最新中山大学高等代数汇总

合集下载

高等代数知识点总结笔记

高等代数知识点总结笔记

高等代数知识点总结笔记一、集合论基础1. 集合的定义和表示2. 集合的运算:交集、并集、补集、差集3. 集合的基本性质:幂集、空集、自然数集、整数集等4. 集合的关系:子集、相等集、包含关系5. 集合的基本运算律:结合律、交换律、分配律二、映射和函数1. 映射的定义和表示2. 映射的类型:单射、满射、双射3. 函数的定义和性质4. 函数的运算:复合函数、反函数5. 函数的极限、连续性6. 函数的导数、几何意义三、向量空间1. 向量和向量空间的定义2. 向量的线性运算:加法、数乘、点积、叉积3. 向量空间的性质:线性相关、线性无关、维数、基和坐标4. 线性变换和矩阵运算5. 特征值和特征向量四、矩阵与行列式1. 矩阵的定义和基本性质:零矩阵、单位矩阵、方阵2. 矩阵的运算:加法、数乘、矩阵乘法、转置、逆矩阵3. 行列式的定义和性质:行列式的展开法则、克拉默法则4. 线性方程组的解法:克拉默法则、矩阵消元法、逆矩阵法五、线性方程组1. 线性方程组的定义和分类2. 线性方程组的解法:高斯消元法、矩阵法、逆矩阵法3. 线性方程组的特解和通解:齐次线性方程组、非齐次线性方程组4. 线性方程组的解的性质:解的唯一性、解空间六、特征值和特征向量1. 特征值和特征向量的定义和性质2. 矩阵的对角化和相似矩阵3. 特征值和特征向量的应用:矩阵的对角化、变换矩阵4. 矩阵的谱定理和矩阵的相似对角化5. 实对称矩阵和正定矩阵的性质七、多项式与代数方程1. 多项式的定义和性质:零次多项式、一次多项式、多项式的加减乘除2. 代数方程的解法:一元一次方程、一元二次方程、高次方程3. 代数方程的根与系数的关系:韦达定理、牛顿定理、斯图姆定理4. 代数方程的不可约性和可解性八、群、环、域1. 代数结构的定义和性质2. 群的定义和性质:群的封闭性、结合律、单位元、逆元3. 环的定义和性质:交换环、整环、域4. 域的定义和性质:有限域、无限域、极大理想以上就是高等代数的一些基本知识点总结,希望对大家有所帮助。

高等代数知识点总结

高等代数知识点总结
Laplace定理
分块三角矩阵的行列式
Cauchy-Binet 公式
Vandermonde 行列式
定义
性质
*
*
分块三角形行列式
Laplace定理 (按第i1,...,ik行展开)
Cauchy-Binet公式 设U是m×n矩阵, V是n×m矩阵, m≥n, 则
*
*
融资项目商业计划书
单击此处添加副标题
重要结论: 带余除法定理 对于任意多项式f(x)和非零多项式g(x),有唯一的q(x)和r(x)使得 f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x). 最大公因式的存在和表示定理 任意两个不全为0的多项式都有最大公因式,且对于任意的最大公因式d(x)都有u(x)和v(x)使得 d(x)=f(x)u(x)+g(x)v(x) 互素 f(x)和g(x)互素有u(x)和v(x)使得 f(x)u(x)+g(x)v(x)=1.
向量组等价:
S和T等价,即S,T可以互相表示 S,T的极大无关组等价 S,T的秩数相等,且其中之一可由另一表示
对于向量组S,T,下列条件等价
线性相关与线性表示: 1,...,r线性相关当且仅当其中之一可由其余的线性表示 若,1,...,r线性相关,而1,...,r线性无关,则可由1,...,r线性表示,且表法唯一
A,B等价有可逆矩阵P,Q使得A=PBQ 每个秩数为r的矩阵都等价于
矩阵等价
*
可逆矩阵vs列满秩矩阵
对于n阶矩阵A,下列条件等价 A是可逆矩阵 |A|0 秩A=n 有B使得AB=I或BA=I A是有限个初等矩阵之积 A(行或列)等价于I A的列(行)向量组线性无关 方程组Ax=0没有非零解 对任意b,Ax=b总有解 对某个b,Ax=b有唯一解 A是可消去的(即由AB=AC或BA=CA恒可得B=C) 对于m×r矩阵G,下列条件等价 G是列满秩矩阵, G有一个r阶的非零子式 秩G=列数 G有左逆,即有K使得KG=I 有矩阵H使得(G, H)可逆 G行等价于 G的列向量组线性无关 方程组Gx=0没有非零解 对任意b,若Gx=b有解则唯一 对某个b,Gx=b有唯一解 G是左可消去的(即由GB=GC恒可得B=C)

大学高等代数知识点总结

大学高等代数知识点总结

大学高等代数知识点总结高等代数的基础知识包括群论、环论和域论。

群论是研究群的代数结构及其性质的分支学科。

群是一个集合,配上一个二元运算,并满足封闭性、结合律、单位元存在性和逆元存在性等性质。

环论是研究环的代数结构及其性质的学科,环是一个集合,配上两个二元运算,并满足加法封闭性、加法交换律、乘法封闭性、乘法结合律和分配律等性质。

域论是研究域的代数结构及其性质的学科,域是一个集合,配上两个二元运算,并满足加法和乘法的交换性、加法和乘法的结合性、零元和单位元的存在性以及乘法可逆性等性质。

接下来,我们将从群论、环论和域论的角度分别介绍高等代数的重要知识点。

1. 群论群的定义:群是一个集合G,配上一个二元运算*,并满足以下性质:封闭性:对任意的a、b∈G,都有a*b∈G。

结合律:对任意的a、b、c∈G,都有(a*b)*c=a*(b*c)。

单位元存在性:存在一个元素e∈G,对任意的a∈G,都有a*e=e*a=a。

逆元存在性:对任意的a∈G,存在一个元素b∈G,使得a*b=b*a=e。

群的性质:群的性质包括阿贝尔群、循环群、子群、同态映射、正规子群等概念,这些性质对于研究群的结构及其性质非常重要。

2. 环论环的定义:环是一个集合R,配上两个二元运算+和*,并满足以下性质:加法封闭性:对任意的a、b∈R,都有a+b∈R。

加法交换律:对任意的a、b∈R,都有a+b=b+a。

加法结合律:对任意的a、b、c∈R,都有(a+b)+c=a+(b+c)。

乘法封闭性:对任意的a、b∈R,都有a*b∈R。

乘法结合律:对任意的a、b、c∈R,都有(a*b)*c=a*(b*c)。

分配律:对任意的a、b、c∈R,都有a*(b+c)=a*b+a*c和(b+c)*a=b*a+c*a。

环的性质:环的性质包括交换环、整环、域、子环、理想、同态映射等概念,这些性质对于研究环的结构及其性质非常重要。

3. 域论域的定义:域是一个集合F,配上两个二元运算+和*,并满足以下性质:加法和乘法的交换性:对任意的a、b∈F,都有a+b=b+a和a*b=b*a。

高等代数课本笔记及其例题详解

高等代数课本笔记及其例题详解

高等代数课本笔记及其例题详解第一章 多项式1.1 数域定义1.1(数域):设P 是由一些复数组成的集合,其中包括0与1. 如果P 中任意两个数(这两个数也可以相同)的和、差、积、商(除数不为零)仍然是P 中的数,那么P 就称为一个数域.即:设{}C x x P ∈=,P b a ∈∀,,其中0≠a 且P ∈0,1都有P abab b a b a ∈-+,,,,称P为一个数域. (注:Z 表示全体整数;R 表示全体实数;C 表示全体复数;Q 表示全体有理数;N 表示全体自然数;)例题1. 设(){}Q b a b a Q ∈+=,22证明:()2Q 是一个数域. 证明:1)()22000,2011Q ∈+=+=(其中:Q ∈1,0)2)Q d c b a ∈∀,,,有()()()2222Q d b c a d c b a ∈+++=+++(其中: Q d b c a ∈++,);()()()2222Q d b c a d c b a ∈-+-=+-+(其中:Q d b c a ∈--,); ()()()()()22222Q bc ad bd ac d c b a ∈+++=++(其中:Q bc ad bd ac ∈++,2); 若02≠+b a ,有()22222222222Q b a bcad b a bd ac b a d c ∈--+--=++(其中:Q b a bc ad b a bd ac ∈----22222,22,且0222≠-b a ). 2Q ∴是一个数域.例题2. 证明:()()⎭⎬⎫⎩⎨⎧==∈∈++++++=+m j n i Z b a N n m b b b a a a P j i mm n n ,,0;,,0,,,1010 πππππ是一个数域.证明:1) ()πππππP m n ∈++++++=0010011 , ()πππππP mn∈++++++=0000000 2) 显然该集合的和、差、积封闭;若商不封闭,得()πππππππππP d d d c c c b b b a a a tt ss m m n n ∈++++++≠+++++ 101101010,0,得 ()πππππππππππππππππP a a a b b b d d d c c c b b b a a a d d d c c c n n mm t t s s m n n t t s s ∉++++++⋅++++++=++++++++++++ 1010101010101010,这与该集合的积封闭的结论矛盾,故()πP是一个数域.注:最小的数域为有理数域,任何数域都包含有理数域.1.2 一元多项式定义 1.2.1(一元多项式) 设n 是一非负整数. 形式表达式011a x a x a n n n n +++-- ,其中∈n a a a ,,,10 数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式. (注:i i x a 称为i 次项; i a 称为i 次项的系数. )定义1.2.2 (多项式相等)如果在多项式()x f 与()x g 中,除去系数为零的项外,同次项的系数全相等,那么()x f 与()x g 就称为相等,记为()()x g x f =. 系数全为零的多项式称为零多项式,记为0. (注:若0≠n a ,则n n x a 称为多项式的首项;n a 称为首项系数; n 称为多项式的次数,记为()()x f ∂; 零多项式是唯一不定义次数的多项式. ) 性质1.2.1 ()()()()()()()()x g x f x g x f ∂∂≤±∂,max .性质1.2.2 ()()()()()()()x g x f x g x f ∂+∂=⋅∂(其中()0≠x f 且()0≠x g ). 运算规律:1. 加法交换律:()()()()x f x g x g x f +=+.2. 加法结合律:()()()()()()()()x h x g x f x h x g x f ++=++.3. 乘法交换律:()()()()x f x g x g x f =.4. 乘法结合律:()()()()()()()()x h x g x f x h x g x f =.5. 乘法对加法的分配律:()()()()()()()()x h x f x g x f x h x g x f +=+.6. 乘法消去律:如果()()()()x h x f x g x f =且()0≠x f ,那么()()x h x g =.定义1.2.3 (一元多项式环)所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为[]x P ,P 称为[]x P 的系数域.1.3 整除的概念性质1.3.1 (带余除法)对于[]x P 中任意两个多项式()x f 与()x g ,其中()0≠x g ,一定有[]x P 中的多项式()()x r x q ,存在,使()()()()x r x g x q x f +=成立,其中()()()()x g x r ∂<∂或者()0=x r ,并且这样的()()x r x q ,是唯一决定的. (注:()x q 通常称为()x g 除()x f 的商;()x r 称为()x g 除()x f 的余式)定义1.3.1(整除)数域P 上的多项式()x g 称为整除()x f ,如果有数域P 上的多项式()x h 使等式()()()x h x g x f =成立. 我们用“()()x f x g ”表示()x g 整除()x f ,用“()x g ()x f ”表示()x g 不能整除()x f .(注:当()()x f x g 时,()x g 就称为()x f 的因式;()x f 称为()x g 的倍式.)定理1.3.1 对于数域P 上的任意两个多项式()()x g x f ,,其中()0≠x g ,()()x f x g 的充分必要条件是()x g 除()x f 的余式为零. 整除性的常用的性质:1. 如果()()x g x f ,()()x f x g ,那么()()x cg x f =,其中0≠c .2. 如果()()x g x f ,()()x h x g ,那么()()x h x f (整除的传递性).3. 如果()()x g x f i ,r i ,,2,1 =,那么()()()()()()()x g x u x g x u x g x u x f r r +++ 2211其中()x u i 是数域P 上的任意的多项式.(注:()()()()()()x g x u x g x u x g x u r r +++ 2211称为多项式()()()x g x g x g r ,,,21 的一个组合.) 注:两个多项式之间的整除关系不因为系数域的扩大而改变.1.4 最大公因式定义 1.4.1(最大公因式)设()()x g x f ,是[]x P 中两个多项式. []x P 中多项式()x d 称为()()x g x f ,的一个最大公因式,如果它满足下面两个条件:1)()x d 是()()x g x f ,的公因式;2)()()x g x f ,的公因式全是()x d 的因式.(注:两个零多项式的最大公因式就是0) 引理1.4.1 如果有等式()()()()x r x g x q x f +=成立,那么()()x g x f ,和()()x r x g ,有相同的公因式.定理 1.4.1 对于[]x P 中任意两个多项式()()x g x f ,,在[]x P 中存在一个最大公因式()x d ,且()x d 可以表成()()x g x f ,的一个组合,即有[]x P 中多项式()()x v x u ,使()()()()()x g x v x f x u x d +=.(注:两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的;()()()x g x f ,表示首项系数为1的公因式.) 辗转相除法:例题3. 设()343234---+=x x x x x f ,()3210323-++=x x x x g 求()()()x g x f ,,并求()()x v x u ,使()()()()()()()x g x v x f x u x g x f +=,. 解:即:()()()()()()131092595913112x r x q x g x x x x g x f +=⎪⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛-=310925952---x x即:()()()()()()22793109259595272212x r x q x r x x x x x g +=++⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛+-=. ()()()327981108153109259521 +⎪⎭⎫⎝⎛--=---=x x x x x r()()()3,+=∴x x g x f .将(1)代入(2)式可得:()()35251532+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎭⎫⎝⎛-x x g x x x f x ()()525,1532x x x v x x u +-=-=∴就有()()()()()()()x g x f x g x v x f x u ,=+.定义1.4.2(互素)[]x P 中两个多项式()()x g x f ,称为互素(也称互质)的,如果()()()1,=x g x f .定理 1.4.2 []x P 中两个多项式()()x g x f ,称为互素的充要条件是有[]x P 中的多项式()()x v x u ,使()()()()1=+x g x v x f x u .定理1.4.3 如果()()()1,=x g x f ,且()()()x h x g x f ,那么()()x h x f .推论1.4.3.1 如果()()x g x f 1,()()x g x f 2,且()()()1,21=x f x f ,那么()()()x g x f x f 21.推广:定义1.4.3 ()x d 称为()()()()2,,,21≥s x f x f x f s 的一个最大公因式,如果()x d 具有下面的性质:2) ()()s i x f x d i ,,2,1, =;3) 如果()()s i x f x i ,,2,1, =ϕ,那么()()x d x ϕ.(注:符号()()()()x f x f x f s ,,,21 表示首项系数为1的最大公因式.)性质1.4.1()()()()()()()()()()x f x f x f x f x f x f x f s s s ,,,,,,,21121 =-性质1.4.2 ()()()()()()()()()()x f x f x f x f x u x f x u x f x u s s s ,,,212211 =+++,其中 ()()()[]x P x u x u x u s ∈,,,21 .性质1.4.3 ()()()()()()()[],,,,1,,,2121x P x u x u x u x f x f x f s s ∈∃⇔=()()()()()()1:2211=+++x f x u x f x u x f x u st s s .1.5 因式分解定理定义1.5.1(不可约多项式) 数域P 上次数的多项式()x p 称为域上的不可约多项式,如果它不能表示成数域P 上的两个次数比()x p 的次数低的多项式的乘积(注:一个多项式是否是不可约是依赖于系数域的).性质1.5.1 ()x p 在数域[]x P 是不可约多项式,()[]x P x f ∈∀,()()x p x f 当且仅当()0≠=c x f 或()()x cp x f =.即:对于()[]x P x f ∈∀,有()()x f x p 或者()()()1,=x f x p . 定理1.5.1 如果()x p 是不可约多项式,那么对于任意的两个多项式()()x g x f ,,由()()()x g x f x p 一定推出()()x f x p 或者()()x g x p .定理1.5.2(定理1.5.1的推广) 如果()x p 是不可约多项式,若()()()(),21x f x f x f x p s 则()()()(){}x f x f x f x f s i ,,,21 ∈∃使得()()x f x p i .定理1.5.3(因式分解及唯一性定理)数域P 上每一个次数1≥的多项式()x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式()()()()()()()x q x q x q x p x p x p x f s s 2121==,那么必有t s =,并且适当排列因式的次序后有()()s i x q c x p i i i ,,2,1, ==,其中()s i c i ,,2,1 =是一些非零常数.(注:()()()()x p x p x cp x f s r s r r 2121=的分解称为标准分解式;已知两个多项式()()x g x f ,的标准分解式,那么()x f 与()x g 的最大公因式()x d 就是那些同时在与的标准式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在()x f 与()x g 中所带的方幂中的较小的一个.)1.6 重因式定义1.6.1(k 重因式)不可约多项式()x p 称为多项式()x f 的k 重因式,如果()()x f x p k ,而()x p k 1+ ()x f .(注:0=k 时,()x p 不是()x f 的因式;1=k 时,()x p 是()x f 的单因式;1≥k 时,()x p 是()x f 的重因式.)定义1.6.2(微商)设有多项式()0111a x a x a x a x f n n n n ++++=-- .我们规定它的微商(也称导数)是()()1211'1a x n a nx a x f n n n n ++-+=--- . 性质1.6.1 :1)()()()()()x g x f x g x f '''+=+2)()()()x cf x cf ''=,3)()()()()()()()x g x f x g x f x g x f '''+=,4)()()()()()x f x f m x f m m '1'-=.定义1.6.3(高阶微商)微商()x f '称为()x f 的一阶微商;()x f '的微商()x f ''称为的二阶()x f 微商;等等.()x f 的k 阶微商记为()()x f k .(注:()()n x f =∂ο,则()()c x f n =,()()01=+x f n .)定理1.6.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么它是微商()x f '的1-k 重因式.推论1.6.1.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么()x p 是()()()()x f x f x f k 1''',,,- 的因式,但不是()()x f k 的因式.推论1.6.1.2 不可约多项式()x p 是()x f 的重因式的充分必要条件为()x p 是()x f 与()x f ' 的公因式.推论 1.6.1.3 多项式()x f 没有重因式的充分必要条件是()x f 与()x f '互素.(注:辗转相除法可用于求解重因式;()()()()x f x f x f ',是一个没有重因式的多项式与()x f 有完全相同的不可约因式.)1.7 多项式函数定义1.7.1(多项式函数)设()()10111 a x a x a x a x f n n n n ++++=--是[]x P 中的多项式,α是P 中的数,在()1中用α代x 所得的数0111a a a a n n n n ++++--ααα 称为()x f 当α=x 时的值,记为()αf .这样一来,多项式就定义了一个数域上的函数.定理1.7.1(余数定理)用一次多项式α-x 去除多项式()x f ,所得的余式是一个常数,这个常数等于函数值()αf .(注:其中()0=αf 时,α=x 是()x f 的一个根或者零点.) 推论1.7.1.1 α是()x f 的根的充分必要条件是()()x f x α-.定义1.7.2(重根)α称为()x f 的重根,如果()α-x 是()x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理1.7.2 []x P 中n 次多项式()0≥n 在数域P 中的根不可能多于n 个,重根按重数计算. 定理1.7.3 如果多项式()()x g x f ,的次数都不超过n ,而它们对1+n 个不同的数121,,,+n ααα 有相同的值,即()()1,,2,1,+==n i g f i i αα,那么()()x g x f =.1.8 复系数与实系数多项式的因式分解定理1.8.1(代数基本定理)每个次数1≥的复系数多项式在复数域中有一根(即:复数域上所有次数大于1的多项式全是可约的.).定理1.8.2(复系数多项式的分解定理)每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.(复系数多项式的标准分解式:()()()()s ls lln x x x a x f ααα---= 2121,其中C s ∈≠≠≠ααα 21,+∈Z l l l s ,,,21 )定理1.8.3 如果α是实系数多项式()x f 的复根,那么α的共轭数α也是()x f 的根. 定理1.8.4(实系数多项式因式分解定理)每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积(即是说:实数域上只含有一次不可约多项式和含二次共轭复根不可约多项式).1.9 有理系数多项式定理 1.9.1 每个次数1≥的有理系数多项式都能唯一地分解成不可约的有理系数多项式的乘积.定义1.9.1(本原多项式)如果一个非零的整系数多项式()011b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于的公因子,也就是说,它们是互素的,它就称为一个本原多项式.(任意一个非零的有理系数多项式()x f 都可以表示成一个有理数r 与一个本原多项式()x g 的乘积:()()x rg x f =)定理1.9.2(高斯(Gauss )引理)两个本原多项式的乘积还是本原多项式.定理1.9.3 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.推论1.9.3.1 设()()x g x f ,是整系数多项式,且()x g 是本原的. 如果()()()x h x g x f =,其中()x h 是有理系数多项式,那么()x h 一定是整系数的.定理1.9.4 设()011a x a x a x f n n n n +++=-- 是一个整系数多项式,而sr 是它的一个有理根,其中s r ,互素,那么必有n a s ,0a r .特别地,如果()x f 的首项系数1=n a ,那么()x f 的有理根都是整根,而且是0a 的因子. 例题4. 求方程032234=-+-x x x 的有理根. 解:令()32234-+-=x x x x f 得:24=a 的因子为:2,1±±30=a 的因子为:1±,3± ()x f ∴的有理根可能为:21±,23±,1±,2±.判别根的方法一:0321≠-=⎪⎭⎫⎝⎛-f (不为()x f 的根,舍弃);0221≠-=⎪⎭⎫⎝⎛f (不为()x f 的根,舍弃); ()021≠-=-f (不为()x f 的根,舍弃); ()01=f (为()x f 的根); 021523≠=⎪⎭⎫ ⎝⎛-f (不为()x f 的根,舍弃); 042723≠=⎪⎭⎫ ⎝⎛f (不为()x f 的根,舍弃);()0332≠=-f (不为()x f 的根,舍弃); ()0252≠=f (不为()x f 的根,舍弃); 1∴为032234=-+-x x x 方程的有理根.方法二:即2-=x 不是方程032234=-+-x x x 的根.…………经带余除法计算可得:1=x 为032234=-+-x x x 方程的有理根.方法三:21 22002-即21=x 不是方程032234=-+-x x x 的根. …………经综合除法计算可得:1=x 为032234=-+-x x x 方程的有理根.定理1.9.5(艾森斯坦(Eisenstein )判别法)设()011a x a x a x f n n n n +++=-- 是一个整系数多项式.如果有一个素数p ,使得1. p n a ;2. 021,,,a a a p n n --;3. 2p 0a .那么()x f 在有理数域上不可约的.例题5.证明()153+-=x x x f 在有理数域上不可约. 证明:依题意可得()x f 的有理根可能为:1±.又()31-=f ,()51-=-f 都不为零1±=∴x 都不是()x f 的有理根,即()x f 在有理数域上不可约的.1.10 多元多项式定义1.10.1(n 元多项式)设P 是一个数域,n x x x ,,,21 是n 个文字. 形式为n k nk k x x ax 2121的式子,其中P a ∈,n k k k ,,,21 是非负整数,称为一个单项式. 由以上一些单项式的和∑nnn k k k k nk k k k k x x x a,,,21212121 就称为n 元多项式,或者简称多项式.(注:若两个单项式中相同文字的幂全一样,那么它们就称为同类项.)定义1.10.2(元多项式环)所有系数在数域P 中的n 元多项式的全体,称为数域P 上的n元多项式环,记为[]n x x x P ,,21.(注:n k k k +++ 21称为单项式n k nk k x x ax 2121的次数;系数不为零的单项式的最高次数就称为这个多项式的次数.多元多项式的排列顺序方法:字典排列法;)定理1.10.1 当()0,,,21≠n x x x f ,()0,,,21≠n x x x g 时,乘积()()n n x x x g x x x f ,,,,,,2121 的首项等于()n x x x f ,,,21 的首项与()n x x x g ,,,21 的首项的乘积.推论1.10.1.1 如果,,,2,1,0m i f i =≠那么m f f f 21的首项等于每个i f 的首项的乘积. 推论1.10.1.2 如果()()0,,,,0,,,2121≠≠n n x x x g x x x f ,那么()()0,,,,,,2121≠n n x x x g x x x f .(两个齐次多项式的乘积是齐次多项式,乘积的次数等于因子的次数的和.)1.11 对称多项式定理1.11.1(一元多项式根与系数的关系)设()n n n a x a x x f +++=- 11是[]x P 中的一个多项式.如果()x f 在数域P 中有个根n ααα,,,21 ,那么就可以分解成()()()()n x x x x f ααα---= 21.将其展开即得根与系数的关系如下:()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-+++=+++=-∑-n n n k k k k i in n n a i a a a j i αααααααααααααααα 211312122111121,的乘积之和个不同的所有可能的. 定义1.11.1(对称多项式)n 元多项式()n x x x f ,,,21 ,如果对于任意的n j i j i ≤≤≤1,,,都有()()n i j n j i x x x x f x x x x f ,,,,,,,,,,,,11 =,那么这个多项式称为对称多项式. 定理1.11.2 对于任意一个n 元对称多项式都有一个n 元多项式()n y y y ,,,21 ϕ,使得()()n n x x x f σσσϕ,,,,,,2121 =.(其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=----n n nn n n n n n n x x x xx x x x x x x x x x x x x x x x x x 21322211211131212211σσσσ称为n 元初等对称多项式.)例题6. 把三元对称多项式333231x x x ++表为321,,σσσ的多项式. 解:令()333231321,,x x x x x x f ++=得首项为:31x 对应的有序数对()0,0,3,()()332133323131333231321,,x x x x x x x x x x x x f ++-++=-++=∴σ()132123223132222132122163g x x x x x x x x x x x x x x x =-+++++-=得首项:2213x x 对应的有序数对()0,1,2.()()32123223132222132122132123223132222132122121133633x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x g +++++++-+++++-=+σσ23213g x x x =-=对应数对()1,1,1又0332=+σg ()3213132133,,σσσσ+-=∴x x x f .课后习题1. 用()x g 除()x f ,求商()x q 与余式()x r :1)()1323---=x x x x f ,()1232+-=x x x g ; 解:()9113-=∴x x q ,()99+-=x r . 2)()524+-=x x x f ,()22+-=x x x g解:()12-+=∴x x x q ,()75+-=x x r . 3)()1434--=x x x f ,()132--=x x x g 解:()1032++=∴x x x q ,()929+=x x r . 4)()13235-+-=x x x x f ,()233+-=x x x g . 解:()x g233+-x x22+x()22+=∴x x q ,()562-+=x x x r . 5)()x x x x f 85235--=,()3+=x x g 解:带余除法:()109391362234+-+-=∴x x x x x q ,()()3327-=-=f x r . 6)()x x x x f --=23,()i x x g 21+-=. 解:综合除法:i 21-1 i 2- i 25-- i 89+-()i x r 89+-=∴,()i ix x x q 2522---=. 2. m ,p ,q 适合什么条件时,有 1)q px x mx x ++-+321 解:方法一:带余除法:12-+mx xm x -即:()()m q x p m x r ++++=12,又q px x mx x ++-+321()0=∴x r 可得⎩⎨⎧-==++q m p m 012. 2)q px x mx x ++++2421. 解:方法二:待定系数法:设商为:()c bx x x q ++=2,又由q px x mx x ++++2421可得:()()q px x x q mx x ++=++2421即⎪⎪⎩⎪⎪⎨⎧==+=++=+q c b m c p m b c b m 010.()⎩⎨⎧=-=+-∴0112q m p m q . 3. 把()x f 表成0x x -的方幂和,即表成()() +-+-+22010x x c x x c c 的形式:1)()5x x f =,10=x ;解:辗转相除法:即:()()()111234+++++-=x x x x x x f .即:()()()()[]()()()1154321154321123223+-++++-=+++++--=x x x x x x x x x x x f()()()()[]()()()()()11511063111510631122322+-+-+++-=+-++++--=∴x x x x x x x x x x x f()()()()[])()()()()115110110411151101041123423+-+-+-++-=+-+-+++--=x x x x x x x x x x x f ()()()()()1151101101512345+-+-+-+-+-=x x x x x ()()()()()()1151101101512345+-+-+-+-+-=∴x x x x x x f .2)()3224+-=x x x f ,20-=x 解:综合除法:2-2-2- 2-14a = 38a =-()()()()()11124122181234+---+---=∴x x x x x f . 3)()()i xx i ix x x f ++-+-+=7312234,i x -=0. 解:综合除法:i - i - i - i -即:()()()()()()i i x i x i i x i i x x f 57512234+++-++-+-+=. 4. 求()x f 与()x g 的最大公因式:1)()143234---+=x x x x x f ,()123--+=x x x x g 解:带余除法:即:1322即:()()()1434121322+-⎪⎭⎫ ⎝⎛+----=x x x x x g又:()()1121322++-=---x x x x()()()1,+=∴x x g xf .2)()1434+-=x x x f ,()1323+-=x x x g . 解:带余除法:即:()()()2312+--=x x x g x f .即:()()13213232-+⎪⎭⎫ ⎝⎛+-+-=xx x x g .即:41942729132232-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=+-x x x .()()()1,=∴x g x f .3)()11024+-=x x x f ,()124624234+++-=x x x x x g . 解:即:()()x x f x g 242423-=即:()()12232124241624223++-⎪⎭⎫ ⎝⎛--++-=x x x x x x x f .即:()93292889323241223241624223++⎪⎪⎭⎫ ⎝⎛-++-=++-x x x x x x x .即:12192426328827932928812232+⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=++-x x x x . ()()()1,=∴x g x f .5. 求()x u ,()x v 使()()()()()()():,x g x f x g x v x f x u =+1)()242234---+=x x x x x f ,()22234---+=x x x x x g . 解:()13即:()()()221223 -++-=x x x x x g()()32223 x x x x -=- ()()()2,2-=∴x x g x f将(1)代入(2)得:()()()()2212-=+++-x x g x x f x即:取()1--=x x u ,()2+=x x v 可得:()()()()()()()x g x f x g x v x f x u ,=+.2)()951624234++--=x x x x x f ,()45223+--=x x x x g 解:即:()()622--=x x x g x f 即:()()()213139362 +-⎪⎭⎫⎝⎛+-+--=x x x x x g()()()39619362 ++-=+--x x x x()()()1,-=∴x x g x f ,将(1)式代(2)式得:()()()()1322311312-=--+--x x g x x x f x .即:取()()131--=x x u ,()()322312--=x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 3)()144234++--=x x x x x f ,()12--=x x x g 解:即:1232 -+-=x x x g x f()()()()2312 ++-=x x x g()()()1,=∴x g x f将(1)式代入(2)式得:()()13233123=--+++-x g x x x x f x 即取()()131+-=x x u ,()()233123--+=x x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 6. 设()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式,t ,u 的值. 解:又()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式()()u tx x u x t x t +++-++∴3221.即()()()()[]()c x u x t x t u tx x t ++-++=+++21123即:()()()()⎪⎩⎪⎨⎧+=+=-+=++-u t cu t t t c u t c t 112012解得:⎩⎨⎧=-=04u t ,或⎪⎩⎪⎨⎧=+=02321u i t ,或⎪⎩⎪⎨⎧=-=0231u i t ,或⎪⎩⎪⎨⎧--=+-=i u i t 11721121,或⎪⎩⎪⎨⎧+-=--=i u i t 1172111. 7. 证明:如果()()x f x d ,()()x g x d ,且()x d 为()x f 与()x g 的一个组合,那么()x d 是()x f 与()x g 的一个最大公因式.证明:()x d 为()x f 与()x g 的一个组合即:()()()()()x d x g x v x f x u =+.又()()x f x d ,()()x g x d ,即()x d 是()x f 与()x g 的一个公因式.()()x f x h ∀,且()()x g x h 则()()x d x h ()x d ∴是()x f 与()x g 的一个最大公因式.8. 证明:()()()()()()()()()x h x g x f x h x g x h x f ,,=,(()x h 的首项系数为1). 证明:()()()()x f x g x f , ,()()()()x g x g x f ,()()()()()()x h x f x h x g x f ,∴,()()()()()()x h x g x h x g x f ,. 即:()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个公因式. 又()()()()()()()()()x g x f x g x v x f x u st x v x u ,:,=+∃. 则()()()()()()()()()()x h x g x f x h x g x v x h x f x u ,=+()()()x h x f x c ∀,()()()x h x g x c 有()()()()()x h x g x f x c ,. 即()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个最大公因式. 又()x h 的首项系数为1.()()()()()()()()()x h x g x f x h x g x h x f ,,=∴.9. 如果()x f ,()x g 不全为零,证明:()()()()()()()()1,,,=⎪⎪⎭⎫ ⎝⎛x g x f x g x g x f x f .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.()()()0,≠∴x g x f ,又()x u ∃,()x v ()()()()()()()x g x f x g x v x f x u st ,:=+()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u .即:()()()()()()()()1,,,=⎪⎪⎭⎫⎝⎛x g x f x g x g x f x f 成立. 10.证明:如果()x f ,()x g 不全为零,且()()()()()()()x g x f x g x v x f x u ,=+,那么()()()1,=x v x u .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.且()()()()()()()x g x f x g x v x f x u ,=+()()()0,≠∴x g x f ()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u ()()()1,=x v x u .11.证明:如果()()()1,=x g x f ,()()()1,=x h x f ,那么()()()()1,=x h x g x f . 证明:()()()1,=x g x f ,()()()1,=x h x f .()x u 1∃∴,()x v 1,()x u 2,()x v 2使得:()()()()()1111 =+x g x v x f x u ()()()()()2122 =+x h x v x f x u . 由(1)式与(2)式相乘可得:()()()()()()()()()()()()()()()121212121=+++x h x g x v x v x f x g x u x v x h x v x u x f x u x u即()()()()1,=x h x g x f .12. 设()x f 1, ,()x f m ,()x g 1, ,()x g n 都是多项式,而且()()()1,=x g x f ji()n j m i ,,1;,,1 ==.求证:()()()()()1,11=x g x g x f x f nm.证明:由11题可得:()()()1,=x g x f ,()()()1,=x h x f ()()()()1,=⇒x h x g x f 又()()()1,=x g x f j i (其中m i ,,1 =;n j ,,1 =)可得,对于i 取m ,,2,1 中的任何一个固定值有:()()()()1,1=x g x g x f n i . 再将()()x g x g n 1看作一个整体可得:()()()()()1,11=x g x g x f x f n m . 13. 证明:如果()()()1,=x g x f ,那么()()()()()1,=+x g x f x g x f . 证明:()()()1,=x g x f 故有:()()()()1=+x g x v x f x u .即:()()()()()()()()()()()()()()()()1=++-=+-+x g x f x v x f x v x u x g x v x f x v x f x v x f x u()()()()1,=+∴x f x g x f ;同理可得:()()()()1,=+x g x f x g()()()()()1,=+∴x g x f x g x f .14. 求下列多项式的公共根:()12223+++=x x x x f ,()12234++++=x x x x x g . 解:()()()212+-=∴x x x f x g 即:()()()112+++=x x x x f()()()1,2++=∴x x x g x f 令:012=++x x 解得:2311i x +-=;2312ix --=. 即:()x f 与()x g 的公共根为:2311i x +-=和2312ix --=.(提示:公共根出现在多项式的公因式中.)15. 判别下列多项式有无重因式: 1)()842752345-+-+-=x x x x x x f解:()()()x x x x x x x x f 1524421205'2234+-=+-+-=又()()()1284275232345++-=-+-+-=x x x x x x x x x f即:()()()()22',-=x x f x f ()x f ∴有三重因式:2-x2)()34424--+=x x x x f解:()124484'33-+=x x x f即:()()()1',=x f x f ()x f ∴没有重因式. 16.求t 值使()1323-+-=tx x x x f 有重根.解:依题意可得:待定系数法:当有()x f 重根时,可得重根为有理根时,此时只能取重根为:1±=α.当重根为:1=α 1可得:3=t .当3=t 时,()()3231133-=-+-=x x x x x f 此时1=x 是()x f 的三重根;当重根为:1-=α1-解得:5-=t ,当5-=t 时,()()()141153223--+=---=x x x x x x x f 与1-=x 为重根矛盾,舍去.设重根为二重时得()⎪⎭⎫⎝⎛+-=+-=323163'22t x x t x x x f()()()()()()()()()12,''131,'',+=⎪⎭⎫ ⎝⎛--=x x f x f x x f x f x f x f 即得:021'=⎪⎭⎫⎝⎛-f .解得:415-=t . 17.求多项式q px x ++3有重根的条件.解:()()()()()()()()132,'3','3,',23≠⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-=+++=q px x f x f x f x f p x q px x x f x f 得: ()x f q px'32+即得:027423=+q p . 18.如果()11242++-Bx Ax x ,求A ,B .解:依题意可由综合除法可得:1 1A A 2B A +3 B A 24+由()11242++-Bx Ax x 可得:⎩⎨⎧=+=++02401B A B A 解得:⎩⎨⎧-==21B A .19.证明:!!212n x x x n++++ 不能有重根.证明:令()!!212n x x x x f n ++++= 得:()()!1!21'12-++++=-n x x x x f n反证法:设()x f 的重根为α得:()()⎩⎨⎧==0'0ααf f 即:()()0'=-ααf f 0!=∴n nα得:0=α 又()010≠=f 矛盾.∴!!212n x x x n++++ 不能有重根.20.如果a 是()x f '''的一个k 重根,证明a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根.证明:依题意可得:()()()[]()()0''2=+-+-=a f a f a f a f aa a g ()()()[]()()0'''22'''=--++=a f a f aa a f a f a g()()()()()a f a f aa a f a f a g '''''22''2''''--++=又()0'''=a f ()0''=∴a g()()()()02'''21'''4=-+-=a f a a a f a g又a 是()x f '''的一个k 重根a ∴是()x g '''的一个k 重根. 又()()()()0''''''====a g a g a g a g∴a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根. 21.证明:0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k证明: 0x 是()x f 的k 重根()()x f x x k0-∴即()x g ∃,使得:()()()x g x x x f k0-=,其中0x x -不整除()x g()()()()()x g x x x g x x k x f kk ''010-+-=∴-可得:()()x f x x k '10--()0'0=∴x f同理由此类推可得到:()()()()0'0100====-x f x f x f k 若()()00=x f k 得:()()()x f x x k 0-()()x f x x s k s10+--⇒其中k s ≤,即()()x f x x k 10+-这与0x 是()x f 的k 重根矛盾.()()00≠∴x f k反之显然成立.∴0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k .22.举例说明断语“如果a 是()x f '的m 重根,那么a 是()x f 的1+m 重根”是不对的. 解:例如:()()111111+-=+m a x x f 则()()()ma x m x f -+=1'a 是()x f '的m 重根,但a 不是()x f 的1+m 重根.23. 证明:如果()()n x f x 1-,那么()()n n x f x 1-. 证明:令:n x y =得:()()y f x 1-即()()011==f f n ∴()()y f y 1-即()()n n x f x 1-.24. 证明:如果()()()323121x xf x f x x +++,那么()()x f x 11-,()()x f x 21-证明:.令:012=++x x 解得:2311i x +-=,2312ix --= 又()()()323121x xf x f x x +++即:()()()32311x f x f x x +-,()()()32312x f x f x x +-()()()()⎩⎨⎧=+=+∴0032223213121311x f x x f x f x x f 即:()()()()⎪⎪⎩⎪⎪⎨⎧=--+=+-+0123110123112121f i f f i f 又0323112311≠-=--+-i i i即该方程程组只有唯一零解:()()⎩⎨⎧==010121f f∴()()x f x 11-,()()x f x 21-.25. 求多项式1-n x 在复数域范围内和在实数范围内的因式分解. 解:在复数域上分解:()()()111----=-n n x x x x εε 其中ni n ππε2sin 2cos +=. 在实数范围内因式分解:当n 为奇数:()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--=-+---111112222222212x x x x x x x x n n n n nεεεεεε 其中:n i i n i πεε2cos2=+-为一个实数,21,,2,1-=n i . 当n 为偶数时:()()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--+=-+---1111112222222212x x x x x x x x x n n n n nεεεεεε 26. 求下列多项式的有理根: 1)1415623-+-x x x解:令()1415623-+-=x x x x f 则()x f 的有理根可能为:1±,2±,7±,14±.由综合除法计算得:1即:()41-=f同理:()361-=-f ,()762-=-f ,()02=f ,()7567-=-f ,()1407=f ,()414414-=-f()176414=f∴1415623-+-x x x 多项式的有理根为:2.2)157424---x x x解:令()157424---=x x x x f 则的有理根可能为:41±,21±,1± 将根挨个代入原式得:641114154174144124-=--⨯-⎪⎭⎫⎝⎛-⨯-⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-f同理:6417141-=⎪⎭⎫ ⎝⎛f ,021=⎪⎭⎫ ⎝⎛-f ,521-=⎪⎭⎫⎝⎛f ,()11=-f ,()91-=f∴157424---x x x 多项式的有理根为:21-.3)3111462345----+x x x x x解:令()3111462345----+=x x x x x x f 则()x f 的有理根可能为:1±,3±由带余除法计算得:即:()01=-f 同理:()321-=f ,()963-=-f ,()03=f .∴3111462345----+x x x x x 多项式的有理根为:1-,3. 27. 下列多项式在有理数域上是否可约? 1)12+x解:不可约;理由如下:依题意可得令()12+=x x f 则()x f 的有理根可能为:1± 又()()0211≠=-=f f 即1±不为()x f 的有理根∴多项式12+x 在有理数域上是不可约的.(二次有理多项式在有理数域上可约的话必有有理根)2)2128234++-x x x解:不可约;理由如下: 取素数2=p 得: (1)p 41a =.(2)38a p =-,212a p =,10a p =,02a p = (3)42=p 02a =由艾森斯坦判别法可得:多项式2128234++-x x x 是不可约的. 3)136++x x解:不可约;理由如下:令()136++=x x x f ,1+=y x 得:原多项式39182115623456++++++=y y y y y y 这时只要取3=p 可由艾森斯坦判别法得出:39182115623456++++++y y y y y y 不可约;∴136++x x 不可约.4)1++px x p ,p 为奇素数;解:令1+=y x 作转化,再由艾森斯坦判别法判别不可约; 5)144++kx x ,k 为整数. 解:同4),不可约:。

最新中山大学高等代数试题

最新中山大学高等代数试题

2004中山大学高等代
数试题
2004年 高等代数试题(70分)
1.(10分)计算下列n 阶行列式:
210 (00)
121 (00)
012...00000 (12)
n D =........
2.(10分)设12,,...,n ααα是数域P 上线性空间V 中一线性无关向量组,讨论向量组12231,,...,n αααααα+++的线性相关性。

3.(10分)设A =100101010⎛⎫

⎪ ⎪⎝⎭
.
(1).证明:22n n A A A I -=+-.
(2).求100A .
4.(20分)设3R 的线性变换 在标准基下的矩阵A =211121112⎛⎫ ⎪ ⎪ ⎪⎝⎭
.
(1).求A 的特征值和特征向量.
(2).求3R 的一组标准正交基,使 在此基下的矩阵为对角矩阵.
5.(20分)设β为n 维欧氏空间V 中一个单位向量,定义V 的线性变换 如下:
2(,),V ααβαβα=-∀∈
证明:
(1). 为第二类的正交变换(称为镜面反射).
(2).V 的正交变换是镜面反射 的充要条件为1是 的特征值,且对
应的特征子空间的维数为n -1.。

中山大学考高等代数研试题(2003-2010)

中山大学考高等代数研试题(2003-2010)

3 0 8 6. 设 A 3 1 6 ,则 A 的若当标准形为______________________________. 2 0 5
7. 实二次型 q( x1 , x2 , x3 ) 2 x1 x2 6 x2 x3 2 x1 x3 的符号差等于____________. 8. 设 f ( x) x 4 2 x 3 x 2 4 x 2 , g ( x ) x 4 x3 x 2 2 x 2 ,则它们的首一最大 公因式 ( f , g ) ______________________. 9. 设 x (1, 2, 2, 3), y (3,1,5,1) R 4 ,则 x 与 y 的夹角 ( x, y ) _______________. 10. 设 W {( x, y, z ) : x y 2 z 0} R 3 ,则 W 的正交补 W _______________. 二、证明题(每小题 10 分. 写出详细步骤) 1. 设 A 为数域 F 上 m n 矩阵,定义 LA : F F , x Ax . 证明: LA 是单射当且仅
( 2) (6 分)设 A 为元素都是整数的 n 级方阵. 证明:若整数 k 是 A 的一个特征值,则 k 是 A 的一个因子. 四、 (15 分)就 a 取何值时讨论以下方程组解的情况,有解时求解:
ax y z a 3 x ay z 2 . x y az 2
1
A1 亦正定.
a b 如果 a d 2 , ,其中 a, b, c, d 是实数,且 ad bc 1 . 证明: c d cos sin sin . cos
k
则存在实数 和实可逆矩阵 T ,使得 T 1 AT

高等代数知识点总结课件

高等代数知识点总结课件

行列式的展开定理
• 总结词:行列式的展开定理是行列式计算的核心,它提供了计算行列式 值的有效方法。
• 详细描述:行列式的展开定理指出,一个$n$阶行列式等于它的主对角线上的元素的乘积与其它元素乘积的代数和的相 反数。具体来说,对于一个$n$阶行列式$|\begin{matrix} a{11} & a{12} & \cdots & a{1n} \ a{21} & a{22} & \cdots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{n1} & a{n2} & \cdots & a{nn} \end{matrix}|$,其值等于 $a{11}A{11} + a{21}A{21} + \cdots + a{n1}A{n1}$,其中$A{ii}$表示去掉第$i$行和第$i$列后得到的$(n-1)$阶行列 式的值。
04
线性函数与双线性函数
线性函数的定义与性质
线性函数的定义
线性函数是数学中的一种函数,其图 像为一条直线。在高等代数中,线性 函数是指满足 f(ax+by)=af(x)+bf(y) 的函数。
线性函数的性质
线性函数具有一些重要的性质,如加 法性质、数乘性质、零元素性质和负 元素性质等。这些性质在解决实际问 题中具有广泛的应用。
欧几里得空间与酉空间
欧几里得空间
欧几里得空间是一个几何空间,它满足 欧几里得几何的公理。在欧几里得空间 中,向量的长度和角度都可以用实数表 示。
VS
酉空间
酉空间是一种特殊的线性空间,它满足酉 几何的公理。在酉空间中,向量的长度和 角度都可以用复数表示。酉空间在量子力 学、信号处理等领域有广泛应用。

最新高等代数知识点总结

最新高等代数知识点总结

最新高等代数知识点总结高等代数是数学领域中的一门重要基础课程,它涵盖了众多的概念、定理和方法。

以下是对一些最新高等代数知识点的总结。

一、多项式多项式是高等代数中的基本研究对象之一。

多项式的运算包括加、减、乘,除法在特定条件下进行。

多项式的根是一个关键概念。

通过代数基本定理,我们知道在复数域上,n 次多项式必有 n 个根(重根按重数计算)。

在求多项式的最大公因式时,辗转相除法是常用的方法。

而对于不可约多项式的判定,需要根据其系数域和多项式的形式来确定。

二、行列式行列式是一个数值,其计算方法有多种,如按照某一行(列)展开、利用行列式的性质将其化为上三角或下三角行列式等。

行列式具有很多重要的性质,例如:某一行(列)元素乘以同一数加到另一行(列)的对应元素上,行列式的值不变;行列式中某一行(列)的元素全为零,则行列式的值为零等。

在解线性方程组时,行列式可以用来判断方程组是否有唯一解。

三、矩阵矩阵是高等代数中的核心概念之一。

矩阵的运算包括加法、乘法、数乘等。

矩阵的逆是一个重要的概念,如果一个矩阵存在逆矩阵,则称其为可逆矩阵。

求逆矩阵的方法有伴随矩阵法和初等变换法。

矩阵的秩反映了矩阵的本质特征。

通过初等变换可以求矩阵的秩。

矩阵的分块也是一个重要的技巧,通过合理分块,可以简化矩阵的运算。

四、线性方程组线性方程组的求解是高等代数中的重要内容。

对于齐次线性方程组,当系数矩阵的秩等于未知数的个数时,方程组仅有零解;当系数矩阵的秩小于未知数的个数时,方程组有非零解。

对于非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩且等于未知数的个数时,方程组有唯一解;当增广矩阵的秩等于系数矩阵的秩且小于未知数的个数时,方程组有无穷多解;当增广矩阵的秩不等于系数矩阵的秩时,方程组无解。

五、向量空间向量空间是一个集合,其中的元素称为向量,满足一定的运算规则。

向量组的线性相关性是一个重要概念。

判断向量组线性相关还是线性无关有多种方法,如定义法、行列式法等。

(NEW)中山大学高等代数历年考研真题汇编

(NEW)中山大学高等代数历年考研真题汇编
目 录
2008年中山大学851高等代数考研真题 2009年中山大学870高等代数考研真题 2010年中山大学874高等代数考研真题 2011年中山大学875高等代数考研真题 2012年中山大学869高等代数考研真题 2013年中山大学869高等代数考研真题 2014年中山大学874高等代数考研真题 2015年中山大学877高等代数考研真题 2016年中山大学868高等代数考研真题 2017年中山大学862高等代数考研真题 2018年中山大学861高等代数考研真题 2019年中山大学867高等代数考研真题
10 设W={(x,y,z):x+y-2z=0}⊆R3,则W的正交补W⊥= ______.
二、证明题(每小题10分) 1 设A为数域F上m×n矩阵,定义LA:Fn→Fm,x→Ax.证明:LA是单 射当且仅当A的列向量组线性无关;LA是满射当且仅当A的行向量组线 性无关.
2 设f(x),g(x)是数域F上的多项式,m(x)=[f,g]是它们的首 一最小公倍式,σ是F上线性空间V的一个线性变换.证明:ker f(σ) +ker g(σ)=ker m(σ).
2018年中山大学861高等代数考研 真题
2019年中山大学867高等代数考研 真题
2008年中山大学851高等代数考研 真题
2009年中山大学870高等代数考研 真题
2010年中山大学874高等代数考研 真题
一、填空题(每小题10分) 1 设U={A∈M2(F):a11+a12=0},V={A∈M2(F):a11+a21= 0},则U+V的维数等于______.(M2(F)表示数域F上所有2阶方阵 构成的F上线性空间.)
2011年中山大学875高等代数考研 真题
2012年中山大学869高等代数考研 真题

2022年中山大学考研真题精讲精练之高等代数

2022年中山大学考研真题精讲精练之高等代数

2022年中山大学考研真题精讲精练之高等代数考研经验分享,考研笔记,考研辅导班,考研辅导视频,考研重点分析,出题老师介绍,导师推荐,重点题型分析【温馨提示】现在很多小机构虚假宣传,育明教育咨询部建议考生一定要实地考察,并一定要查看其营业执照,或者登录工商局网站查看企业信息。

目前,众多小机构经常会非常不负责任的给考生推荐北大、清华、北外等名校,希望广大考生在选择院校和专业的时候,一定要慎重、最好是咨询有丰富经验的考研咨询师.专业课的复习和应考有着与公共课不同的策略和技巧,虽然每个考生的专业不同,但是在总体上都有一个既定的规律可以探寻。

以下就是针对考研专业课的一些十分重要的复习方法和技巧。

一、专业课考试的方法论对于报考本专业的考生来说,由于已经有了本科阶段的专业基础和知识储备,相对会比较容易进入状态。

但是,这类考生最容易产生轻敌的心理,因此也需要对该学科能有一个清楚的认识,做到知己知彼。

跨专业考研或者对考研所考科目较为陌生的同学,则应该快速建立起对这一学科的认知构架,第一轮下来能够把握该学科的宏观层面与整体构成,这对接下来具体而丰富地掌握各个部分、各个层面的知识具有全局和方向性的意义。

做到这一点的好处是节约时间,尽快进入一个陌生领域并找到状态。

很多初入陌生学科的同学会经常把注意力放在细枝末节上,往往是浪费了很多时间还未找到该学科的核心,同时缺乏对该学科的整体认识。

其实考研不一定要天天都埋头苦干或者从早到晚一直看书,关键的是复习效率。

要在持之以恒的基础上有张有弛。

具体复习时间则因人而异。

一般来说,考生应该做到平均一周有一天的放松时间。

四门课中,专业课(数学也属于专业课)占了300分,是考生考入名校的关键,这300分最能拉开层次。

例如,专业课考试中,分值最低的一道名词解释一般也有4分或者更多,而其他专业课大题更是动辄十几分,甚至几十分,所以在时间分配上自然也应该适当地向专业课倾斜。

根据我们的经验,专业课的复习应该以四轮复习为最佳,所以考生在备考的时候有必要结合下面的内容合理地安排自己的时间:第一轮复习:每年的2月—8月底这段时间是整个专业复习的黄金时间,因为在复习过程遇到不懂的难题可以尽早地寻求帮助得到解决。

线性代数高等代数知识点总结

线性代数高等代数知识点总结
线性无关:对于向量组1,...,r下列条件等价 • 1,...,r线性无关
• 当c1,...,cr不全为0时,必有c11+...+crr0 • 当c11+...+crr=0时,必有c1=...=cr=0 • 1,...,r的秩数等于r • (1,...,r)是列满秩矩阵
24
3. 秩A=秩B
4. A,B的标准型相同
18
多角度看可逆阵
n阶方阵A可逆 AB BA E A 0 (非退化阵) Ax 0 只有零解 Ax b 有唯一解
A的行最简形为E. A为初等阵的乘积
r A n (满秩) A的行(列)向量组的秩都是n.
原向量组一个极大无关组
第一等价链
r( A) n(满秩) A 0 A可逆(非奇异、非退化 ) A的n个行(列)向量线性无 关
齐次线性方程组 非齐次线性方程组
AX o只有零解 AX b有唯一解
第二等价链
r( A) n(不满秩) A 0 A不可逆(奇异、退化) A的n个行(列)向量线性相 关
本章所需掌握的题型:
行列式计算(重点) 1、具体阶数行列式计算 2、较简单的n阶行列式计算
与行列式定义、性质有关的问题
需利用行列式进行判定的问题 如:1、“Crammer”法则判定方程组的解况
2、矩阵可逆性 3、向量组相关性(向量个数=向量维数) 4、两个矩阵相似的必要条件 5、矩阵正定、半正定的必要条件
1. n元线性方程组Ax=b有解系数矩阵与增广矩阵 的秩数相等. 具体地,
① 当秩A<秩(A b)时,方程组无解 ② 当秩A=秩(A b)=n时,方程组有唯一解 ③ 当秩A=秩(A b)<n时,方程组有无穷解

高等代数最重要的基本概念汇总

高等代数最重要的基本概念汇总

第一章 基本概念1.5 数环和数域定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。

定义2 设F 是一个数环。

如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠,aF b∈,那么就称F 是一个数域。

定理 任何数域都包含有理数域,有理数域是最小的数域。

定义1( 中的数。

项式()1叫作零次项或常数项,i i a x 叫作一次项,一般,定义2 ()f x 定义 3 n n a x ++,作多项式n n a x ++,的次数。

定理2.1.1 )x 是数环R 多项式的加法和乘法满足以下运算规则: 1) 加法交换律:()()()()f x g x g x f x +=+;2) 加法结合律:()()()()()()()()f x g x h x f x g x h x ++=++;3)乘法交换律:()()()()f x g x g x f x =;4) 乘法结合律:()()()()()()()()f x g x h x f x g x h x =;5) 乘法对加法的分配律: ()()()()()()()()f x g x h x f x g x f x h x +=+。

推论2.1.1()()0f x g x = 当且仅当()f x 和()g x 中至少有一个是零多项式 推论2.1.2 若()()()()f x g x f x h x =,且()0f x ≠,那么()()g x h x =设F 定义 令()h x ,使(g 1) 如果2) 如果3) 如果4) 果(,2,3,,,ht 那么对于5) 中不等于零的数,整除任意多项式。

6) 7) 如果设()f x )()x r x +,这里定理2.2.1 设()f x 和()g x 是[]f x 的任意两个多项式,并且()0g x ≠。

那么在[]f x 中可以找到多项式()q x 和()r x ,使(3)()()()()f xg x q x r x =+这里或者()0rx =,或者()r x 的次数小于()g x 的次数,满足以上条件的多项式()()q x r x 和只有一对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档