉力为F B 。

两个物体的加速度大小相等对物体A 受力分析,在水平方向由牛顿第二定律得A A F m a =对物体B 受力分析,由牛顿第二定律得B B B m g F m a -=对圆柱滑轮,其绕轴转动惯量为212J mR =有转动定律得B A F R F R J β-=由于绳子和滑轮没有相对滑到,所以有a R β=联立以上各式求得两物体的线加速度12B A B m g a m m m=++水平绳子的张力12A B A A B m m g F m m m=++竖直绳子的张力1()212A B B A B m m m gF m m m+=++ 由于物体B 静止下落,所以其下落距离和速率的关系为v =4-15 一半径为R ,质量为m 的均质圆盘,一角速度ω绕其中心轴转动,现将其放在水平板上,盘与板表面的摩擦因数为μ求(1)圆盘所受到的摩擦力矩。

(2)经过多少时间后,圆盘才能停止转动解:(1)在圆盘上取一面元dS ,距中心轴距离为r ,其受到的摩擦力大小为2mdf gdS R μπ= 圆盘绕其中心轴转动,所以此体元做半径为r 的圆周运动,由于摩擦力的方向与运动方向相反,摩擦力的力臂长为r ,所以此体元受到的摩擦力矩为dM rdf =所以圆盘受到的摩擦力矩为2220023R Sm m M r gdS r grdr d mg R R R πμμθμππ===⎰⎰⎰⎰ (2)停止转动时,圆盘的角速度为零,由于力矩不变,所以角加速度恒定,有0Mt t Jωβω=-=-其中圆盘绕中心轴的转动惯量为212J mR =求得时间t 为34Rt g ωμ= 4-16 一质量为m 长为L 的均质细棒,绕其一端在水平地面上转动,初始时刻的角速度为ω,棒与地面的摩擦因数为μ。

求(1)细棒所受到的摩擦力矩。

(2)细棒停止转动时,转过的角度。

解:(1)取细棒上一线元d x ,设其距转轴距离为x ,细棒受到的摩擦力大小为mdf gdx Lμ= 细棒绕其一端转动,则此线元绕其一定做半径为x 圆周运动,摩擦力的方向与运动方向相反,线元受到的摩擦力矩为dM xdf =所以细棒的摩擦力矩大小为12Lm M x gdx mg L L μμ==⎰ (2)由于角加速度恒定,由22212βθωω=-得 22MJθω-=- 其中细棒绕其一端的转动惯量213J mL =转过的角度为23L g ωθμ=4-17 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数c 为一常量。

若转动部分对其轴的转动惯量为J 。

求(1)经过多长时间后其转动角速度减少为初始角速度的一半(2)在此时间内共转过多少转 解:(1)由转动定律M J β=得d c J Jdtωωβ-== 积分得00tcd dt J ωωωω-=⎰⎰ 0ct Jeωω-=转速为初始角速度一半时ln2Jt c=(2)可由角速度和角度的关系求得,即ln 20J c dt d θωθ=⎰⎰亦可采用下列解法即d d d d c JJ J dt dt d d ωωθωωωθθ-=== 积分得20Jd d c ωθωθω=-⎰⎰02J cωθ=转过的转数int[]4J n cωπ= 4-18一质量20.0kg 的小孩,站在一半径为3.00m 、转动惯量为450kg ·m 2的静止水平转台边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计。

如果此小孩相对转台以1.00m/s 的速率沿转台边缘行走,问转台的角速度多大 解:设转台对地的角速度为ω,小孩对地的角速度为ω1 由角动量守恒214502030ωω+⨯=由相对运动1331ωω-=解之得转台角速度大小为221ω=4-19 一转台绕其中心的竖直轴以角速度ω0=πs -1转动,转台对转轴的转动惯量为J 0=×10-3kg ·m 2。

进有砂粒以Q=2t (Q 的单位为g/s ,t 的单位为s )的流量竖直落到转台上,并黏附于台面形成一圆环,若圆环的半径r=0.10m ,求砂粒下列t=10s 时,转动的角速度。

解:设任意时刻的转动惯量为J ,角速度为ω,则由角动量守恒有00J J ωω=所以只要确定了任意时刻的转动惯量,就能求得转动的角速度20JtJ dJ r Qdt =⎰⎰解之得322335224.0100.110 4.01010()J t t kgm ----=⨯+⨯=⨯+把t=10s 代入得325.010()J kgm -=⨯所以转动的角速度为100.80.8s ωωπ-==4-20 一质量为m ’,半径为R 的转台,以角速度ω转动,绕转轴的转动惯量为J ,转轴的摩擦不计,求(1)有一质量为m 的蜘蛛垂直落在转台边缘上,并附着在转台上,此时转台的角速度为多少(2)蜘蛛随后慢慢的爬向转台中心,当它离转台中心距离为r 时,转台的角速度为多少解:(1)由于蜘蛛附着在转台上,所以有共同角速度,由角动量守恒得2()'J J mR ωω=+所以转台的角速度为2'J J mR ωω=+(2)同理可得,当蜘蛛离转台中心距离为r 时,转台的角速度为2'J J mr ωω=+4-21 一质量为1.12kg ,长为1.0m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂,当以100N 的力打击它的下端点,打击时间为,求(1)若打击前棒是静止的,打击后其角动量的变化。

(2)棒的最大转角。

解:(1)由冲量矩定理得FL t J ω∆=所以打击后棒获得的角动量为2110010.022()FL t kgm s -∆=⨯⨯=(2)设棒的最大转角为θ由机械能守恒得211(1cos )22mg L J θω-= 代入数据解之得,最大转角为88.63θ=o4-22 一质量为m 的小球由一绳索系着,以角速度ω0在无摩擦的水平面上,绕以半径为r 0的圆周运动,如果在绳的另一端作用一个竖直向下的拉力,小球做以半径为r 0/2的圆周运动,求(1)小球新的角速度。

(2)拉力所做的功。

解:(1)由角动量守恒得22000()2rmr m ωω=所以小球新的角速度为04ωω=(2)由动能定理得拉力做的功为22222200000112()2222r W m mr mr ωωω=-= 4-23在光滑的水平面上有一轻质弹簧(其劲度系数为k ),它的一端固定,另一端系一质量为m ’的滑块,最初滑块静止,弹簧处于自然长度l 0,今有一质量为m 的子弹以速度v 0沿水平方向并垂直与弹簧轴线射向滑块并留在其中,滑块在水平面内滑动,当弹簧被拉伸至长度为l 时,求滑块速度的大小和方向(用已知量和v 0表示) 解:子弹射入滑块过程中沿子弹方向动量守恒01(')mv m m v =+子弹射入滑块并留在其中后,子弹和滑块作为一个整体角动量守恒01(')(')sin l m m v l m m v θ+=+其中θ为弹簧长度为l 是速度方向与弹簧伸长方向的夹角子弹射入滑块并留在其中后,子弹,弹簧和滑块作为一个整体机械能守恒2221111(')(')222kl m m v m m v =+-+ 联立以上各式解之得v =00arcsin(')ml v v l m m θ=+4-24 A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分布为J A =10.0 kg ·m 2和J B =20.0 kg ·m 2。

相关文档
最新文档